1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
|
/***********************license start***********************************
* Copyright (c) 2003-2017 Cavium Inc. (support@cavium.com). All rights
* reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* * Neither the name of Cavium Inc. nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* This Software, including technical data, may be subject to U.S. export
* control laws, including the U.S. Export Administration Act and its
* associated regulations, and may be subject to export or import
* regulations in other countries.
*
* TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
* AND WITH ALL FAULTS AND CAVIUM INC. MAKES NO PROMISES, REPRESENTATIONS OR
* WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT
* TO THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY
* REPRESENTATION OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT
* DEFECTS, AND CAVIUM SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES
* OF TITLE, MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR
* PURPOSE, LACK OF VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT,
* QUIET POSSESSION OR CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK
* ARISING OUT OF USE OR PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
***********************license end**************************************/
#include <bdk.h>
#include <bdk-coreboot.h>
#include "libbdk-arch/bdk-csrs-l2c_tad.h"
#include "libbdk-arch/bdk-csrs-mio_fus.h"
#include "dram-internal.h"
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <libbdk-hal/bdk-config.h>
#include <libbdk-hal/bdk-l2c.h>
#include <libbdk-hal/bdk-rng.h>
#include <libbdk-trust/bdk-trust.h>
#include <lame_string.h>
#define WODT_MASK_2R_1S 1 // FIXME: did not seem to make much difference with #152 1-slot?
#define DESKEW_RODT_CTL 1
// Set to 1 to use the feature whenever possible automatically.
// When 0, however, the feature is still available, and it can
// be enabled via envvar override "ddr_enable_write_deskew=1".
#define ENABLE_WRITE_DESKEW_DEFAULT 0
#define ENABLE_COMPUTED_VREF_ADJUSTMENT 1
#define RLEXTRAS_PATCH 1 // write to unused RL rank entries
#define WLEXTRAS_PATCH 1 // write to unused WL rank entries
#define ADD_48_OHM_SKIP 1
#define NOSKIP_40_48_OHM 1
#define NOSKIP_48_STACKED 1
#define NOSKIP_FOR_MINI 1
#define NOSKIP_FOR_2S_1R 1
#define MAJORITY_OVER_AVG 1
#define RANK_MAJORITY MAJORITY_OVER_AVG && 1
#define SW_WL_CHECK_PATCH 1 // check validity after SW adjust
#define HW_WL_MAJORITY 1
#define SWL_TRY_HWL_ALT HW_WL_MAJORITY && 1 // try HW WL base alternate if available when SW WL fails
#define DISABLE_SW_WL_PASS_2 1
#define HWL_BY_BYTE 0 // FIXME? set to 1 to do HWL a byte at a time (seemed to work better earlier?)
#define USE_ORIG_TEST_DRAM_BYTE 1
// collect and print LMC utilization using SWL software algorithm
#define ENABLE_SW_WLEVEL_UTILIZATION 0
#define COUNT_RL_CANDIDATES 1
#define LOOK_FOR_STUCK_BYTE 0
#define ENABLE_STUCK_BYTE_RESET 0
#define FAILSAFE_CHECK 1
#define PERFECT_BITMASK_COUNTING 1
#define DAC_OVERRIDE_EARLY 1
#define SWL_WITH_HW_ALTS_CHOOSE_SW 0 // FIXME: allow override?
#define DEBUG_VALIDATE_BITMASK 0
#if DEBUG_VALIDATE_BITMASK
#define debug_bitmask_print ddr_print
#else
#define debug_bitmask_print(...)
#endif
#define ENABLE_SLOT_CTL_ACCESS 0
#undef ENABLE_CUSTOM_RLEVEL_TABLE
#define ENABLE_DISPLAY_MPR_PAGE 0
#if ENABLE_DISPLAY_MPR_PAGE
static void Display_MPR_Page_Location(bdk_node_t node, int rank,
int ddr_interface_num, int dimm_count,
int page, int location, uint64_t *mpr_data);
#endif
#define USE_L2_WAYS_LIMIT 1
/* Read out Deskew Settings for DDR */
typedef struct {
uint16_t bits[8];
} deskew_bytes_t;
typedef struct {
deskew_bytes_t bytes[9];
} deskew_data_t;
static void
Get_Deskew_Settings(bdk_node_t node, int ddr_interface_num, deskew_data_t *dskdat)
{
bdk_lmcx_phy_ctl_t phy_ctl;
bdk_lmcx_config_t lmc_config;
int bit_num, bit_index;
int byte_lane, byte_limit;
// NOTE: these are for pass 2.x
int is_t88p2 = !CAVIUM_IS_MODEL(CAVIUM_CN88XX_PASS1_X); // added 81xx and 83xx
int bit_end = (is_t88p2) ? 9 : 8;
lmc_config.u = BDK_CSR_READ(node, BDK_LMCX_CONFIG(ddr_interface_num));
byte_limit = ((lmc_config.s.mode32b) ? 4 : 8) + lmc_config.s.ecc_ena;
memset(dskdat, 0, sizeof(*dskdat));
BDK_CSR_MODIFY(_phy_ctl, node, BDK_LMCX_PHY_CTL(ddr_interface_num),
_phy_ctl.s.dsk_dbg_clk_scaler = 3);
for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) {
bit_index = 0;
for (bit_num = 0; bit_num <= bit_end; ++bit_num) { // NOTE: this is for pass 2.x
if (bit_num == 4) continue;
if ((bit_num == 5) && is_t88p2) continue; // NOTE: this is for pass 2.x
// set byte lane and bit to read
BDK_CSR_MODIFY(_phy_ctl, node, BDK_LMCX_PHY_CTL(ddr_interface_num),
(_phy_ctl.s.dsk_dbg_bit_sel = bit_num,
_phy_ctl.s.dsk_dbg_byte_sel = byte_lane));
// start read sequence
BDK_CSR_MODIFY(_phy_ctl, node, BDK_LMCX_PHY_CTL(ddr_interface_num),
_phy_ctl.s.dsk_dbg_rd_start = 1);
// poll for read sequence to complete
do {
phy_ctl.u = BDK_CSR_READ(node, BDK_LMCX_PHY_CTL(ddr_interface_num));
} while (phy_ctl.s.dsk_dbg_rd_complete != 1);
// record the data
dskdat->bytes[byte_lane].bits[bit_index] = phy_ctl.s.dsk_dbg_rd_data & 0x3ff;
bit_index++;
} /* for (bit_num = 0; bit_num <= bit_end; ++bit_num) */
} /* for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) */
return;
}
static void
Display_Deskew_Data(bdk_node_t node, int ddr_interface_num,
deskew_data_t *dskdat, int print_enable)
{
int byte_lane;
int bit_num;
uint16_t flags, deskew;
bdk_lmcx_config_t lmc_config;
int byte_limit;
const char *fc = " ?-=+*#&";
lmc_config.u = BDK_CSR_READ(node, BDK_LMCX_CONFIG(ddr_interface_num));
byte_limit = ((lmc_config.s.mode32b) ? 4 : 8) + lmc_config.s.ecc_ena;
if (print_enable) {
VB_PRT(print_enable, "N%d.LMC%d: Deskew Data: Bit => :",
node, ddr_interface_num);
for (bit_num = 7; bit_num >= 0; --bit_num)
VB_PRT(print_enable, " %3d ", bit_num);
VB_PRT(print_enable, "\n");
}
for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) {
if (print_enable)
VB_PRT(print_enable, "N%d.LMC%d: Bit Deskew Byte %d %s :",
node, ddr_interface_num, byte_lane,
(print_enable >= VBL_TME) ? "FINAL" : " ");
for (bit_num = 7; bit_num >= 0; --bit_num) {
flags = dskdat->bytes[byte_lane].bits[bit_num] & 7;
deskew = dskdat->bytes[byte_lane].bits[bit_num] >> 3;
if (print_enable)
VB_PRT(print_enable, " %3d %c", deskew, fc[flags^1]);
} /* for (bit_num = 7; bit_num >= 0; --bit_num) */
if (print_enable)
VB_PRT(print_enable, "\n");
} /* for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) */
return;
}
static int
change_wr_deskew_ena(bdk_node_t node, int ddr_interface_num, int new_state)
{
bdk_lmcx_dll_ctl3_t ddr_dll_ctl3;
int saved_wr_deskew_ena;
// return original WR_DESKEW_ENA setting
ddr_dll_ctl3.u = BDK_CSR_READ(node, BDK_LMCX_DLL_CTL3(ddr_interface_num));
saved_wr_deskew_ena = !!GET_DDR_DLL_CTL3(wr_deskew_ena);
if (saved_wr_deskew_ena != !!new_state) { // write it only when changing it
SET_DDR_DLL_CTL3(wr_deskew_ena, !!new_state);
DRAM_CSR_WRITE(node, BDK_LMCX_DLL_CTL3(ddr_interface_num), ddr_dll_ctl3.u);
}
return saved_wr_deskew_ena;
}
typedef struct {
int saturated; // number saturated
int unlocked; // number unlocked
int nibrng_errs; // nibble range errors
int nibunl_errs; // nibble unlocked errors
//int nibsat_errs; // nibble saturation errors
int bitval_errs; // bit value errors
#if LOOK_FOR_STUCK_BYTE
int bytes_stuck; // byte(s) stuck
#endif
} deskew_counts_t;
#define MIN_BITVAL 17
#define MAX_BITVAL 110
static deskew_counts_t deskew_training_results;
static int deskew_validation_delay = 10000; // FIXME: make this a var for overriding
static void
Validate_Read_Deskew_Training(bdk_node_t node, int rank_mask, int ddr_interface_num,
deskew_counts_t *counts, int print_enable)
{
int byte_lane, bit_num, nib_num;
int nibrng_errs, nibunl_errs, bitval_errs;
//int nibsat_errs;
bdk_lmcx_config_t lmc_config;
int16_t nib_min[2], nib_max[2], nib_unl[2]/*, nib_sat[2]*/;
// NOTE: these are for pass 2.x
int is_t88p2 = !CAVIUM_IS_MODEL(CAVIUM_CN88XX_PASS1_X); // added 81xx and 83xx
int bit_start = (is_t88p2) ? 9 : 8;
int byte_limit;
#if LOOK_FOR_STUCK_BYTE
uint64_t bl_mask[2]; // enough for 128 values
int bit_values;
#endif
deskew_data_t dskdat;
int bit_index;
int16_t flags, deskew;
const char *fc = " ?-=+*#&";
int saved_wr_deskew_ena;
int bit_last;
// save original WR_DESKEW_ENA setting, and disable it for read deskew
saved_wr_deskew_ena = change_wr_deskew_ena(node, ddr_interface_num, 0);
lmc_config.u = BDK_CSR_READ(node, BDK_LMCX_CONFIG(ddr_interface_num));
byte_limit = ((!lmc_config.s.mode32b) ? 8 : 4) + lmc_config.s.ecc_ena;
memset(counts, 0, sizeof(deskew_counts_t));
Get_Deskew_Settings(node, ddr_interface_num, &dskdat);
if (print_enable) {
VB_PRT(print_enable, "N%d.LMC%d: Deskew Settings: Bit => :",
node, ddr_interface_num);
for (bit_num = 7; bit_num >= 0; --bit_num)
VB_PRT(print_enable, " %3d ", bit_num);
VB_PRT(print_enable, "\n");
}
for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) {
if (print_enable)
VB_PRT(print_enable, "N%d.LMC%d: Bit Deskew Byte %d %s :",
node, ddr_interface_num, byte_lane,
(print_enable >= VBL_TME) ? "FINAL" : " ");
nib_min[0] = 127; nib_min[1] = 127;
nib_max[0] = 0; nib_max[1] = 0;
nib_unl[0] = 0; nib_unl[1] = 0;
//nib_sat[0] = 0; nib_sat[1] = 0;
#if LOOK_FOR_STUCK_BYTE
bl_mask[0] = bl_mask[1] = 0;
#endif
if ((lmc_config.s.mode32b == 1) && (byte_lane == 4)) {
bit_index = 3;
bit_last = 3;
if (print_enable)
VB_PRT(print_enable, " ");
} else {
bit_index = 7;
bit_last = bit_start;
}
for (bit_num = bit_last; bit_num >= 0; --bit_num) { // NOTE: this is for pass 2.x
if (bit_num == 4) continue;
if ((bit_num == 5) && is_t88p2) continue; // NOTE: this is for pass 2.x
nib_num = (bit_num > 4) ? 1 : 0;
flags = dskdat.bytes[byte_lane].bits[bit_index] & 7;
deskew = dskdat.bytes[byte_lane].bits[bit_index] >> 3;
bit_index--;
counts->saturated += !!(flags & 6);
counts->unlocked += !(flags & 1);
nib_unl[nib_num] += !(flags & 1);
//nib_sat[nib_num] += !!(flags & 6);
if (flags & 1) { // FIXME? only do range when locked
nib_min[nib_num] = min(nib_min[nib_num], deskew);
nib_max[nib_num] = max(nib_max[nib_num], deskew);
}
#if LOOK_FOR_STUCK_BYTE
bl_mask[(deskew >> 6) & 1] |= 1UL << (deskew & 0x3f);
#endif
if (print_enable)
VB_PRT(print_enable, " %3d %c", deskew, fc[flags^1]);
} /* for (bit_num = bit_last; bit_num >= 0; --bit_num) */
/*
Now look for nibble errors:
For bit 55, it looks like a bit deskew problem. When the upper nibble of byte 6
needs to go to saturation, bit 7 of byte 6 locks prematurely at 64.
