1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
|
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2011 The Chromium OS Authors. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; version 2 of
* the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <pci/pci.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sys/io.h>
#include <assert.h>
#include <unistd.h>
#include "me.h"
#include "mmap.h"
#include "intelmetool.h"
#define read32(addr, off) ( *((uint32_t *) (addr + off)) )
#define write32(addr, off, val) ( *((uint32_t *) (addr + off)) = val)
/* Path that the BIOS should take based on ME state */
/*
static const char *me_bios_path_values[] = {
[ME_NORMAL_BIOS_PATH] = "Normal",
[ME_S3WAKE_BIOS_PATH] = "S3 Wake",
[ME_ERROR_BIOS_PATH] = "Error",
[ME_RECOVERY_BIOS_PATH] = "Recovery",
[ME_DISABLE_BIOS_PATH] = "Disable",
[ME_FIRMWARE_UPDATE_BIOS_PATH] = "Firmware Update",
};
*/
/* MMIO base address for MEI interface */
static uint32_t mei_base_address;
static uint8_t* mei_mmap;
static void mei_dump(void *ptr, int dword, int offset, const char *type)
{
/* struct mei_csr *csr; */
switch (offset) {
case MEI_H_CSR:
case MEI_ME_CSR_HA:
/*
csr = ptr;
if (!csr) {
printf("%-9s[%02x] : ", type, offset);
printf("ERROR: 0x%08x\n", dword);
break;
}
printf("%-9s[%02x] : ", type, offset);
printf("depth=%u read=%02u write=%02u ready=%u "
"reset=%u intgen=%u intstatus=%u intenable=%u\n",
csr->buffer_depth, csr->buffer_read_ptr,
csr->buffer_write_ptr, csr->ready, csr->reset,
csr->interrupt_generate, csr->interrupt_status,
csr->interrupt_enable);
*/
break;
case MEI_ME_CB_RW:
case MEI_H_CB_WW:
printf("%-9s[%02x] : ", type, offset);
printf("CB: 0x%08x\n", dword);
break;
default:
printf("%-9s[%02x] : ", type, offset);
printf("0x%08x\n", offset);
break;
}
}
/*
* ME/MEI access helpers using memcpy to avoid aliasing.
*/
static inline void mei_read_dword_ptr(void *ptr, uint32_t offset)
{
uint32_t dword = read32(mei_mmap, offset);
memcpy(ptr, &dword, sizeof(dword));
if (debug) {
mei_dump(ptr, dword, offset, "READ");
}
}
static inline void mei_write_dword_ptr(void *ptr, uint32_t offset)
{
uint32_t dword = 0;
memcpy(&dword, ptr, sizeof(dword));
write32(mei_mmap, offset, dword);
if (debug) {
mei_dump(ptr, dword, offset, "WRITE");
}
}
static inline void pci_read_dword_ptr(struct pci_dev *dev, void *ptr, uint32_t offset)
{
uint32_t dword = pci_read_long(dev, offset);
memcpy(ptr, &dword, sizeof(dword));
if (debug) {
mei_dump(ptr, dword, offset, "PCI READ");
}
}
static inline void read_host_csr(struct mei_csr *csr)
{
mei_read_dword_ptr(csr, MEI_H_CSR);
}
static inline void write_host_csr(struct mei_csr *csr)
{
mei_write_dword_ptr(csr, MEI_H_CSR);
}
static inline void read_me_csr(struct mei_csr *csr)
{
mei_read_dword_ptr(csr, MEI_ME_CSR_HA);
}
static inline void write_cb(uint32_t dword)
{
write32(mei_mmap, MEI_H_CB_WW, dword);
if (debug) {
mei_dump(NULL, dword, MEI_H_CB_WW, "WRITE");
}
}
static inline uint32_t read_cb(void)
