1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
|
/***********************license start***********************************
* Copyright (c) 2003-2017 Cavium Inc. (support@cavium.com). All rights
* reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* * Neither the name of Cavium Inc. nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* This Software, including technical data, may be subject to U.S. export
* control laws, including the U.S. Export Administration Act and its
* associated regulations, and may be subject to export or import
* regulations in other countries.
*
* TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
* AND WITH ALL FAULTS AND CAVIUM INC. MAKES NO PROMISES, REPRESENTATIONS OR
* WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT
* TO THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY
* REPRESENTATION OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT
* DEFECTS, AND CAVIUM SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES
* OF TITLE, MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR
* PURPOSE, LACK OF VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT,
* QUIET POSSESSION OR CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK
* ARISING OUT OF USE OR PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
***********************license end**************************************/
#include <bdk.h>
#include "dram-internal.h"
#include <bdk-minimal.h>
#include <libbdk-arch/bdk-warn.h>
#include <libbdk-hal/bdk-config.h>
#include <libbdk-hal/bdk-twsi.h>
#include <assert.h>
#include <ctype.h>
#include <stdlib.h>
#include <string.h>
/**
* Read the entire contents of a DIMM SPD and store it in the device tree. The
* current DRAM config is also updated, so future SPD accesses used the cached
* copy.
*
* @param node Node the DRAM config is for
* @param cfg Current DRAM config. Updated with SPD data
* @param lmc LMC to read DIMM for
* @param dimm DIMM slot for SPD to read
*
* @return Zero on success, negative on failure
*/
static uint8_t spd_bufs[4 * 256]; /* FIXME(dhendrix): storage for SPD buffers, assume DDR4 */
int read_entire_spd(bdk_node_t node, dram_config_t *cfg, int lmc, int dimm)
{
/* FIXME(dhendrix): hack to get around using allocated mem */
assert(dimm < 4);
/* If pointer to data is provided, use it, otherwise read from SPD over twsi */
if (cfg->config[lmc].dimm_config_table[dimm].spd_ptr)
return 0;
if (!cfg->config[lmc].dimm_config_table[dimm].spd_addr)
return -1;
/* Figure out how to access the SPD */
int spd_addr = cfg->config[lmc].dimm_config_table[dimm].spd_addr;
int bus = spd_addr >> 12;
int address = spd_addr & 0x7f;
/* Figure out the size we will read */
int64_t dev_type = bdk_twsix_read_ia(node, bus, address, DDR4_SPD_KEY_BYTE_DEVICE_TYPE, 1, 1);
if (dev_type < 0)
return -1; /* No DIMM */
// FIXME: prudolph: Nobody needs 512 byte SPDs...
//int spd_size = (dev_type == 0x0c) ? 512 : 256;
int spd_size = 256;
/*
* FIXME: Assume DIMM doesn't support
* 'Hybrid Module Extended Function Parameters' aka only 256 Byte SPD,
* as the code below is broken ...
*/
assert(spd_size == 256);
uint8_t *spd_buf = &spd_bufs[dimm * 256];
uint32_t *ptr = (uint32_t *)spd_buf;
for (int bank = 0; bank < (spd_size >> 8); bank++)
{
/* this should only happen for DDR4, which has a second bank of 256 bytes */
if (bank)
bdk_twsix_write_ia(node, bus, 0x36 | bank, 0, 2, 1, 0);
int bank_size = 256;
for (int i = 0; i < bank_size; i += 4)
{
int64_t data = bdk_twsix_read_ia(node, bus, address, i, 4, 1);
if (data < 0)
{
free(spd_buf);
bdk_error("Failed to read SPD data at 0x%x\n", i + (bank << 8));
/* Restore the bank to zero */
if (bank)
bdk_twsix_write_ia(node, bus, 0x36 | 0, 0, 2, 1, 0);
return -1;
}
else
*ptr++ = bdk_be32_to_cpu(data);
}
/* Restore the bank to zero */
if (bank)
bdk_twsix_write_ia(node, bus, 0x36 | 0, 0, 2, 1, 0);
}
/* Store the SPD in the device tree */
/* FIXME(dhendrix): No need for this? cfg gets updated, so the caller
* (libdram_config()) has what it needs. */
// bdk_config_set_blob(spd_size, spd_buf, BDK_CONFIG_DDR_SPD_DATA, dimm, lmc, node);
cfg->config[lmc].dimm_config_table[dimm].spd_ptr = (void*)spd_buf;
return 0;
}
/* Read an DIMM SPD value, either using TWSI to read it from the DIMM, or
* from a provided array.