For DIMMs with raw card A and B, can we reset the deskew training when we encounter this case?
The reset criteria should be looking at one nibble at a time for raw card A and B;
if the bit-deskew setting within a nibble is different by > 33, we'll issue a reset
to the bit deskew training.
LMC0 Bit Deskew Byte(6): 64 0 - 0 - 0 - 26 61 35 64
*/
// upper nibble range, then lower nibble range
nibrng_errs = ((nib_max[1] - nib_min[1]) > 33) ? 1 : 0;
nibrng_errs |= ((nib_max[0] - nib_min[0]) > 33) ? 1 : 0;
// check for nibble all unlocked
nibunl_errs = ((nib_unl[0] == 4) || (nib_unl[1] == 4)) ? 1 : 0;
// check for nibble all saturated
//nibsat_errs = ((nib_sat[0] == 4) || (nib_sat[1] == 4)) ? 1 : 0;
// check for bit value errors, ie < 17 or > 110
// FIXME? assume max always > MIN_BITVAL and min < MAX_BITVAL
bitval_errs = ((nib_max[1] > MAX_BITVAL) || (nib_max[0] > MAX_BITVAL)) ? 1 : 0;
bitval_errs |= ((nib_min[1] < MIN_BITVAL) || (nib_min[0] < MIN_BITVAL)) ? 1 : 0;
if (((nibrng_errs != 0) || (nibunl_errs != 0) /*|| (nibsat_errs != 0)*/ || (bitval_errs != 0))
&& print_enable)
{
VB_PRT(print_enable, " %c%c%c%c",
(nibrng_errs)?'R':' ',
(nibunl_errs)?'U':' ',
(bitval_errs)?'V':' ',
/*(nibsat_errs)?'S':*/' ');
}
#if LOOK_FOR_STUCK_BYTE
bit_values = __builtin_popcountl(bl_mask[0]) + __builtin_popcountl(bl_mask[1]);
if (bit_values < 3) {
counts->bytes_stuck |= (1 << byte_lane);
if (print_enable)
VB_PRT(print_enable, "X");
}
#endif
if (print_enable)
VB_PRT(print_enable, "\n");
counts->nibrng_errs |= (nibrng_errs << byte_lane);
counts->nibunl_errs |= (nibunl_errs << byte_lane);
//counts->nibsat_errs |= (nibsat_errs << byte_lane);
counts->bitval_errs |= (bitval_errs << byte_lane);
#if LOOK_FOR_STUCK_BYTE
// just for completeness, allow print of the stuck values bitmask after the bytelane print
if ((bit_values < 3) && print_enable) {
VB_PRT(VBL_DEV, "N%d.LMC%d: Deskew byte %d STUCK on value 0x%016lx.%016lx\n",
node, ddr_interface_num, byte_lane,
bl_mask[1], bl_mask[0]);
}
#endif
} /* for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) */
// restore original WR_DESKEW_ENA setting
change_wr_deskew_ena(node, ddr_interface_num, saved_wr_deskew_ena);
return;
}
unsigned short load_dac_override(int node, int ddr_interface_num,
int dac_value, int byte)
{
bdk_lmcx_dll_ctl3_t ddr_dll_ctl3;
int bytex = (byte == 0x0A) ? byte : byte + 1; // single bytelanes incr by 1; A is for ALL
ddr_dll_ctl3.u = BDK_CSR_READ(node, BDK_LMCX_DLL_CTL3(ddr_interface_num));
SET_DDR_DLL_CTL3(byte_sel, bytex);
SET_DDR_DLL_CTL3(offset, dac_value >> 1); // only 7-bit field, use MS bits
ddr_dll_ctl3.s.bit_select = 0x9; /* No-op */
DRAM_CSR_WRITE(node, BDK_LMCX_DLL_CTL3(ddr_interface_num), ddr_dll_ctl3.u);
ddr_dll_ctl3.s.bit_select = 0xC; /* Vref bypass setting load */
DRAM_CSR_WRITE(node, BDK_LMCX_DLL_CTL3(ddr_interface_num), ddr_dll_ctl3.u);
ddr_dll_ctl3.s.bit_select = 0xD; /* Vref bypass on. */
DRAM_CSR_WRITE(node, BDK_LMCX_DLL_CTL3(ddr_interface_num), ddr_dll_ctl3.u);
ddr_dll_ctl3.s.bit_select = 0x9; /* No-op */
DRAM_CSR_WRITE(node, BDK_LMCX_DLL_CTL3(ddr_interface_num), ddr_dll_ctl3.u);
return ((unsigned short) GET_DDR_DLL_CTL3(offset));
}
// arg dac_or_dbi is 1 for DAC, 0 for DBI
// returns 9 entries (bytelanes 0 through 8) in settings[]
// returns 0 if OK, -1 if a problem
int read_DAC_DBI_settings(int node, int ddr_interface_num,
int dac_or_dbi, int *settings)
{
bdk_lmcx_phy_ctl_t phy_ctl;
int byte_lane, bit_num;
int deskew;
int dac_value;
int is_t88p2 = !CAVIUM_IS_MODEL(CAVIUM_CN88XX_PASS1_X); // added 81xx and 83xx
phy_ctl.u = BDK_CSR_READ(node, BDK_LMCX_PHY_CTL(ddr_interface_num));
phy_ctl.s.dsk_dbg_clk_scaler = 3;
DRAM_CSR_WRITE(node, BDK_LMCX_PHY_CTL(ddr_interface_num), phy_ctl.u);
bit_num = (dac_or_dbi) ? 4 : 5;
if ((bit_num == 5) && !is_t88p2) { // NOTE: this is for pass 1.x
return -1;
}
for (byte_lane = 8; byte_lane >= 0 ; --byte_lane) { // FIXME: always assume ECC is available
//set byte lane and bit to read
phy_ctl.s.dsk_dbg_bit_sel = bit_num;
phy_ctl.s.dsk_dbg_byte_sel = byte_lane;
DRAM_CSR_WRITE(node, BDK_LMCX_PHY_CTL(ddr_interface_num), phy_ctl.u);
//start read sequence
phy_ctl.u = BDK_CSR_READ(node, BDK_LMCX_PHY_CTL(ddr_interface_num));
phy_ctl.s.dsk_dbg_rd_start = 1;
DRAM_CSR_WRITE(node, BDK_LMCX_PHY_CTL(ddr_interface_num), phy_ctl.u);
//poll for read sequence to complete
do {
phy_ctl.u = BDK_CSR_READ(node, BDK_LMCX_PHY_CTL(ddr_interface_num));
} while (phy_ctl.s.dsk_dbg_rd_complete != 1);
deskew = phy_ctl.s.dsk_dbg_rd_data /*>> 3*/; // leave the flag bits for DBI
dac_value = phy_ctl.s.dsk_dbg_rd_data & 0xff;
settings[byte_lane] = (dac_or_dbi) ? dac_value : deskew;
} /* for (byte_lane = 8; byte_lane >= 0 ; --byte_lane) { */
return 0;
}
// print out the DBI settings array
// arg dac_or_dbi is 1 for DAC, 0 for DBI
void
display_DAC_DBI_settings(int node, int lmc, int dac_or_dbi,
int ecc_ena, int *settings, const char *title)
{
int byte;
int flags;
int deskew;
const char *fc = " ?-=+*#&";
ddr_print("N%d.LMC%d: %s %s Deskew Settings %d:0 :",
node, lmc, title, (dac_or_dbi)?"DAC":"DBI", 7+ecc_ena);
for (byte = (7+ecc_ena); byte >= 0; --byte) { // FIXME: what about 32-bit mode?
if (dac_or_dbi) { // DAC
flags = 1; // say its locked to get blank
deskew = settings[byte] & 0xff;
} else { // DBI
flags = settings[byte] & 7;
deskew = (settings[byte] >> 3) & 0x7f;
}
ddr_print(" %3d %c", deskew, fc[flags^1]);
}
ddr_print("\n");
}
// Evaluate the DAC settings array
static int
evaluate_DAC_settings(int ddr_interface_64b, int ecc_ena, int *settings)
{
int byte, dac;
int last = (ddr_interface_64b) ? 7 : 3;
// this looks only for DAC values that are EVEN
for (byte = (last+ecc_ena); byte >= 0; --byte) {
dac = settings[byte] & 0xff;
if ((dac & 1) == 0)
return 1;
}
return 0;
}
static void
Perform_Offset_Training(bdk_node_t node, int rank_mask, int ddr_interface_num)
{
bdk_lmcx_phy_ctl_t lmc_phy_ctl;
uint64_t orig_phy_ctl;
const char *s;
/*
* 6.9.8 LMC Offset Training
*
* LMC requires input-receiver offset training.