{
uint32_t dword = read32(mei_mmap, MEI_ME_CB_RW);
if (debug) {
mei_dump(NULL, dword, MEI_ME_CB_RW, "READ");
}
return dword;
}
/* Wait for ME ready bit to be asserted */
static int mei_wait_for_me_ready(void)
{
struct mei_csr me;
unsigned try = ME_RETRY;
while (try--) {
read_me_csr(&me);
if (me.ready)
return 0;
usleep(ME_DELAY);
}
printf("ME: failed to become ready\n");
return -1;
}
void mei_reset(void)
{
struct mei_csr host;
if (mei_wait_for_me_ready() < 0)
return;
/* Reset host and ME circular buffers for next message */
read_host_csr(&host);
host.reset = 1;
host.interrupt_generate = 1;
write_host_csr(&host);
if (mei_wait_for_me_ready() < 0)
return;
/* Re-init and indicate host is ready */
read_host_csr(&host);
host.interrupt_generate = 1;
host.ready = 1;
host.reset = 0;
write_host_csr(&host);
}
static int mei_send_msg(struct mei_header *mei, struct mkhi_header *mkhi,
void *req_data)
{
struct mei_csr host;
unsigned ndata , n;
uint32_t *data;
/* Number of dwords to write, ignoring MKHI */
ndata = (mei->length) >> 2;
/* Pad non-dword aligned request message length */
if (mei->length & 3)
ndata++;
if (!ndata) {
printf("ME: request does not include MKHI\n");
return -1;
}
ndata++; /* Add MEI header */
/*
* Make sure there is still room left in the circular buffer.
* Reset the buffer pointers if the requested message will not fit.
*/
read_host_csr(&host);
if ((host.buffer_depth - host.buffer_write_ptr) < ndata) {
printf("ME: circular buffer full, resetting...\n");
mei_reset();
read_host_csr(&host);
}
/*
* This implementation does not handle splitting large messages
* across multiple transactions. Ensure the requested length
* will fit in the available circular buffer depth.
*/
if ((host.buffer_depth - host.buffer_write_ptr) < ndata) {
printf("ME: message (%u) too large for buffer (%u)\n",
ndata + 2, host.buffer_depth);
return -1;
}
/* Write MEI header */
mei_write_dword_ptr(mei, MEI_H_CB_WW);
ndata--;
/* Write MKHI header */
mei_write_dword_ptr(mkhi, MEI_H_CB_WW);
ndata--;
/* Write message data */
data = req_data;
for (n = 0; n < ndata; ++n)
write_cb(*data++);
/* Generate interrupt to the ME */
read_host_csr(&host);
host.interrupt_generate = 1;
write_host_csr(&host);
/* Make sure ME is ready after sending request data */
return mei_wait_for_me_ready();
}
static int mei_recv_msg(struct mei_header *mei, struct mkhi_header *mkhi,
void *rsp_data, uint32_t rsp_bytes)
{
struct mei_header mei_rsp;
struct mkhi_header mkhi_rsp;
struct mei_csr me, host;
unsigned ndata, n;
unsigned expected;
uint32_t *data;
/* Total number of dwords to read from circular buffer */
expected = (rsp_bytes + sizeof(mei_rsp) + sizeof(mkhi_rsp)) >> 2;
if (rsp_bytes & 3)
expected++;
if (debug) {
printf("expected u32 = %d\n", expected);
}
/*
* The interrupt status bit does not appear to indicate that the
* message has actually been received. Instead we wait until the
* expected number of dwords are present in the circular buffer.