*/
int read_spd(bdk_node_t node, const dimm_config_t *dimm_config, int spd_field)
{
/* If pointer to data is provided, use it, otherwise read from SPD over twsi */
if (dimm_config->spd_ptr)
return dimm_config->spd_ptr[spd_field];
else if (dimm_config->spd_addr)
{
int data;
int bus = dimm_config->spd_addr >> 12;
int address = dimm_config->spd_addr & 0x7f;
/* this should only happen for DDR4, which has a second bank of 256 bytes */
int bank = (spd_field >> 8) & 1;
if (bank) {
bdk_twsix_write_ia(node, bus, 0x36 | bank, 0, 2, 1, 0);
spd_field %= 256;
}
data = bdk_twsix_read_ia(node, bus, address, spd_field, 1, 1);
/* Restore the bank to zero */
if (bank) {
bdk_twsix_write_ia(node, bus, 0x36 | 0, 0, 2, 1, 0);
}
return data;
}
else
return -1;
}
static uint16_t ddr3_crc16(uint8_t *ptr, int count)
{
/* From DDR3 spd specification */
int crc, i;
crc = 0;
while (--count >= 0)
{
crc = crc ^ (int)*ptr++ << 8;
for (i = 0; i < 8; ++i)
if (crc & 0x8000)
crc = crc << 1 ^ 0x1021;
else
crc = crc << 1;
}
return crc & 0xFFFF;
}
static int validate_spd_checksum_ddr3(bdk_node_t node, int twsi_addr, int silent)
{
uint8_t spd_data[128];
int crc_bytes = 126;
uint16_t crc_comp;
int i;
int rv;
int ret = 1;
for (i = 0; i < 128; i++)
{
rv = bdk_twsix_read_ia(node, twsi_addr >> 12, twsi_addr & 0x7f, i, 1, 1);
if (rv < 0)
return 0; /* TWSI read error */
spd_data[i] = (uint8_t)rv;
}
/* Check byte 0 to see how many bytes checksum is over */
if (spd_data[0] & 0x80)
crc_bytes = 117;
crc_comp = ddr3_crc16(spd_data, crc_bytes);
if (spd_data[DDR3_SPD_CYCLICAL_REDUNDANCY_CODE_LOWER_NIBBLE] != (crc_comp & 0xff) ||
spd_data[DDR3_SPD_CYCLICAL_REDUNDANCY_CODE_UPPER_NIBBLE] != (crc_comp >> 8))
{
if (!silent) {
printf("DDR3 SPD CRC error, spd addr: 0x%x, calculated crc: 0x%04x, read crc: 0x%02x%02x\n",
twsi_addr, crc_comp,
spd_data[DDR3_SPD_CYCLICAL_REDUNDANCY_CODE_UPPER_NIBBLE],
spd_data[DDR3_SPD_CYCLICAL_REDUNDANCY_CODE_LOWER_NIBBLE]);
}
ret = 0;
}
return ret;
}
static int validate_spd_checksum(bdk_node_t node, int twsi_addr, int silent)
{
int rv;
debug_print("Validating DIMM at address 0x%x\n", twsi_addr);
if (!twsi_addr) return 1; /* return OK if we are not doing real DIMMs */
/* Look up module type to determine if DDR3 or DDR4 */
rv = bdk_twsix_read_ia(node, twsi_addr >> 12, twsi_addr & 0x7f, 2, 1, 1);
if (rv >= 0xB && rv <= 0xC) /* this is DDR3 or DDR4, do same */
return validate_spd_checksum_ddr3(node, twsi_addr, silent);
if (!silent)
printf("Unrecognized DIMM type: 0x%x at spd address: 0x%x\n",
rv, twsi_addr);
return 0;
}
int validate_dimm(bdk_node_t node, const dimm_config_t *dimm_config)
{
int spd_addr;
spd_addr = dimm_config->spd_addr;
debug_print("Validating dimm spd addr: 0x%02x spd ptr: %x\n",
spd_addr, dimm_config->spd_ptr);
// if the slot is not possible
if (!spd_addr && !dimm_config->spd_ptr)
return -1;
{
int val0, val1;
int ddr_type = get_ddr_type(node, dimm_config);
switch (ddr_type)
{
case DDR3_DRAM: /* DDR3 */
case DDR4_DRAM: /* DDR4 */
debug_print("Validating DDR%d DIMM\n", ((dimm_type >> 2) & 3) + 1);
#define DENSITY_BANKS DDR4_SPD_DENSITY_BANKS // same for DDR3 and DDR4