*
* 1. Write LMC(0)_PHY_CTL[DAC_ON] = 1
*/
lmc_phy_ctl.u = BDK_CSR_READ(node, BDK_LMCX_PHY_CTL(ddr_interface_num));
orig_phy_ctl = lmc_phy_ctl.u;
lmc_phy_ctl.s.dac_on = 1;
// allow full CSR override
if ((s = lookup_env_parameter_ull("ddr_phy_ctl")) != NULL) {
lmc_phy_ctl.u = strtoull(s, NULL, 0);
}
// do not print or write if CSR does not change...
if (lmc_phy_ctl.u != orig_phy_ctl) {
ddr_print("PHY_CTL : 0x%016llx\n", lmc_phy_ctl.u);
DRAM_CSR_WRITE(node, BDK_LMCX_PHY_CTL(ddr_interface_num), lmc_phy_ctl.u);
}
#if 0
// FIXME? do we really need to show RODT here?
bdk_lmcx_comp_ctl2_t lmc_comp_ctl2;
lmc_comp_ctl2.u = BDK_CSR_READ(node, BDK_LMCX_COMP_CTL2(ddr_interface_num));
ddr_print("Read ODT_CTL : 0x%x (%d ohms)\n",
lmc_comp_ctl2.s.rodt_ctl, imp_values->rodt_ohms[lmc_comp_ctl2.s.rodt_ctl]);
#endif
/*
* 2. Write LMC(0)_SEQ_CTL[SEQ_SEL] = 0x0B and
* LMC(0)_SEQ_CTL[INIT_START] = 1.
*
* 3. Wait for LMC(0)_SEQ_CTL[SEQ_COMPLETE] to be set to 1.
*/
perform_octeon3_ddr3_sequence(node, rank_mask, ddr_interface_num, 0x0B); /* Offset training sequence */
}
static void
Perform_Internal_VREF_Training(bdk_node_t node, int rank_mask, int ddr_interface_num)
{
bdk_lmcx_ext_config_t ext_config;
/*
* 6.9.9 LMC Internal Vref Training
*
* LMC requires input-reference-voltage training.
*
* 1. Write LMC(0)_EXT_CONFIG[VREFINT_SEQ_DESKEW] = 0.
*/
ext_config.u = BDK_CSR_READ(node, BDK_LMCX_EXT_CONFIG(ddr_interface_num));
ext_config.s.vrefint_seq_deskew = 0;
VB_PRT(VBL_SEQ, "N%d.LMC%d: Performing LMC sequence: vrefint_seq_deskew = %d\n",
node, ddr_interface_num, ext_config.s.vrefint_seq_deskew);
DRAM_CSR_WRITE(node, BDK_LMCX_EXT_CONFIG(ddr_interface_num), ext_config.u);
/*
* 2. Write LMC(0)_SEQ_CTL[SEQ_SEL] = 0x0a and
* LMC(0)_SEQ_CTL[INIT_START] = 1.
*
* 3. Wait for LMC(0)_SEQ_CTL[SEQ_COMPLETE] to be set to 1.
*/
perform_octeon3_ddr3_sequence(node, rank_mask, ddr_interface_num, 0x0A); /* LMC Internal Vref Training */
}
#define dbg_avg(format, ...) VB_PRT(VBL_DEV, format, ##__VA_ARGS__)
static int
process_samples_average(int16_t *bytes, int num_samples, int lmc, int lane_no)
{
int i, savg, sadj, sum = 0, rng, ret, asum, trunc;
int16_t smin = 32767, smax = -32768;
dbg_avg("DBG_AVG%d.%d: ", lmc, lane_no);
for (i = 0; i < num_samples; i++) {
sum += bytes[i];
if (bytes[i] < smin) smin = bytes[i];
if (bytes[i] > smax) smax = bytes[i];
dbg_avg(" %3d", bytes[i]);
}
rng = smax - smin + 1;
dbg_avg(" (%3d, %3d, %2d)", smin, smax, rng);
asum = sum - smin - smax;
savg = divide_nint(sum * 10, num_samples);
sadj = divide_nint(asum * 10, (num_samples - 2));
trunc = asum / (num_samples - 2);
dbg_avg(" [%3d.%d, %3d.%d, %3d]", savg/10, savg%10, sadj/10, sadj%10, trunc);
sadj = divide_nint(sadj, 10);
if (trunc & 1)
ret = trunc;
else if (sadj & 1)
ret = sadj;
else
ret = trunc + 1;
dbg_avg(" -> %3d\n", ret);
return ret;
}
#define DEFAULT_SAT_RETRY_LIMIT 11 // 1 + 10 retries
static int default_lock_retry_limit = 20; // 20 retries // FIXME: make a var for overriding
static int
Perform_Read_Deskew_Training(bdk_node_t node, int rank_mask, int ddr_interface_num,
int spd_rawcard_AorB, int print_flags, int ddr_interface_64b)
{
int unsaturated, locked;
//int nibble_sat;
int sat_retries, lock_retries, lock_retries_total, lock_retries_limit;
int print_first;
int print_them_all;
deskew_counts_t dsk_counts;
uint64_t saved_wr_deskew_ena;
#if DESKEW_RODT_CTL
bdk_lmcx_comp_ctl2_t comp_ctl2;
int save_deskew_rodt_ctl = -1;
#endif
int is_t88p2 = !CAVIUM_IS_MODEL(CAVIUM_CN88XX_PASS1_X); // added 81xx and 83xx
VB_PRT(VBL_FAE, "N%d.LMC%d: Performing Read Deskew Training.\n", node, ddr_interface_num);
// save original WR_DESKEW_ENA setting, and disable it for read deskew
saved_wr_deskew_ena = change_wr_deskew_ena(node, ddr_interface_num, 0);
sat_retries = 0;
lock_retries_total = 0;
unsaturated = 0;
print_first = VBL_FAE; // print the first one, FAE and above
print_them_all = dram_is_verbose(VBL_DEV4); // set to true for printing all normal deskew attempts
int loops, normal_loops = 1; // default to 1 NORMAL deskew training op...
const char *s;
if ((s = getenv("ddr_deskew_normal_loops")) != NULL) {
normal_loops = strtoul(s, NULL, 0);
}
#if LOOK_FOR_STUCK_BYTE
// provide override for STUCK BYTE RESETS
int do_stuck_reset = ENABLE_STUCK_BYTE_RESET;
if ((s = getenv("ddr_enable_stuck_byte_reset")) != NULL) {
do_stuck_reset = !!strtoul(s, NULL, 0);
}
#endif
#if DESKEW_RODT_CTL
if ((s = getenv("ddr_deskew_rodt_ctl")) != NULL) {
int deskew_rodt_ctl = strtoul(s, NULL, 0);
comp_ctl2.u = BDK_CSR_READ(node, BDK_LMCX_COMP_CTL2(ddr_interface_num));
save_deskew_rodt_ctl = comp_ctl2.s.rodt_ctl;
comp_ctl2.s.rodt_ctl = deskew_rodt_ctl;
DRAM_CSR_WRITE(node, BDK_LMCX_COMP_CTL2(ddr_interface_num), comp_ctl2.u);
}
#endif
lock_retries_limit = default_lock_retry_limit;
if (! CAVIUM_IS_MODEL(CAVIUM_CN88XX_PASS1_X)) // added 81xx and 83xx
lock_retries_limit *= 2; // give pass 2.0 twice as many
do { /* while (sat_retries < sat_retry_limit) */
/*
* 6.9.10 LMC Deskew Training
*
* LMC requires input-read-data deskew training.
*
* 1. Write LMC(0)_EXT_CONFIG[VREFINT_SEQ_DESKEW] = 1.
*/
VB_PRT(VBL_SEQ, "N%d.LMC%d: Performing LMC sequence: Set vrefint_seq_deskew = 1\n",
node, ddr_interface_num);
DRAM_CSR_MODIFY(ext_config, node, BDK_LMCX_EXT_CONFIG(ddr_interface_num),
ext_config.s.vrefint_seq_deskew = 1); /* Set Deskew sequence */
/*
* 2. Write LMC(0)_SEQ_CTL[SEQ_SEL] = 0x0A and
* LMC(0)_SEQ_CTL[INIT_START] = 1.
*
* 3. Wait for LMC(0)_SEQ_CTL[SEQ_COMPLETE] to be set to 1.
*/
DRAM_CSR_MODIFY(phy_ctl, node, BDK_LMCX_PHY_CTL(ddr_interface_num),
phy_ctl.s.phy_dsk_reset = 1); /* RESET Deskew sequence */
perform_octeon3_ddr3_sequence(node, rank_mask, ddr_interface_num, 0x0A); /* LMC Deskew Training */
lock_retries = 0;
perform_read_deskew_training:
// maybe perform the NORMAL deskew training sequence multiple times before looking at lock status
for (loops = 0; loops < normal_loops; loops++) {
DRAM_CSR_MODIFY(phy_ctl, node, BDK_LMCX_PHY_CTL(ddr_interface_num),
phy_ctl.s.phy_dsk_reset = 0); /* Normal Deskew sequence */
perform_octeon3_ddr3_sequence(node, rank_mask, ddr_interface_num, 0x0A); /* LMC Deskew Training */
}
// Moved this from Validate_Read_Deskew_Training
/* Allow deskew results to stabilize before evaluating them. */
bdk_wait_usec(deskew_validation_delay);
// Now go look at lock and saturation status...
Validate_Read_Deskew_Training(node, rank_mask, ddr_interface_num, &dsk_counts, print_first);
if (print_first && !print_them_all) // after printing the first and not doing them all, no more
print_first = 0;
unsaturated = (dsk_counts.saturated == 0);
locked = (dsk_counts.unlocked == 0);
//nibble_sat = (dsk_counts.nibsat_errs != 0);
// only do locking retries if unsaturated or rawcard A or B, otherwise full SAT retry
if (unsaturated || (spd_rawcard_AorB && !is_t88p2 /*&& !nibble_sat*/)) {
if (!locked) { // and not locked
lock_retries++;
lock_retries_total++;
if (lock_retries <= lock_retries_limit) {
goto perform_read_deskew_training;
} else {
VB_PRT(VBL_TME, "N%d.LMC%d: LOCK RETRIES failed after %d retries\n",
node, ddr_interface_num, lock_retries_limit);
}
} else {
if (lock_retries_total > 0) // only print if we did try
VB_PRT(VBL_TME, "N%d.LMC%d: LOCK RETRIES successful after %d retries\n",
node, ddr_interface_num, lock_retries);
}
} /* if (unsaturated || spd_rawcard_AorB) */
++sat_retries;
#if LOOK_FOR_STUCK_BYTE
// FIXME: this is a bit of a hack at the moment...
// We want to force a Deskew RESET hopefully to unstick the bytes values
// and then resume normal deskew training as usual.