*/
for (n = ME_RETRY; n; --n) {
read_me_csr(&me);
if ((me.buffer_write_ptr - me.buffer_read_ptr) >= expected)
//if (me.interrupt_generate && !me.interrupt_status)
//if (me.interrupt_status)
break;
usleep(ME_DELAY);
}
if (!n) {
printf("ME: timeout waiting for data: expected "
"%u, available %u\n", expected,
me.buffer_write_ptr - me.buffer_read_ptr);
return -1;
}
/* Read and verify MEI response header from the ME */
mei_read_dword_ptr(&mei_rsp, MEI_ME_CB_RW);
if (!mei_rsp.is_complete) {
printf("ME: response is not complete\n");
return -1;
}
/* Handle non-dword responses and expect at least MKHI header */
ndata = mei_rsp.length >> 2;
if (mei_rsp.length & 3)
ndata++;
if (ndata != (expected - 1)) { //XXX
printf("ME: response is missing data\n");
//return -1;
}
/* Read and verify MKHI response header from the ME */
mei_read_dword_ptr(&mkhi_rsp, MEI_ME_CB_RW);
if (!mkhi_rsp.is_response ||
mkhi->group_id != mkhi_rsp.group_id ||
mkhi->command != mkhi_rsp.command) {
printf("ME: invalid response, group %u ?= %u, "
"command %u ?= %u, is_response %u\n", mkhi->group_id,
mkhi_rsp.group_id, mkhi->command, mkhi_rsp.command,
mkhi_rsp.is_response);
//return -1;
}
ndata--; /* MKHI header has been read */
/* Make sure caller passed a buffer with enough space */
if (ndata != (rsp_bytes >> 2)) {
printf("ME: not enough room in response buffer: "
"%u != %u\n", ndata, rsp_bytes >> 2);
//return -1;
}
/* Read response data from the circular buffer */
data = rsp_data;
for (n = 0; n < ndata; ++n)
*data++ = read_cb();
/* Tell the ME that we have consumed the response */
read_host_csr(&host);
host.interrupt_status = 1;
host.interrupt_generate = 1;
write_host_csr(&host);
return mei_wait_for_me_ready();
}
static inline int mei_sendrecv(struct mei_header *mei, struct mkhi_header *mkhi,
void *req_data, void *rsp_data, uint32_t rsp_bytes)
{
if (mei_send_msg(mei, mkhi, req_data) < 0)
return -1;
if (mei_recv_msg(mei, mkhi, rsp_data, rsp_bytes) < 0)
return -1;
return 0;
}
/* Send END OF POST message to the ME */
/*
static int mkhi_end_of_post(void)
{
struct mkhi_header mkhi = {
.group_id = MKHI_GROUP_ID_GEN,
.command = MKHI_END_OF_POST,
};
struct mei_header mei = {
.is_complete = 1,
.host_address = MEI_HOST_ADDRESS,
.client_address = MEI_ADDRESS_MKHI,
.length = sizeof(mkhi),
};
if (mei_sendrecv(&mei, &mkhi, NULL, NULL, 0) < 0) {
printf("ME: END OF POST message failed\n");
return -1;
}
printf("ME: END OF POST message successful\n");
return 0;
}
*/
/* Get ME firmware version */
int mkhi_get_fw_version(void)
{
uint32_t data = 0;
struct me_fw_version version = {0};
struct mkhi_header mkhi = {
.group_id = MKHI_GROUP_ID_GEN,
.command = GEN_GET_FW_VERSION,
.is_response = 0,
};
struct mei_header mei = {
.is_complete = 1,
.host_address = MEI_HOST_ADDRESS,
.client_address = MEI_ADDRESS_MKHI,
.length = sizeof(mkhi),
};
#ifndef OLDARC
/* Send request and wait for response */
if (mei_sendrecv(&mei, &mkhi, &data, &version, sizeof(version) ) < 0) {
printf("ME: GET FW VERSION message failed\n");
return -1;
}
printf("ME: Firmware Version %u.%u.%u.%u (code) "