#define ROW_COL_BITS DDR4_SPD_ADDRESSING_ROW_COL_BITS // same for DDR3 and DDR4
val0 = read_spd(node, dimm_config, DENSITY_BANKS);
val1 = read_spd(node, dimm_config, ROW_COL_BITS);
if (val0 < 0 && val1 < 0) {
debug_print("Error reading SPD for DIMM\n");
return 0; /* Failed to read dimm */
}
if (val0 == 0xff && val1 == 0xff) {
ddr_print("Blank or unreadable SPD for DIMM\n");
return 0; /* Blank SPD or otherwise unreadable device */
}
/* Don't treat bad checksums as fatal. */
validate_spd_checksum(node, spd_addr, 0);
break;
case 0x00: /* Terminator detected. Fail silently. */
return 0;
default:
debug_print("Unknown DIMM type 0x%x for DIMM @ 0x%x\n",
dimm_type, dimm_config->spd_addr);
return 0; /* Failed to read dimm */
}
}
return 1;
}
int get_dimm_part_number(char *buffer, bdk_node_t node,
const dimm_config_t *dimm_config,
int ddr_type)
{
int i;
int c;
int skipping = 1;
int strlen = 0;
#define PART_LIMIT(t) (((t) == DDR4_DRAM) ? 19 : 18)
#define PART_NUMBER(t) (((t) == DDR4_DRAM) ? DDR4_SPD_MODULE_PART_NUMBER : DDR3_SPD_MODULE_PART_NUMBER)
int limit = PART_LIMIT(ddr_type);
int offset = PART_NUMBER(ddr_type);
for (i = 0; i < limit; ++i) {
c = (read_spd(node, dimm_config, offset+i) & 0xff);
if (c == 0) // any null, we are done
break;
/* Skip leading spaces. */
if (skipping) {
if (isspace(c))
continue;
else
skipping = 0;
}
/* Put non-null non-leading-space-skipped char into buffer */
buffer[strlen] = c;
++strlen;
}
if (strlen > 0) {
i = strlen - 1; // last char put into buf
while (i >= 0 && isspace((int)buffer[i])) { // still in buf and a space
--i;
--strlen;
}
}
buffer[strlen] = 0; /* Insure that the string is terminated */
return strlen;
}
uint32_t get_dimm_serial_number(bdk_node_t node, const dimm_config_t *dimm_config, int ddr_type)
{
uint32_t serial_number = 0;
int offset;
#define SERIAL_NUMBER(t) (((t) == DDR4_DRAM) ? DDR4_SPD_MODULE_SERIAL_NUMBER : DDR3_SPD_MODULE_SERIAL_NUMBER)
offset = SERIAL_NUMBER(ddr_type);
for (int i = 0, j = 24; i < 4; ++i, j -= 8) {
serial_number |= ((read_spd(node, dimm_config, offset + i) & 0xff) << j);
}
return serial_number;
}
static uint32_t get_dimm_checksum(bdk_node_t node, const dimm_config_t *dimm_config, int ddr_type)
{
uint32_t spd_chksum;
#define LOWER_NIBBLE(t) (((t) == DDR4_DRAM) ? DDR4_SPD_CYCLICAL_REDUNDANCY_CODE_LOWER_NIBBLE : DDR3_SPD_CYCLICAL_REDUNDANCY_CODE_LOWER_NIBBLE)
#define UPPER_NIBBLE(t) (((t) == DDR4_DRAM) ? DDR4_SPD_CYCLICAL_REDUNDANCY_CODE_UPPER_NIBBLE : DDR3_SPD_CYCLICAL_REDUNDANCY_CODE_UPPER_NIBBLE)
spd_chksum = 0xff & read_spd(node, dimm_config, LOWER_NIBBLE(ddr_type));
spd_chksum |= ((0xff & read_spd(node, dimm_config, UPPER_NIBBLE(ddr_type))) << 8);
return spd_chksum;
}
static
void report_common_dimm(bdk_node_t node, const dimm_config_t *dimm_config, int dimm,
const char **dimm_types, int ddr_type, const char *volt_str,
int ddr_interface_num, int num_ranks, int dram_width, int dimm_size_mb)
{
int spd_ecc;
unsigned spd_module_type;
uint32_t serial_number;
char part_number[21]; /* 20 bytes plus string terminator is big enough for either */