// For now, do only if it is all locked...
if (locked && (dsk_counts.bytes_stuck != 0)) {
BDK_CSR_INIT(lmc_config, node, BDK_LMCX_CONFIG(ddr_interface_num));
if (do_stuck_reset && lmc_config.s.mode_x4dev) { // FIXME: only when x4!!
unsaturated = 0; // to always make sure the while continues
VB_PRT(VBL_TME, "N%d.LMC%d: STUCK BYTE (0x%x), forcing deskew RESET\n",
node, ddr_interface_num, dsk_counts.bytes_stuck);
continue; // bypass the rest to get back to the RESET
} else {
VB_PRT(VBL_TME, "N%d.LMC%d: STUCK BYTE (0x%x), ignoring deskew RESET\n",
node, ddr_interface_num, dsk_counts.bytes_stuck);
}
}
#endif
/*
* At this point, check for a DDR4 RDIMM that will not benefit from SAT retries; if so, no retries
*/
if (spd_rawcard_AorB && !is_t88p2 /*&& !nibble_sat*/) {
VB_PRT(VBL_TME, "N%d.LMC%d: Read Deskew Training Loop: Exiting for RAWCARD == A or B.\n",
node, ddr_interface_num);
break; // no sat or lock retries
}
} while (!unsaturated && (sat_retries < DEFAULT_SAT_RETRY_LIMIT));
#if DESKEW_RODT_CTL
if (save_deskew_rodt_ctl != -1) {
comp_ctl2.u = BDK_CSR_READ(node, BDK_LMCX_COMP_CTL2(ddr_interface_num));
comp_ctl2.s.rodt_ctl = save_deskew_rodt_ctl;
DRAM_CSR_WRITE(node, BDK_LMCX_COMP_CTL2(ddr_interface_num), comp_ctl2.u);
}
#endif
VB_PRT(VBL_FAE, "N%d.LMC%d: Read Deskew Training %s. %d sat-retries, %d lock-retries\n",
node, ddr_interface_num,
(sat_retries >= DEFAULT_SAT_RETRY_LIMIT) ? "Timed Out" : "Completed",
sat_retries-1, lock_retries_total);
// restore original WR_DESKEW_ENA setting
change_wr_deskew_ena(node, ddr_interface_num, saved_wr_deskew_ena);
if ((dsk_counts.nibrng_errs != 0) || (dsk_counts.nibunl_errs != 0)) {
debug_print("N%d.LMC%d: NIBBLE ERROR(S) found, returning FAULT\n",
node, ddr_interface_num);
return -1; // we did retry locally, they did not help
}
// NOTE: we (currently) always print one last training validation before starting Read Leveling...
return 0;
}
static void
do_write_deskew_op(bdk_node_t node, int ddr_interface_num,
int bit_sel, int byte_sel, int ena)
{
bdk_lmcx_dll_ctl3_t ddr_dll_ctl3;
ddr_dll_ctl3.u = BDK_CSR_READ(node, BDK_LMCX_DLL_CTL3(ddr_interface_num));
SET_DDR_DLL_CTL3(bit_select, bit_sel);
SET_DDR_DLL_CTL3(byte_sel, byte_sel);
SET_DDR_DLL_CTL3(wr_deskew_ena, ena);
DRAM_CSR_WRITE(node, BDK_LMCX_DLL_CTL3(ddr_interface_num), ddr_dll_ctl3.u);
ddr_dll_ctl3.u = BDK_CSR_READ(node, BDK_LMCX_DLL_CTL3(ddr_interface_num));
}
static void
set_write_deskew_offset(bdk_node_t node, int ddr_interface_num,
int bit_sel, int byte_sel, int offset)
{
bdk_lmcx_dll_ctl3_t ddr_dll_ctl3;
ddr_dll_ctl3.u = BDK_CSR_READ(node, BDK_LMCX_DLL_CTL3(ddr_interface_num));
SET_DDR_DLL_CTL3(bit_select, bit_sel);
SET_DDR_DLL_CTL3(byte_sel, byte_sel);
SET_DDR_DLL_CTL3(offset, offset);
DRAM_CSR_WRITE(node, BDK_LMCX_DLL_CTL3(ddr_interface_num), ddr_dll_ctl3.u);
ddr_dll_ctl3.u = BDK_CSR_READ(node, BDK_LMCX_DLL_CTL3(ddr_interface_num));
SET_DDR_DLL_CTL3(wr_deskew_ld, 1);
DRAM_CSR_WRITE(node, BDK_LMCX_DLL_CTL3(ddr_interface_num), ddr_dll_ctl3.u);
ddr_dll_ctl3.u = BDK_CSR_READ(node, BDK_LMCX_DLL_CTL3(ddr_interface_num));
}
static void
Update_Write_Deskew_Settings(bdk_node_t node, int ddr_interface_num, deskew_data_t *dskdat)
{
bdk_lmcx_config_t lmc_config;
int bit_num;
int byte_lane, byte_limit;
lmc_config.u = BDK_CSR_READ(node, BDK_LMCX_CONFIG(ddr_interface_num));
byte_limit = ((lmc_config.s.mode32b) ? 4 : 8) + lmc_config.s.ecc_ena;
for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) {
for (bit_num = 0; bit_num <= 7; ++bit_num) {
set_write_deskew_offset(node, ddr_interface_num, bit_num, byte_lane + 1,
dskdat->bytes[byte_lane].bits[bit_num]);
} /* for (bit_num = 0; bit_num <= 7; ++bit_num) */
} /* for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) */
return;
}
#define ALL_BYTES 0x0A
#define BS_NOOP 0x09
#define BS_RESET 0x0F
#define BS_REUSE 0x0A
// set all entries to the same value (used during training)
static void
Set_Write_Deskew_Settings(bdk_node_t node, int ddr_interface_num, int value)
{
bdk_lmcx_dll_ctl3_t ddr_dll_ctl3;
int bit_num;
VB_PRT(VBL_DEV2, "N%d.LMC%d: SetWriteDeskew: WRITE %d\n", node, ddr_interface_num, value);
for (bit_num = 0; bit_num <= 7; ++bit_num) {
// write a bit-deskew value to all bit-lanes of all bytes
ddr_dll_ctl3.u = BDK_CSR_READ(node, BDK_LMCX_DLL_CTL3(ddr_interface_num));
SET_DDR_DLL_CTL3(bit_select, bit_num);
SET_DDR_DLL_CTL3(byte_sel, ALL_BYTES); // FIXME? will this work in 32-bit mode?
SET_DDR_DLL_CTL3(offset, value);
DRAM_CSR_WRITE(node, BDK_LMCX_DLL_CTL3(ddr_interface_num), ddr_dll_ctl3.u);
ddr_dll_ctl3.u = BDK_CSR_READ(node, BDK_LMCX_DLL_CTL3(ddr_interface_num));
SET_DDR_DLL_CTL3(wr_deskew_ld, 1);
DRAM_CSR_WRITE(node, BDK_LMCX_DLL_CTL3(ddr_interface_num), ddr_dll_ctl3.u);
} /* for (bit_num = 0; bit_num <= 7; ++bit_num) */
#if 0
// FIXME: for debug use only
Get_Deskew_Settings(node, ddr_interface_num, &dskdat);
Display_Deskew_Data(node, ddr_interface_num, &dskdat, VBL_NORM);
#endif
return;
}
typedef struct {
uint8_t count[8];
uint8_t start[8];
uint8_t best_count[8];
uint8_t best_start[8];
} deskew_bytelane_t;
typedef struct {
deskew_bytelane_t bytes[9];
} deskew_rank_t;
deskew_rank_t deskew_history[4];
#define DSKVAL_INCR 4
static void
Neutral_Write_Deskew_Setup(bdk_node_t node, int ddr_interface_num)
{
// first: NO-OP, Select all bytes, Disable write bit-deskew
ddr_print("N%d.LMC%d: NEUTRAL Write Deskew Setup: first: NOOP\n", node, ddr_interface_num);
do_write_deskew_op(node, ddr_interface_num, BS_NOOP, ALL_BYTES, 0);
//Get_Deskew_Settings(node, ddr_interface_num, &dskdat);
//Display_Deskew_Data(node, ddr_interface_num, &dskdat, VBL_NORM);
// enable write bit-deskew and RESET the settings
ddr_print("N%d.LMC%d: NEUTRAL Write Deskew Setup: wr_ena: RESET\n", node, ddr_interface_num);
do_write_deskew_op(node, ddr_interface_num, BS_RESET, ALL_BYTES, 1);
//Get_Deskew_Settings(node, ddr_interface_num, &dskdat);
//Display_Deskew_Data(node, ddr_interface_num, &dskdat, VBL_NORM);
}
static void
Perform_Write_Deskew_Training(bdk_node_t node, int ddr_interface_num)
{
deskew_data_t dskdat;
int byte, bit_num;
int dskval, rankx, rank_mask, active_ranks, errors, bit_errs;
uint64_t hw_rank_offset;
uint64_t bad_bits[2];
uint64_t phys_addr;
deskew_rank_t *dhp;
int num_lmcs = __bdk_dram_get_num_lmc(node);
BDK_CSR_INIT(lmcx_config, node, BDK_LMCX_CONFIG(ddr_interface_num));
rank_mask = lmcx_config.s.init_status; // FIXME: is this right when we run?
// this should be correct for 1 or 2 ranks, 1 or 2 DIMMs
hw_rank_offset = 1ull << (28 + lmcx_config.s.pbank_lsb - lmcx_config.s.rank_ena + (num_lmcs/2));
VB_PRT(VBL_FAE, "N%d.LMC%d: Performing Write Deskew Training.\n", node, ddr_interface_num);
// first: NO-OP, Select all bytes, Disable write bit-deskew
ddr_print("N%d.LMC%d: WriteDeskewConfig: first: NOOP\n", node, ddr_interface_num);
do_write_deskew_op(node, ddr_interface_num, BS_NOOP, ALL_BYTES, 0);
//Get_Deskew_Settings(node, ddr_interface_num, &dskdat);
//Display_Deskew_Data(node, ddr_interface_num, &dskdat, VBL_NORM);
// enable write bit-deskew and RESET the settings
ddr_print("N%d.LMC%d: WriteDeskewConfig: wr_ena: RESET\n", node, ddr_interface_num);
do_write_deskew_op(node, ddr_interface_num, BS_RESET, ALL_BYTES, 1);
//Get_Deskew_Settings(node, ddr_interface_num, &dskdat);
//Display_Deskew_Data(node, ddr_interface_num, &dskdat, VBL_NORM);
#if 0
// enable write bit-deskew and REUSE read bit-deskew settings
ddr_print("N%d.LMC%d: WriteDeskewConfig: wr_ena: REUSE\n", node, ddr_interface_num);
do_write_deskew_op(node, ddr_interface_num, BS_REUSE, ALL_BYTES, 1);
Get_Deskew_Settings(node, ddr_interface_num, &dskdat);
Display_Deskew_Data(node, ddr_interface_num, &dskdat, VBL_NORM);
#endif
#if 1
memset(deskew_history, 0, sizeof(deskew_history));
for (dskval = 0; dskval < 128; dskval += DSKVAL_INCR) {
Set_Write_Deskew_Settings(node, ddr_interface_num, dskval);
active_ranks = 0;
for (rankx = 0; rankx < 4; rankx++) {
if (!(rank_mask & (1 << rankx)))
continue;
dhp = &deskew_history[rankx];
phys_addr = hw_rank_offset * active_ranks;
active_ranks++;
errors = test_dram_byte_hw(node, ddr_interface_num, phys_addr, 0, bad_bits);
for (byte = 0; byte <= 8; byte++) { // do bytelane(s)
// check errors
if (errors & (1 << byte)) { // yes, error(s) in the byte lane in this rank
bit_errs = ((byte == 8) ? bad_bits[1] : bad_bits[0] >> (8 * byte)) & 0xFFULL;
VB_PRT(VBL_DEV2, "N%d.LMC%d.R%d: Byte %d Value %d: Address 0x%012llx errors 0x%x/0x%x\n",
node, ddr_interface_num, rankx, byte,
dskval, phys_addr, errors, bit_errs);
for (bit_num = 0; bit_num <= 7; bit_num++) {
if (!(bit_errs & (1 << bit_num)))
continue;
if (dhp->bytes[byte].count[bit_num] > 0) { // had started run
VB_PRT(VBL_DEV2, "N%d.LMC%d.R%d: Byte %d Bit %d Value %d: stopping a run here\n",
node, ddr_interface_num, rankx, byte, bit_num, dskval);
dhp->bytes[byte].count[bit_num] = 0; // stop now
}
} /* for (bit_num = 0; bit_num <= 7; bit_num++) */
// FIXME: else had not started run - nothing else to do?