"%u.%u.%u.%u (recovery) "
"%u.%u.%u.%u (fitc)\n\n",
version.code_major, version.code_minor,
version.code_build_number, version.code_hot_fix,
version.recovery_major, version.recovery_minor,
version.recovery_build_number, version.recovery_hot_fix,
version.fitcmajor, version.fitcminor,
version.fitcbuildno, version.fitchotfix);
#else
/* Send request and wait for response */
if (mei_sendrecv(&mei, &mkhi, &data, &version, 2*sizeof(uint32_t) ) < 0) {
printf("ME: GET FW VERSION message failed\n");
return -1;
}
printf("ME: Firmware Version %u.%u (code)\n\n"
version.code_major, version.code_minor);
#endif
return 0;
}
static inline void print_cap(const char *name, int state)
{
printf("ME Capability: %-30s : %s\n",
name, state ? CRED "ON" RESET : CGRN "OFF" RESET);
}
/* Get ME Firmware Capabilities */
int mkhi_get_fwcaps(void)
{
struct {
uint32_t rule_id;
uint32_t rule_len;
struct me_fwcaps cap;
} fwcaps;
fwcaps.rule_id = 0;
fwcaps.rule_len = 0;
struct mkhi_header mkhi = {
.group_id = MKHI_GROUP_ID_FWCAPS,
.command = MKHI_FWCAPS_GET_RULE,
.is_response = 0,
};
struct mei_header mei = {
.is_complete = 1,
.host_address = MEI_HOST_ADDRESS,
.client_address = MEI_ADDRESS_MKHI,
.length = sizeof(mkhi) + sizeof(fwcaps.rule_id),
};
/* Send request and wait for response */
if (mei_sendrecv(&mei, &mkhi, &fwcaps.rule_id, &fwcaps.cap, sizeof(fwcaps.cap)) < 0) {
printf("ME: GET FWCAPS message failed\n");
return -1;
}
print_cap("Full Network manageability ", fwcaps.cap.caps_sku.full_net);
print_cap("Regular Network manageability ", fwcaps.cap.caps_sku.std_net);
print_cap("Manageability ", fwcaps.cap.caps_sku.manageability);
print_cap("Small business technology ", fwcaps.cap.caps_sku.small_business);
print_cap("Level III manageability ", fwcaps.cap.caps_sku.l3manageability);
print_cap("IntelR Anti-Theft (AT) ", fwcaps.cap.caps_sku.intel_at);
print_cap("IntelR Capability Licensing Service (CLS) ", fwcaps.cap.caps_sku.intel_cls);
print_cap("IntelR Power Sharing Technology (MPC) ", fwcaps.cap.caps_sku.intel_mpc);
print_cap("ICC Over Clocking ", fwcaps.cap.caps_sku.icc_over_clocking);
print_cap("Protected Audio Video Path (PAVP) ", fwcaps.cap.caps_sku.pavp);
print_cap("IPV6 ", fwcaps.cap.caps_sku.ipv6);
print_cap("KVM Remote Control (KVM) ", fwcaps.cap.caps_sku.kvm);
print_cap("Outbreak Containment Heuristic (OCH) ", fwcaps.cap.caps_sku.och);
print_cap("Virtual LAN (VLAN) ", fwcaps.cap.caps_sku.vlan);
print_cap("TLS ", fwcaps.cap.caps_sku.tls);
print_cap("Wireless LAN (WLAN) ", fwcaps.cap.caps_sku.wlan);
return 0;
}
/* Tell ME to issue a global reset */
uint32_t mkhi_global_reset(void)
{
struct me_global_reset reset = {
.request_origin = GLOBAL_RESET_BIOS_POST,
.reset_type = CBM_RR_GLOBAL_RESET,
};
struct mkhi_header mkhi = {
.group_id = MKHI_GROUP_ID_CBM,
.command = MKHI_GLOBAL_RESET,
};
struct mei_header mei = {
.is_complete = 1,
.length = sizeof(mkhi) + sizeof(reset),
.host_address = MEI_HOST_ADDRESS,
.client_address = MEI_ADDRESS_MKHI,
};
printf("ME: Requesting global reset\n");
/* Send request and wait for response */