const char *sn_str;
spd_module_type = get_dimm_module_type(node, dimm_config, ddr_type);
spd_ecc = get_dimm_ecc(node, dimm_config, ddr_type);
(void) get_dimm_part_number(part_number, node, dimm_config, ddr_type);
serial_number = get_dimm_serial_number(node, dimm_config, ddr_type);
if ((serial_number != 0) && (serial_number != 0xffffffff)) {
sn_str = "s/n";
} else {
serial_number = get_dimm_checksum(node, dimm_config, ddr_type);
sn_str = "chksum";
}
// FIXME: add output of DIMM rank/width, as in: 2Rx4, 1Rx8, etc
printf("N%d.LMC%d.DIMM%d: %d MB, DDR%d %s %dRx%d %s, p/n: %s, %s: %u, %s\n",
node, ddr_interface_num, dimm, dimm_size_mb, ddr_type,
dimm_types[spd_module_type], num_ranks, dram_width,
(spd_ecc ? "ECC" : "non-ECC"), part_number,
sn_str, serial_number, volt_str);
}
const char *ddr3_dimm_types[16] = {
/* 0000 */ "Undefined",
/* 0001 */ "RDIMM",
/* 0010 */ "UDIMM",
/* 0011 */ "SO-DIMM",
/* 0100 */ "Micro-DIMM",
/* 0101 */ "Mini-RDIMM",
/* 0110 */ "Mini-UDIMM",
/* 0111 */ "Mini-CDIMM",
/* 1000 */ "72b-SO-UDIMM",
/* 1001 */ "72b-SO-RDIMM",
/* 1010 */ "72b-SO-CDIMM",
/* 1011 */ "LRDIMM",
/* 1100 */ "16b-SO-DIMM",
/* 1101 */ "32b-SO-DIMM",
/* 1110 */ "Reserved",
/* 1111 */ "Reserved"
};
static
void report_ddr3_dimm(bdk_node_t node, const dimm_config_t *dimm_config,
int dimm, int ddr_interface_num, int num_ranks,
int dram_width, int dimm_size_mb)
{
int spd_voltage;
const char *volt_str;
spd_voltage = read_spd(node, dimm_config, DDR3_SPD_NOMINAL_VOLTAGE);
if ((spd_voltage == 0) || (spd_voltage & 3))
volt_str = "1.5V";
if (spd_voltage & 2)
volt_str = "1.35V";
if (spd_voltage & 4)
volt_str = "1.2xV";
report_common_dimm(node, dimm_config, dimm, ddr3_dimm_types,
DDR3_DRAM, volt_str, ddr_interface_num,
num_ranks, dram_width, dimm_size_mb);
}
const char *ddr4_dimm_types[16] = {
/* 0000 */ "Extended",
/* 0001 */ "RDIMM",
/* 0010 */ "UDIMM",
/* 0011 */ "SO-DIMM",
/* 0100 */ "LRDIMM",
/* 0101 */ "Mini-RDIMM",
/* 0110 */ "Mini-UDIMM",
/* 0111 */ "Reserved",
/* 1000 */ "72b-SO-RDIMM",
/* 1001 */ "72b-SO-UDIMM",
/* 1010 */ "Reserved",
/* 1011 */ "Reserved",
/* 1100 */ "16b-SO-DIMM",
/* 1101 */ "32b-SO-DIMM",
/* 1110 */ "Reserved",
/* 1111 */ "Reserved"
};
static
void report_ddr4_dimm(bdk_node_t node, const dimm_config_t *dimm_config,
int dimm, int ddr_interface_num, int num_ranks,
int dram_width, int dimm_size_mb)
{
int spd_voltage;
const char *volt_str;
spd_voltage = read_spd(node, dimm_config, DDR4_SPD_MODULE_NOMINAL_VOLTAGE);
if ((spd_voltage == 0x01) || (spd_voltage & 0x02))
volt_str = "1.2V";
if ((spd_voltage == 0x04) || (spd_voltage & 0x08))
volt_str = "TBD1 V";
if ((spd_voltage == 0x10) || (spd_voltage & 0x20))
volt_str = "TBD2 V";
report_common_dimm(node, dimm_config, dimm, ddr4_dimm_types,
DDR4_DRAM, volt_str, ddr_interface_num,
num_ranks, dram_width, dimm_size_mb);
}
void report_dimm(bdk_node_t node, const dimm_config_t *dimm_config,
int dimm, int ddr_interface_num, int num_ranks,
int dram_width, int dimm_size_mb)
{
int ddr_type;
/* ddr_type only indicates DDR4 or DDR3 */
ddr_type = get_ddr_type(node, dimm_config);
if (ddr_type == DDR4_DRAM)