} else { // no error in the byte lane
for (bit_num = 0; bit_num <= 7; bit_num++) {
if (dhp->bytes[byte].count[bit_num] == 0) { // first success, set run start
VB_PRT(VBL_DEV2, "N%d.LMC%d.R%d: Byte %d Bit %d Value %d: starting a run here\n",
node, ddr_interface_num, rankx, byte, bit_num, dskval);
dhp->bytes[byte].start[bit_num] = dskval;
}
dhp->bytes[byte].count[bit_num] += DSKVAL_INCR; // bump run length
// is this now the biggest window?
if (dhp->bytes[byte].count[bit_num] > dhp->bytes[byte].best_count[bit_num]) {
dhp->bytes[byte].best_count[bit_num] = dhp->bytes[byte].count[bit_num];
dhp->bytes[byte].best_start[bit_num] = dhp->bytes[byte].start[bit_num];
VB_PRT(VBL_DEV2, "N%d.LMC%d.R%d: Byte %d Bit %d Value %d: updating best to %d/%d\n",
node, ddr_interface_num, rankx, byte, bit_num, dskval,
dhp->bytes[byte].best_start[bit_num],
dhp->bytes[byte].best_count[bit_num]);
}
} /* for (bit_num = 0; bit_num <= 7; bit_num++) */
} /* error in the byte lane */
} /* for (byte = 0; byte <= 8; byte++) */
} /* for (rankx = 0; rankx < 4; rankx++) */
} /* for (dskval = 0; dskval < 128; dskval++) */
for (byte = 0; byte <= 8; byte++) { // do bytelane(s)
for (bit_num = 0; bit_num <= 7; bit_num++) { // do bits
int bit_beg, bit_end;
bit_beg = 0;
bit_end = 128;
for (rankx = 0; rankx < 4; rankx++) { // merge ranks
int rank_beg, rank_end, rank_count;
if (!(rank_mask & (1 << rankx)))
continue;
dhp = &deskew_history[rankx];
rank_beg = dhp->bytes[byte].best_start[bit_num];
rank_count = dhp->bytes[byte].best_count[bit_num];
if (!rank_count) {
VB_PRT(VBL_DEV, "N%d.LMC%d.R%d: Byte %d Bit %d: EMPTY\n",
node, ddr_interface_num, rankx, byte, bit_num);
continue;
}
bit_beg = max(bit_beg, rank_beg);
rank_end = rank_beg + rank_count - DSKVAL_INCR;
bit_end = min(bit_end, rank_end);
} /* for (rankx = 0; rankx < 4; rankx++) */
dskdat.bytes[byte].bits[bit_num] = (bit_end + bit_beg) / 2;
} /* for (bit_num = 0; bit_num <= 7; bit_num++) */
} /* for (byte = 0; byte <= 8; byte++) */
#endif
// update the write bit-deskew settings with final settings
ddr_print("N%d.LMC%d: WriteDeskewConfig: wr_ena: UPDATE\n", node, ddr_interface_num);
Update_Write_Deskew_Settings(node, ddr_interface_num, &dskdat);
Get_Deskew_Settings(node, ddr_interface_num, &dskdat);
Display_Deskew_Data(node, ddr_interface_num, &dskdat, VBL_NORM);
// last: NO-OP, Select all bytes, MUST leave write bit-deskew enabled
ddr_print("N%d.LMC%d: WriteDeskewConfig: last: wr_ena: NOOP\n", node, ddr_interface_num);
do_write_deskew_op(node, ddr_interface_num, BS_NOOP, ALL_BYTES, 1);
//Get_Deskew_Settings(node, ddr_interface_num, &dskdat);
//Display_Deskew_Data(node, ddr_interface_num, &dskdat, VBL_NORM);
#if 0
// FIXME: disable/delete this when write bit-deskew works...
// final: NO-OP, Select all bytes, do NOT leave write bit-deskew enabled
ddr_print("N%d.LMC%d: WriteDeskewConfig: final: read: NOOP\n", node, ddr_interface_num);
do_write_deskew_op(node, ddr_interface_num, BS_NOOP, ALL_BYTES, 0);
Get_Deskew_Settings(node, ddr_interface_num, &dskdat);
Display_Deskew_Data(node, ddr_interface_num, &dskdat, VBL_NORM);
#endif
}
#define SCALING_FACTOR (1000)
#define Dprintf debug_print // make this "ddr_print" for extra debug output below
static int compute_Vref_1slot_2rank(int rtt_wr, int rtt_park, int dqx_ctl, int rank_count)
{
uint64_t Reff_s;
uint64_t Rser_s = 15;
uint64_t Vdd = 1200;
uint64_t Vref;
//uint64_t Vl;
uint64_t rtt_wr_s = (((rtt_wr == 0) || (rtt_wr == 99)) ? 1*1024*1024 : rtt_wr); // 99 == HiZ
uint64_t rtt_park_s = (((rtt_park == 0) || ((rank_count == 1) && (rtt_wr != 0))) ? 1*1024*1024 : rtt_park);
uint64_t dqx_ctl_s = (dqx_ctl == 0 ? 1*1024*1024 : dqx_ctl);
int Vref_value;
uint64_t Rangepc = 6000; // range1 base is 60%
uint64_t Vrefpc;
int Vref_range = 0;
Dprintf("rtt_wr = %d, rtt_park = %d, dqx_ctl = %d\n", rtt_wr, rtt_park, dqx_ctl);
Dprintf("rtt_wr_s = %d, rtt_park_s = %d, dqx_ctl_s = %d\n", rtt_wr_s, rtt_park_s, dqx_ctl_s);
Reff_s = divide_nint((rtt_wr_s * rtt_park_s) , (rtt_wr_s + rtt_park_s));
Dprintf("Reff_s = %d\n", Reff_s);
//Vl = (((Rser_s + dqx_ctl_s) * SCALING_FACTOR) / (Rser_s + dqx_ctl_s + Reff_s)) * Vdd / SCALING_FACTOR;
//printf("Vl = %d\n", Vl);
Vref = (((Rser_s + dqx_ctl_s) * SCALING_FACTOR) / (Rser_s + dqx_ctl_s + Reff_s)) + SCALING_FACTOR;
Dprintf("Vref = %d\n", Vref);
Vref = (Vref * Vdd) / 2 / SCALING_FACTOR;
Dprintf("Vref = %d\n", Vref);
Vrefpc = (Vref * 100 * 100) / Vdd;
Dprintf("Vrefpc = %d\n", Vrefpc);
if (Vrefpc < Rangepc) { // < range1 base, use range2
Vref_range = 1 << 6; // set bit A6 for range2
Rangepc = 4500; // range2 base is 45%
}
Vref_value = divide_nint(Vrefpc - Rangepc, 65);
if (Vref_value < 0)
Vref_value = Vref_range; // set to base of range as lowest value
else
Vref_value |= Vref_range;
Dprintf("Vref_value = %d (0x%02x)\n", Vref_value, Vref_value);
debug_print("rtt_wr:%d, rtt_park:%d, dqx_ctl:%d, Vref_value:%d (0x%x)\n",
rtt_wr, rtt_park, dqx_ctl, Vref_value, Vref_value);
return Vref_value;
}
static int compute_Vref_2slot_2rank(int rtt_wr, int rtt_park_00, int rtt_park_01, int dqx_ctl, int rtt_nom)
{
//uint64_t Rser = 15;
uint64_t Vdd = 1200;
//uint64_t Vref;
uint64_t Vl, Vlp, Vcm;
uint64_t Rd0, Rd1, Rpullup;
uint64_t rtt_wr_s = (((rtt_wr == 0) || (rtt_wr == 99)) ? 1*1024*1024 : rtt_wr); // 99 == HiZ
uint64_t rtt_park_00_s = (rtt_park_00 == 0 ? 1*1024*1024 : rtt_park_00);
uint64_t rtt_park_01_s = (rtt_park_01 == 0 ? 1*1024*1024 : rtt_park_01);
uint64_t dqx_ctl_s = (dqx_ctl == 0 ? 1*1024*1024 : dqx_ctl);
uint64_t rtt_nom_s = (rtt_nom == 0 ? 1*1024*1024 : rtt_nom);
int Vref_value;
uint64_t Rangepc = 6000; // range1 base is 60%
uint64_t Vrefpc;
int Vref_range = 0;
// Rd0 = (RTT_NOM /*parallel*/ RTT_WR) + 15 = ((RTT_NOM * RTT_WR) / (RTT_NOM + RTT_WR)) + 15
Rd0 = divide_nint((rtt_nom_s * rtt_wr_s), (rtt_nom_s + rtt_wr_s)) + 15;
//printf("Rd0 = %ld\n", Rd0);
// Rd1 = (RTT_PARK_00 /*parallel*/ RTT_PARK_01) + 15 = ((RTT_PARK_00 * RTT_PARK_01) / (RTT_PARK_00 + RTT_PARK_01)) + 15
Rd1 = divide_nint((rtt_park_00_s * rtt_park_01_s), (rtt_park_00_s + rtt_park_01_s)) + 15;
//printf("Rd1 = %ld\n", Rd1);
// Rpullup = Rd0 /*parallel*/ Rd1 = (Rd0 * Rd1) / (Rd0 + Rd1)
Rpullup = divide_nint((Rd0 * Rd1), (Rd0 + Rd1));
//printf("Rpullup = %ld\n", Rpullup);
// Vl = (DQX_CTL / (DQX_CTL + Rpullup)) * 1.2
Vl = divide_nint((dqx_ctl_s * Vdd), (dqx_ctl_s + Rpullup));
//printf("Vl = %ld\n", Vl);
// Vlp = ((15 / Rd0) * (1.2 - Vl)) + Vl
Vlp = divide_nint((15 * (Vdd - Vl)), Rd0) + Vl;
//printf("Vlp = %ld\n", Vlp);
// Vcm = (Vlp + 1.2) / 2
Vcm = divide_nint((Vlp + Vdd), 2);
//printf("Vcm = %ld\n", Vcm);
// Vrefpc = (Vcm / 1.2) * 100
Vrefpc = divide_nint((Vcm * 100 * 100), Vdd);
//printf("Vrefpc = %ld\n", Vrefpc);
if (Vrefpc < Rangepc) { // < range1 base, use range2
Vref_range = 1 << 6; // set bit A6 for range2
Rangepc = 4500; // range2 base is 45%
}
Vref_value = divide_nint(Vrefpc - Rangepc, 65);
if (Vref_value < 0)
Vref_value = Vref_range; // set to base of range as lowest value
else
Vref_value |= Vref_range;
//printf("Vref_value = %d (0x%02x)\n", Vref_value, Vref_value);
debug_print("rtt_wr:%d, rtt_park_00:%d, rtt_park_01:%d, dqx_ctl:%d, rtt_nom:%d, Vref_value:%d (0x%x)\n",
rtt_wr, rtt_park_00, rtt_park_01, dqx_ctl, rtt_nom, Vref_value, Vref_value);
return Vref_value;
}
// NOTE: only call this for DIMMs with 1 or 2 ranks, not 4.