if (mei_sendrecv(&mei, &mkhi, &reset, NULL, 0) < 0) {
/* No response means reset will happen shortly... */
asm("hlt");
}
/* If the ME responded it rejected the reset request */
printf("ME: Global Reset failed\n");
return -1;
}
/* Tell ME thermal reporting parameters */
/*
void mkhi_thermal(void)
{
struct me_thermal_reporting thermal = {
.polling_timeout = 2,
.smbus_ec_msglen = 1,
.smbus_ec_msgpec = 0,
.dimmnumber = 4,
};
struct mkhi_header mkhi = {
.group_id = MKHI_GROUP_ID_CBM,
.command = MKHI_THERMAL_REPORTING,
};
struct mei_header mei = {
.is_complete = 1,
.length = sizeof(mkhi) + sizeof(thermal),
.host_address = MEI_HOST_ADDRESS,
.client_address = MEI_ADDRESS_THERMAL,
};
printf("ME: Sending thermal reporting params\n");
mei_sendrecv(&mei, &mkhi, &thermal, NULL, 0);
}
*/
/* Enable debug of internal ME memory */
int mkhi_debug_me_memory(void *physaddr)
{
uint32_t data = 0;
/* copy whole ME memory to a readable space */
struct me_debug_mem memory = {
.debug_phys = (uintptr_t)physaddr,
.debug_size = 0x2000000,
.me_phys = 0x20000000,
.me_size = 0x2000000,
};
struct mkhi_header mkhi = {
.group_id = MKHI_GROUP_ID_GEN,
.command = GEN_SET_DEBUG_MEM,
.is_response = 0,
};
struct mei_header mei = {
.is_complete = 1,
.length = sizeof(mkhi) + sizeof(memory),
.host_address = MEI_HOST_ADDRESS,
.client_address = MEI_ADDRESS_MKHI,
};
printf("ME: Debug memory to 0x%zx ...", (size_t)physaddr);
if (mei_sendrecv(&mei, &mkhi, &memory, &data, 0) < 0) {
printf("failed\n");
return -1;
} else {
printf("done\n");
}
return 0;
}
/* Prepare ME for MEI messages */
uint32_t intel_mei_setup(struct pci_dev *dev)
{
struct mei_csr host;
uint32_t reg32;
uint32_t pagerounded;
mei_base_address = dev->base_addr[0] & ~0xf;
pagerounded = mei_base_address & ~0xfff;
mei_mmap = map_physical(pagerounded, 0x2000);
mei_mmap += mei_base_address - pagerounded;
if (mei_mmap == NULL) {
printf("Could not map ME setup memory\n");
return 1;
}
/* Ensure Memory and Bus Master bits are set */
reg32 = pci_read_long(dev, PCI_COMMAND);
reg32 |= PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY;
pci_write_long(dev, PCI_COMMAND, reg32);
/* Clean up status for next message */
read_host_csr(&host);
host.interrupt_generate = 1;
host.ready = 1;
host.reset = 0;
write_host_csr(&host);
return 0;
}
/* Read the Extend register hash of ME firmware */
int intel_me_extend_valid(struct pci_dev *dev)
{
struct me_heres status;
uint32_t extend[8] = {0};
int i, count = 0;
pci_read_dword_ptr(dev, &status, PCI_ME_HERES);
if (!status.extend_feature_present) {
printf("ME: Extend Feature not present\n");
return -1;
}
if (!status.extend_reg_valid) {
printf("ME: Extend Register not valid\n");
return -1;
}
switch (status.extend_reg_algorithm) {
case PCI_ME_EXT_SHA1:
count = 5;
printf("ME: Extend SHA-1: ");
break;
case PCI_ME_EXT_SHA256:
count = 8;
printf("ME: Extend SHA-256: ");
break;
default:
printf("ME: Extend Algorithm %d unknown\n",
status.extend_reg_algorithm);
return -1;
}
for (i = 0; i < count; ++i) {
extend[i] = pci_read_long(dev, PCI_ME_HER(i));
printf("%08x", extend[i]);
}
printf("\n");
return 0;
}
|