report_ddr4_dimm(node, dimm_config, dimm, ddr_interface_num,
num_ranks, dram_width, dimm_size_mb);
else
report_ddr3_dimm(node, dimm_config, dimm, ddr_interface_num,
num_ranks, dram_width, dimm_size_mb);
}
static int
get_ddr4_spd_speed(bdk_node_t node, const dimm_config_t *dimm_config)
{
int spdMTB = 125;
int spdFTB = 1;
int tCKAVGmin
= spdMTB * read_spd(node, dimm_config, DDR4_SPD_MINIMUM_CYCLE_TIME_TCKAVGMIN)
+ spdFTB * (signed char) read_spd(node, dimm_config, DDR4_SPD_MIN_CYCLE_TIME_FINE_TCKAVGMIN);
return pretty_psecs_to_mts(tCKAVGmin);
}
static int
get_ddr3_spd_speed(bdk_node_t node, const dimm_config_t *dimm_config)
{
int spd_mtb_dividend = 0xff & read_spd(node, dimm_config, DDR3_SPD_MEDIUM_TIMEBASE_DIVIDEND);
int spd_mtb_divisor = 0xff & read_spd(node, dimm_config, DDR3_SPD_MEDIUM_TIMEBASE_DIVISOR);
int spd_tck_min = 0xff & read_spd(node, dimm_config, DDR3_SPD_MINIMUM_CYCLE_TIME_TCKMIN);
short ftb_Dividend = read_spd(node, dimm_config, DDR3_SPD_FINE_TIMEBASE_DIVIDEND_DIVISOR) >> 4;
short ftb_Divisor = read_spd(node, dimm_config, DDR3_SPD_FINE_TIMEBASE_DIVIDEND_DIVISOR) & 0xf;
ftb_Divisor = (ftb_Divisor == 0) ? 1 : ftb_Divisor; /* Make sure that it is not 0 */
int mtb_psec = spd_mtb_dividend * 1000 / spd_mtb_divisor;
int tCKmin = mtb_psec * spd_tck_min;
tCKmin += ftb_Dividend *
(signed char) read_spd(node, dimm_config, DDR3_SPD_MINIMUM_CYCLE_TIME_FINE_TCKMIN)
/ ftb_Divisor;
return pretty_psecs_to_mts(tCKmin);
}
static int
speed_bin_down(int speed)
{
if (speed == 2133)
return 1866;
else if (speed == 1866)
return 1600;
else
return speed;
}
int
dram_get_default_spd_speed(bdk_node_t node, const ddr_configuration_t *ddr_config)
{
int lmc, dimm;
int speed, ret_speed = 0;
int ddr_type = get_ddr_type(node, &ddr_config[0].dimm_config_table[0]);
int dimm_speed[8], dimm_count = 0;
int dimms_per_lmc = 0;
memset (dimm_speed, 0, sizeof(dimm_speed));
for (lmc = 0; lmc < 4; lmc++) {
for (dimm = 0; dimm < DDR_CFG_T_MAX_DIMMS; dimm++) {
const dimm_config_t *dimm_config = &ddr_config[lmc].dimm_config_table[dimm];
if (dimm_config->spd_addr || dimm_config->spd_ptr)
{
speed = (ddr_type == DDR4_DRAM)
? get_ddr4_spd_speed(node, dimm_config)
: get_ddr3_spd_speed(node, dimm_config);
printf("N%d.LMC%d.DIMM%d: SPD speed %d\n", node, lmc, dimm, speed);
dimm_speed[dimm_count] = speed;
dimm_count++;
if (lmc == 0)
dimms_per_lmc++;
}
}
}
// all DIMMs must be same speed
speed = dimm_speed[0];
for (dimm = 1; dimm < dimm_count; dimm++) {
if (dimm_speed[dimm] != speed) {
ret_speed = -1;
goto finish_up;
}
}
// if 2400 or greater, use 2133
if (speed >= 2400)
speed = 2133;
// use next speed down if 2DPC...
if (dimms_per_lmc > 1)
speed = speed_bin_down(speed);
// Update the in memory config to match the automatically calculated speed
bdk_config_set_int(speed, BDK_CONFIG_DDR_SPEED, node);
// do filtering for our jittery PLL
if (speed == 2133)
speed = 2100;
else if (speed == 1866)
speed = 1880;
// OK, return what we have...
ret_speed = mts_to_hertz(speed);
finish_up:
printf("N%d: Returning default SPD speed %d\n", node, ret_speed);
return ret_speed;
}
|