int
compute_vref_value(bdk_node_t node, int ddr_interface_num,
int rankx, int dimm_count, int rank_count,
impedence_values_t *imp_values, int is_stacked_die)
{
int computed_final_vref_value = 0;
/* Calculate an override of the measured Vref value
but only for configurations we know how to...*/
// we have code for 2-rank DIMMs in both 1-slot or 2-slot configs,
// and can use the 2-rank 1-slot code for 1-rank DIMMs in 1-slot configs
// and can use the 2-rank 2-slot code for 1-rank DIMMs in 2-slot configs
int rtt_wr, dqx_ctl, rtt_nom, index;
bdk_lmcx_modereg_params1_t lmc_modereg_params1;
bdk_lmcx_modereg_params2_t lmc_modereg_params2;
bdk_lmcx_comp_ctl2_t comp_ctl2;
lmc_modereg_params1.u = BDK_CSR_READ(node, BDK_LMCX_MODEREG_PARAMS1(ddr_interface_num));
lmc_modereg_params2.u = BDK_CSR_READ(node, BDK_LMCX_MODEREG_PARAMS2(ddr_interface_num));
comp_ctl2.u = BDK_CSR_READ(node, BDK_LMCX_COMP_CTL2(ddr_interface_num));
dqx_ctl = imp_values->dqx_strength[comp_ctl2.s.dqx_ctl];
// WR always comes from the current rank
index = (lmc_modereg_params1.u >> (rankx * 12 + 5)) & 0x03;
if (!CAVIUM_IS_MODEL(CAVIUM_CN88XX_PASS1_X)) {
index |= lmc_modereg_params1.u >> (51+rankx-2) & 0x04;
}
rtt_wr = imp_values->rtt_wr_ohms [index];
// separate calculations for 1 vs 2 DIMMs per LMC
if (dimm_count == 1) {
// PARK comes from this rank if 1-rank, otherwise other rank
index = (lmc_modereg_params2.u >> ((rankx ^ (rank_count - 1)) * 10 + 0)) & 0x07;
int rtt_park = imp_values->rtt_nom_ohms[index];
computed_final_vref_value = compute_Vref_1slot_2rank(rtt_wr, rtt_park, dqx_ctl, rank_count);
} else {
// get both PARK values from the other DIMM
index = (lmc_modereg_params2.u >> ((rankx ^ 0x02) * 10 + 0)) & 0x07;
int rtt_park_00 = imp_values->rtt_nom_ohms[index];
index = (lmc_modereg_params2.u >> ((rankx ^ 0x03) * 10 + 0)) & 0x07;
int rtt_park_01 = imp_values->rtt_nom_ohms[index];
// NOM comes from this rank if 1-rank, otherwise other rank
index = (lmc_modereg_params1.u >> ((rankx ^ (rank_count - 1)) * 12 + 9)) & 0x07;
rtt_nom = imp_values->rtt_nom_ohms[index];
computed_final_vref_value = compute_Vref_2slot_2rank(rtt_wr, rtt_park_00, rtt_park_01, dqx_ctl, rtt_nom);
}
#if ENABLE_COMPUTED_VREF_ADJUSTMENT
{
int saved_final_vref_value = computed_final_vref_value;
BDK_CSR_INIT(lmc_config, node, BDK_LMCX_CONFIG(ddr_interface_num));
/*
New computed Vref = existing computed Vref – X
The value of X is depending on different conditions. Both #122 and #139 are 2Rx4 RDIMM,
while #124 is stacked die 2Rx4, so I conclude the results into two conditions:
1. Stacked Die: 2Rx4
1-slot: offset = 7. i, e New computed Vref = existing computed Vref – 7
2-slot: offset = 6
2. Regular: 2Rx4
1-slot: offset = 3
2-slot: offset = 2
*/
// we know we never get called unless DDR4, so test just the other conditions
if((!!__bdk_dram_is_rdimm(node, 0)) &&
(rank_count == 2) &&
(lmc_config.s.mode_x4dev))
{ // it must first be RDIMM and 2-rank and x4
if (is_stacked_die) { // now do according to stacked die or not...
computed_final_vref_value -= (dimm_count == 1) ? 7 : 6;
} else {
computed_final_vref_value -= (dimm_count == 1) ? 3 : 2;
}
// we have adjusted it, so print it out if verbosity is right
VB_PRT(VBL_TME, "N%d.LMC%d.R%d: adjusting computed vref from %2d (0x%02x) to %2d (0x%02x)\n",
node, ddr_interface_num, rankx,
saved_final_vref_value, saved_final_vref_value,
computed_final_vref_value, computed_final_vref_value);
}
}
#endif
return computed_final_vref_value;
}
static unsigned int EXTR_WR(uint64_t u, int x)
{
return (unsigned int)(((u >> (x*12+5)) & 0x3UL) | ((u >> (51+x-2)) & 0x4UL));
}
static void INSRT_WR(uint64_t *up, int x, int v)
{
uint64_t u = *up;
u &= ~(((0x3UL) << (x*12+5)) | ((0x1UL) << (51+x)));
*up = (u | ((v & 0x3UL) << (x*12+5)) | ((v & 0x4UL) << (51+x-2)));
return;
}
static int encode_row_lsb_ddr3(int row_lsb, int ddr_interface_wide)
{
int encoded_row_lsb;
int row_lsb_start = 14;
/* Decoding for row_lsb */
/* 000: row_lsb = mem_adr[14] */
/* 001: row_lsb = mem_adr[15] */
/* 010: row_lsb = mem_adr[16] */
/* 011: row_lsb = mem_adr[17] */
/* 100: row_lsb = mem_adr[18] */
/* 101: row_lsb = mem_adr[19] */
/* 110: row_lsb = mem_adr[20] */
/* 111: RESERVED */
row_lsb_start = 14;
encoded_row_lsb = row_lsb - row_lsb_start ;
return encoded_row_lsb;
}
static int encode_pbank_lsb_ddr3(int pbank_lsb, int ddr_interface_wide)
{
int encoded_pbank_lsb;
/* Decoding for pbank_lsb */
/* 0000:DIMM = mem_adr[28] / rank = mem_adr[27] (if RANK_ENA) */
/* 0001:DIMM = mem_adr[29] / rank = mem_adr[28] " */
/* 0010:DIMM = mem_adr[30] / rank = mem_adr[29] " */
/* 0011:DIMM = mem_adr[31] / rank = mem_adr[30] " */
/* 0100:DIMM = mem_adr[32] / rank = mem_adr[31] " */
/* 0101:DIMM = mem_adr[33] / rank = mem_adr[32] " */
/* 0110:DIMM = mem_adr[34] / rank = mem_adr[33] " */
/* 0111:DIMM = 0 / rank = mem_adr[34] " */
/* 1000-1111: RESERVED */
int pbank_lsb_start = 0;
pbank_lsb_start = 28;
encoded_pbank_lsb = pbank_lsb - pbank_lsb_start;
return encoded_pbank_lsb;
}
static uint64_t octeon_read_lmcx_ddr3_rlevel_dbg(bdk_node_t node, int ddr_interface_num, int idx)
{
DRAM_CSR_MODIFY(c, node, BDK_LMCX_RLEVEL_CTL(ddr_interface_num),
c.s.byte = idx);
BDK_CSR_READ(node, BDK_LMCX_RLEVEL_CTL(ddr_interface_num));
BDK_CSR_INIT(rlevel_dbg, node, BDK_LMCX_RLEVEL_DBG(ddr_interface_num));
return rlevel_dbg.s.bitmask;
}
static uint64_t octeon_read_lmcx_ddr3_wlevel_dbg(bdk_node_t node, int ddr_interface_num, int idx)
{
bdk_lmcx_wlevel_dbg_t wlevel_dbg;
wlevel_dbg.u = 0;
wlevel_dbg.s.byte = idx;
DRAM_CSR_WRITE(node, BDK_LMCX_WLEVEL_DBG(ddr_interface_num), wlevel_dbg.u);
BDK_CSR_READ(node, BDK_LMCX_WLEVEL_DBG(ddr_interface_num));
wlevel_dbg.u = BDK_CSR_READ(node, BDK_LMCX_WLEVEL_DBG(ddr_interface_num));
return wlevel_dbg.s.bitmask;
}
/*
* Apply a filter to the BITMASK results returned from Octeon
* read-leveling to determine the most likely delay result. This
* computed delay may be used to qualify the delay result returned by
* Octeon. Accumulate an error penalty for invalid characteristics of
* the bitmask so that they can be used to select the most reliable
* results.
*
* The algorithm searches for the largest contiguous MASK within a
* maximum RANGE of bits beginning with the MSB.
*
* 1. a MASK with a WIDTH less than 4 will be penalized
* 2. Bubbles in the bitmask that occur before or after the MASK
* will be penalized
* 3. If there are no trailing bubbles then extra bits that occur
* beyond the maximum RANGE will be penalized.
*
* +++++++++++++++++++++++++++++++++++++++++++++++++++
* + +
* + e.g. bitmask = 27B00 +
* + +
* + 63 +--- mstart 0 +
* + | | | +
* + | +---------+ +--- fb | +
* + | | range | | | +
* + V V V V V +
* + +
* + 0 0 ... 1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 +
* + +
* + ^ ^ ^ +
* + | | mask| +
* + lb ---+ +-----+ +
* + width +
* + +
* +++++++++++++++++++++++++++++++++++++++++++++++++++
*/
#define RLEVEL_BITMASK_TRAILING_BITS_ERROR 5
#define RLEVEL_BITMASK_BUBBLE_BITS_ERROR 11 // FIXME? now less than TOOLONG
#define RLEVEL_BITMASK_NARROW_ERROR 6
#define RLEVEL_BITMASK_BLANK_ERROR 100
#define RLEVEL_BITMASK_TOOLONG_ERROR 12
#define MASKRANGE_BITS 6
#define MASKRANGE ((1 << MASKRANGE_BITS) - 1)
static int
validate_ddr3_rlevel_bitmask(rlevel_bitmask_t *rlevel_bitmask_p, int ddr_type)
{
int i;
int errors = 0;
uint64_t mask = 0; /* Used in 64-bit comparisons */
int8_t mstart = 0;
uint8_t width = 0;
uint8_t firstbit = 0;
uint8_t lastbit = 0;
uint8_t bubble = 0;
uint8_t tbubble = 0;
uint8_t blank = 0;
uint8_t narrow = 0;
uint8_t trailing = 0;
uint64_t bitmask = rlevel_bitmask_p->bm;
uint8_t extras = 0;
uint8_t toolong = 0;
uint64_t temp;
if (bitmask == 0) {
blank += RLEVEL_BITMASK_BLANK_ERROR;
} else {
/* Look for fb, the first bit */
temp = bitmask;
while (!(temp & 1)) {
firstbit++;
temp >>= 1;
}
/* Look for lb, the last bit */
lastbit = firstbit;
while ((temp >>= 1))
lastbit++;
/* Start with the max range to try to find the largest mask within the bitmask data */
width = MASKRANGE_BITS;
for (mask = MASKRANGE; mask > 0; mask >>= 1, --width) {
for (mstart = lastbit - width + 1; mstart >= firstbit; --mstart) {
temp = mask << mstart;
if ((bitmask & temp) == temp)
goto done_now;
}
}
done_now:
/* look for any more contiguous 1's to the right of mstart */
if (width == MASKRANGE_BITS) { // only when maximum mask
while ((bitmask >> (mstart - 1)) & 1) { // slide right over more 1's
--mstart;
if (ddr_type == DDR4_DRAM) // only for DDR4
extras++; // count the number of extra bits
}
}
/* Penalize any extra 1's beyond the maximum desired mask */
if (extras > 0)
toolong = RLEVEL_BITMASK_TOOLONG_ERROR * ((1 << extras) - 1);
/* Detect if bitmask is too narrow. */
if (width < 4)
narrow = (4 - width) * RLEVEL_BITMASK_NARROW_ERROR;
/* detect leading bubble bits, that is, any 0's between first and mstart */
temp = bitmask >> (firstbit + 1);
i = mstart - firstbit - 1;
while (--i >= 0) {
if ((temp & 1) == 0)
bubble += RLEVEL_BITMASK_BUBBLE_BITS_ERROR;
temp >>= 1;
}
temp = bitmask >> (mstart + width + extras);
i = lastbit - (mstart + width + extras - 1);
while (--i >= 0) {
if (temp & 1) { /* Detect 1 bits after the trailing end of the mask, including last. */
trailing += RLEVEL_BITMASK_TRAILING_BITS_ERROR;
} else { /* Detect trailing bubble bits, that is, any 0's between end-of-mask and last */
tbubble += RLEVEL_BITMASK_BUBBLE_BITS_ERROR;
}
temp >>= 1;
}
}
errors = bubble + tbubble + blank + narrow + trailing + toolong;
/* Pass out useful statistics */
rlevel_bitmask_p->mstart = mstart;
rlevel_bitmask_p->width = width;
VB_PRT(VBL_DEV2, "bm:%08lx mask:%02llx, width:%2u, mstart:%2d, fb:%2u, lb:%2u"
" (bu:%2d, tb:%2d, bl:%2d, n:%2d, t:%2d, x:%2d) errors:%3d %s\n",
(unsigned long) bitmask, mask, width, mstart,
firstbit, lastbit, bubble, tbubble, blank, narrow,
trailing, toolong, errors, (errors) ? "=> invalid" : "");
return errors;
}
static int compute_ddr3_rlevel_delay(uint8_t mstart, uint8_t width, bdk_lmcx_rlevel_ctl_t rlevel_ctl)
{
int delay;
debug_bitmask_print(" offset_en:%d", rlevel_ctl.cn8.offset_en);
if (rlevel_ctl.s.offset_en) {
delay = max(mstart, mstart + width - 1 - rlevel_ctl.s.offset);
} else {
/* if (rlevel_ctl.s.offset) { */ /* Experimental */
if (0) {
delay = max(mstart + rlevel_ctl.s.offset, mstart + 1);
/* Insure that the offset delay falls within the bitmask */
delay = min(delay, mstart + width-1);
} else {
delay = (width - 1) / 2 + mstart; /* Round down */
/* delay = (width/2) + mstart; */ /* Round up */
}
}
return delay;
}
#define WLEVEL_BYTE_BITS 5
#define WLEVEL_BYTE_MSK ((1UL << 5) - 1)
static void update_wlevel_rank_struct(bdk_lmcx_wlevel_rankx_t *lmc_wlevel_rank,
int byte, int delay)
{
bdk_lmcx_wlevel_rankx_t temp_wlevel_rank;
if (byte >= 0 && byte <= 8) {
temp_wlevel_rank.u = lmc_wlevel_rank->u;
temp_wlevel_rank.u &= ~(WLEVEL_BYTE_MSK << (WLEVEL_BYTE_BITS * byte));
temp_wlevel_rank.u |= ((delay & WLEVEL_BYTE_MSK) << (WLEVEL_BYTE_BITS * byte));
lmc_wlevel_rank->u = temp_wlevel_rank.u;
}
}
static int get_wlevel_rank_struct(bdk_lmcx_wlevel_rankx_t *lmc_wlevel_rank,
int byte)
{
int delay = 0;
if (byte >= 0 && byte <= 8) {
delay = ((lmc_wlevel_rank->u) >> (WLEVEL_BYTE_BITS * byte)) & WLEVEL_BYTE_MSK;
}
return delay;
}
#if 0
// entry = 1 is valid, entry = 0 is invalid
static int
validity_matrix[4][4] = {[0] {1,1,1,0}, // valid pairs when cv == 0: 0,0 + 0,1 + 0,2 == "7"
[1] {0,1,1,1}, // valid pairs when cv == 1: 1,1 + 1,2 + 1,3 == "E"
[2] {1,0,1,1}, // valid pairs when cv == 2: 2,2 + 2,3 + 2,0 == "D"
[3] {1,1,0,1}}; // valid pairs when cv == 3: 3,3 + 3,0 + 3,1 == "B"
#endif
static int
validate_seq(int *wl, int *seq)
{
int seqx; // sequence index, step through the sequence array
int bitnum;
seqx = 0;
while (seq[seqx+1] >= 0) { // stop on next seq entry == -1
// but now, check current versus next
#if 0
if ( !validity_matrix [wl[seq[seqx]]] [wl[seq[seqx+1]]] )
return 1;
#else
bitnum = (wl[seq[seqx]] << 2) | wl[seq[seqx+1]];
if (!((1 << bitnum) & 0xBDE7)) // magic validity number (see matrix above)
return 1;
#endif
seqx++;
}
return 0;
}
static int
Validate_HW_WL_Settings(bdk_node_t node, int ddr_interface_num,
bdk_lmcx_wlevel_rankx_t *lmc_wlevel_rank,
int ecc_ena)
{
int wl[9], byte, errors;
// arrange the sequences so
int useq[] = { 0,1,2,3,8,4,5,6,7,-1 }; // index 0 has byte 0, etc, ECC in middle
int rseq1[] = { 8,3,2,1,0,-1 }; // index 0 is ECC, then go down
int rseq2[] = { 4,5,6,7,-1 }; // index 0 has byte 4, then go up
int useqno[] = { 0,1,2,3,4,5,6,7,-1 }; // index 0 has byte 0, etc, no ECC
int rseq1no[] = { 3,2,1,0,-1 }; // index 0 is byte 3, then go down, no ECC
// in the CSR, bytes 0-7 are always data, byte 8 is ECC
for (byte = 0; byte < 8+ecc_ena; byte++) {
wl[byte] = (get_wlevel_rank_struct(lmc_wlevel_rank, byte) >> 1) & 3; // preprocess :-)
}
errors = 0;
if (__bdk_dram_is_rdimm(node, 0) != 0) { // RDIMM order
errors = validate_seq(wl, (ecc_ena) ? rseq1 : rseq1no);
errors += validate_seq(wl, rseq2);
} else { // UDIMM order
errors = validate_seq(wl, (ecc_ena) ? useq : useqno);
}
return errors;
}
#define RLEVEL_BYTE_BITS 6
#define RLEVEL_BYTE_MSK ((1UL << 6) - 1)
static void update_rlevel_rank_struct(bdk_lmcx_rlevel_rankx_t *lmc_rlevel_rank,
int byte, int delay)
{
bdk_lmcx_rlevel_rankx_t temp_rlevel_rank;
if (byte >= 0 && byte <= 8) {
temp_rlevel_rank.u = lmc_rlevel_rank->u & ~(RLEVEL_BYTE_MSK << (RLEVEL_BYTE_BITS * byte));
temp_rlevel_rank.u |= ((delay & RLEVEL_BYTE_MSK) << (RLEVEL_BYTE_BITS * byte));
lmc_rlevel_rank->u = temp_rlevel_rank.u;
}
}
#if RLEXTRAS_PATCH || !DISABLE_SW_WL_PASS_2
static int get_rlevel_rank_struct(bdk_lmcx_rlevel_rankx_t *lmc_rlevel_rank,
int byte)
{
int delay = 0;
if (byte >= 0 && byte <= 8) {
delay = ((lmc_rlevel_rank->u) >> (RLEVEL_BYTE_BITS * byte)) & RLEVEL_BYTE_MSK;
}
return delay;
}
#endif
static void unpack_rlevel_settings(int ddr_interface_bytemask, int ecc_ena,
rlevel_byte_data_t *rlevel_byte,
bdk_lmcx_rlevel_rankx_t lmc_rlevel_rank)
{
if ((ddr_interface_bytemask & 0xff) == 0xff) {
if (ecc_ena) {
rlevel_byte[8].delay = lmc_rlevel_rank.cn83xx.byte7;
rlevel_byte[7].delay = lmc_rlevel_rank.cn83xx.byte6;
rlevel_byte[6].delay = lmc_rlevel_rank.cn83xx.byte5;
rlevel_byte[5].delay = lmc_rlevel_rank.cn83xx.byte4;
rlevel_byte[4].delay = lmc_rlevel_rank.cn83xx.byte8; /* ECC */
} else {
rlevel_byte[7].delay = lmc_rlevel_rank.cn83xx.byte7;
rlevel_byte[6].delay = lmc_rlevel_rank.cn83xx.byte6;
rlevel_byte[5].delay = lmc_rlevel_rank.cn83xx.byte5;
rlevel_byte[4].delay = lmc_rlevel_rank.cn83xx.byte4;
}
} else {
rlevel_byte[8].delay = lmc_rlevel_rank.cn83xx.byte8; /* unused */
rlevel_byte[7].delay = lmc_rlevel_rank.cn83xx.byte7; /* unused */
rlevel_byte[6].delay = lmc_rlevel_rank.cn83xx.byte6; /* unused */
rlevel_byte[5].delay = lmc_rlevel_rank.cn83xx.byte5; /* unused */
rlevel_byte[4].delay = lmc_rlevel_rank.cn83xx.byte4; /* ECC */
}
rlevel_byte[3].delay = lmc_rlevel_rank.cn83xx.byte3;
rlevel_byte[2].delay = lmc_rlevel_rank.cn83xx.byte2;
rlevel_byte[1].delay = lmc_rlevel_rank.cn83xx.byte1;
rlevel_byte[0].delay = lmc_rlevel_rank.cn83xx.byte0;
}
static void pack_rlevel_settings(int ddr_interface_bytemask, int ecc_ena,
rlevel_byte_data_t *rlevel_byte,
bdk_lmcx_rlevel_rankx_t *final_rlevel_rank)
{
bdk_lmcx_rlevel_rankx_t lmc_rlevel_rank = *final_rlevel_rank;
if ((ddr_interface_bytemask & 0xff) == 0xff) {
if (ecc_ena) {
lmc_rlevel_rank.cn83xx.byte7 = rlevel_byte[8].delay;
lmc_rlevel_rank.cn83xx.byte6 = rlevel_byte[7].delay;
lmc_rlevel_rank.cn83xx.byte5 = rlevel_byte[6].delay;
lmc_rlevel_rank.cn83xx.byte4 = rlevel_byte[5].delay;
lmc_rlevel_rank.cn83xx.byte8 = rlevel_byte[4].delay; /* ECC */
} else {
lmc_rlevel_rank.cn83xx.byte7 = rlevel_byte[7].delay;
lmc_rlevel_rank.cn83xx.byte6 = rlevel_byte[6].delay;
lmc_rlevel_rank.cn83xx.byte5 = rlevel_byte[5].delay;
lmc_rlevel_rank.cn83xx.byte4 = rlevel_byte[4].delay;
}
} else {
lmc_rlevel_rank.cn83xx.byte8 = rlevel_byte[8].delay;
lmc_rlevel_rank.cn83xx.byte7 = rlevel_byte[7].delay;
lmc_rlevel_rank.cn83xx.byte6 = rlevel_byte[6].delay;
lmc_rlevel_rank.cn83xx.byte5 = rlevel_byte[5].delay;
lmc_rlevel_rank.cn83xx.byte4 = rlevel_byte[4].delay;
}
lmc_rlevel_rank.cn83xx.byte3 = rlevel_byte[3].delay;
lmc_rlevel_rank.cn83xx.byte2 = rlevel_byte[2].delay;
lmc_rlevel_rank.cn83xx.byte1 = rlevel_byte[1].delay;
lmc_rlevel_rank.cn83xx.byte0 = rlevel_byte[0].delay;
*final_rlevel_rank = lmc_rlevel_rank;
}
#if !DISABLE_SW_WL_PASS_2
static void rlevel_to_wlevel(bdk_lmcx_rlevel_rankx_t *lmc_rlevel_rank,
bdk_lmcx_wlevel_rankx_t *lmc_wlevel_rank, int byte)
{
int byte_delay = get_rlevel_rank_struct(lmc_rlevel_rank, byte);
debug_print("Estimating Wlevel delay byte %d: ", byte);
debug_print("Rlevel=%d => ", byte_delay);
byte_delay = divide_roundup(byte_delay,2) & 0x1e;
debug_print("Wlevel=%d\n", byte_delay);
update_wlevel_rank_struct(lmc_wlevel_rank, byte, byte_delay);
}
#endif /* !DISABLE_SW_WL_PASS_2 */
/* Delay trend: constant=0, decreasing=-1, increasing=1 */
static int calc_delay_trend(int v)
{
if (v == 0)
return (0);
if (v < 0)
return (-1);
return 1;
}
/* Evaluate delay sequence across the whole range of byte delays while
** keeping track of the overall delay trend, increasing or decreasing.
** If the trend changes charge an error amount to the score.
*/
// NOTE: "max_adj_delay_inc" argument is, by default, 1 for DDR3 and 2 for DDR4
static int nonsequential_delays(rlevel_byte_data_t *rlevel_byte,
int start, int end, int max_adj_delay_inc)
{
int error = 0;
int delay_trend, prev_trend = 0;
int byte_idx;
int delay_inc;
int delay_diff;
int byte_err;
for (byte_idx = start; byte_idx < end; ++byte_idx) {
byte_err = 0;
delay_diff = rlevel_byte[byte_idx+1].delay - rlevel_byte[byte_idx].delay;
delay_trend = calc_delay_trend(delay_diff);
debug_bitmask_print("Byte %d: %2d, Byte %d: %2d, delay_trend: %2d, prev_trend: %2d",
byte_idx+0, rlevel_byte[byte_idx+0].delay,
byte_idx+1, rlevel_byte[byte_idx+1].delay,
delay_trend, prev_trend);
/* Increment error each time the trend changes to the opposite direction.
*/
if ((prev_trend != 0) && (delay_trend != 0) && (prev_trend != delay_trend)) {
byte_err += RLEVEL_NONSEQUENTIAL_DELAY_ERROR;
prev_trend = delay_trend;
debug_bitmask_print(" => Nonsequential byte delay");
}
delay_inc = _abs(delay_diff); // how big was the delay change, if any
/* Even if the trend did not change to the opposite direction, check for
the magnitude of the change, and scale the penalty by the amount that
the size is larger than the provided limit.
*/
if ((max_adj_delay_inc != 0) && (delay_inc > max_adj_delay_inc)) {
byte_err += (delay_inc - max_adj_delay_inc) * RLEVEL_ADJACENT_DELAY_ERROR;
debug_bitmask_print(" => Adjacent delay error");
}
debug_bitmask_print("\n");
if (delay_trend != 0)
prev_trend = delay_trend;
rlevel_byte[byte_idx+1].sqerrs = byte_err;
error += byte_err;
}
return error;
}
static int roundup_ddr3_wlevel_bitmask(int bitmask)
{
int shifted_bitmask;
int leader;
int delay;
for (leader=0; leader<8; ++leader) {
shifted_bitmask = (bitmask>>leader);
if ((shifted_bitmask&1) == 0)
break;
}
for (/*leader=leader*/; leader<16; ++leader) {
shifted_bitmask = (bitmask>>(leader%8));
if (shifted_bitmask&1)
break;
}
delay = (leader & 1) ? leader + 1 : leader;
delay = delay % 8;
return delay;
}
/* Check to see if any custom offset values are provided */
static int is_dll_offset_provided(const int8_t *dll_offset_table)
{
int i;
if (dll_offset_table != NULL) {
for (i=0; i<9; ++i) {
if (dll_offset_table[i] != 0)
return (1);
}
}
return (0);
}
/////////////////// These are the RLEVEL settings display routines
// flags
#define WITH_NOTHING 0
#define WITH_SCORE 1
#define WITH_AVERAGE 2
#define WITH_FINAL 4
#define WITH_COMPUTE 8
static void do_display_RL(bdk_node_t node, int ddr_interface_num,
bdk_lmcx_rlevel_rankx_t lmc_rlevel_rank,
int rank, int flags, int score)
{
char score_buf[16];
if (flags & WITH_SCORE)
snprintf(score_buf, sizeof(score_buf), "(%d)", score);
else {
score_buf[0] = ' '; score_buf[1] = 0;
}
const char *msg_buf;
char hex_buf[20];
if (flags & WITH_AVERAGE) {
msg_buf = " DELAY AVERAGES ";
} else if (flags & WITH_FINAL) {
msg_buf = " FINAL SETTINGS ";
} else if (flags & WITH_COMPUTE) {
msg_buf = " COMPUTED DELAYS ";
} else {
snprintf(hex_buf, sizeof(hex_buf), "0x%016lX", lmc_rlevel_rank.u);
msg_buf = hex_buf;
}
ddr_print("N%d.LMC%d.R%d: Rlevel Rank %#4x, %s : %5d %5d %5d %5d %5d %5d %5d %5d %5d %s\n",
node, ddr_interface_num, rank,
lmc_rlevel_rank.s.status,
msg_buf,
lmc_rlevel_rank.cn83xx.byte8,
lmc_rlevel_rank.cn83xx.byte7,
lmc_rlevel_rank.cn83xx.byte6,
lmc_rlevel_rank.cn83xx.byte5,
lmc_rlevel_rank.cn83xx.byte4,
lmc_rlevel_rank.cn83xx.byte3,
lmc_rlevel_rank.cn83xx.byte2,
lmc_rlevel_rank.cn83xx.byte1,
lmc_rlevel_rank.cn83xx.byte0,
score_buf
);
}
static inline void
display_RL(bdk_node_t node, int ddr_interface_num, bdk_lmcx_rlevel_rankx_t lmc_rlevel_rank, int rank)
{
do_display_RL(node, ddr_interface_num, lmc_rlevel_rank, rank, 0, 0);
}
static inline void
display_RL_with_score(bdk_node_t node, int ddr_interface_num, bdk_lmcx_rlevel_rankx_t lmc_rlevel_rank, int rank, int score)
{
do_display_RL(node, ddr_interface_num, lmc_rlevel_rank, rank, 1, score);
}
#if !PICK_BEST_RANK_SCORE_NOT_AVG
static inline void
display_RL_with_average(bdk_node_t node, int ddr_interface_num, bdk_lmcx_rlevel_rankx_t lmc_rlevel_rank, int rank, int score)
{
do_display_RL(node, ddr_interface_num, lmc_rlevel_rank, rank, 3, score);
}
#endif
static inline void
display_RL_with_final(bdk_node_t node, int ddr_interface_num, bdk_lmcx_rlevel_rankx_t lmc_rlevel_rank, int rank)
{
do_display_RL(node, ddr_interface_num, lmc_rlevel_rank, rank, 4, 0);
}
static inline void
display_RL_with_computed(bdk_node_t node, int ddr_interface_num, bdk_lmcx_rlevel_rankx_t lmc_rlevel_rank, int rank, int score)
{
do_display_RL(node, ddr_interface_num, lmc_rlevel_rank, rank, 9, score);
}
// flag values
#define WITH_RODT_BLANK 0
#define WITH_RODT_SKIPPING 1
#define WITH_RODT_BESTROW 2
#define WITH_RODT_BESTSCORE 3
// control
#define SKIP_SKIPPING 1
static const char *with_rodt_canned_msgs[4] = { " ", "SKIPPING ", "BEST ROW ", "BEST SCORE" };
static void display_RL_with_RODT(bdk_node_t node, int ddr_interface_num,
bdk_lmcx_rlevel_rankx_t lmc_rlevel_rank, int rank, int score,
int nom_ohms, int rodt_ohms, int flag)
{
const char *msg_buf;
char set_buf[20];
#if SKIP_SKIPPING
if (flag == WITH_RODT_SKIPPING) return;
#endif
msg_buf = with_rodt_canned_msgs[flag];
if (nom_ohms < 0) {
snprintf(set_buf, sizeof(set_buf), " RODT %3d ", rodt_ohms);
} else {
snprintf(set_buf, sizeof(set_buf), "NOM %3d RODT %3d", nom_ohms, rodt_ohms);
}
VB_PRT(VBL_TME, "N%d.LMC%d.R%d: Rlevel %s %s : %5d %5d %5d %5d %5d %5d %5d %5d %5d (%d)\n",
node, ddr_interface_num, rank,
set_buf, msg_buf,
lmc_rlevel_rank.cn83xx.byte8,
lmc_rlevel_rank.cn83xx.byte7,
lmc_rlevel_rank.cn83xx.byte6,
lmc_rlevel_rank.cn83xx.byte5,
lmc_rlevel_rank.cn83xx.byte4,
lmc_rlevel_rank.cn83xx.byte3,
lmc_rlevel_rank.cn83xx.byte2,
lmc_rlevel_rank.cn83xx.byte1,
lmc_rlevel_rank.cn83xx.byte0,
score
);
// FIXME: does this help make the output a little easier to focus?
if (flag == WITH_RODT_BESTSCORE) {
VB_PRT(VBL_DEV, "-----------\n");
}
}
static void
do_display_WL(bdk_node_t node, int ddr_interface_num, bdk_lmcx_wlevel_rankx_t lmc_wlevel_rank, int rank, int flags)
{
const char *msg_buf;
char hex_buf[20];
int vbl;
if (flags & WITH_FINAL) {
msg_buf = " FINAL SETTINGS ";
vbl = VBL_NORM;
} else {
snprintf(hex_buf, sizeof(hex_buf), "0x%016lX", lmc_wlevel_rank.u);
msg_buf = hex_buf;
vbl = VBL_FAE;
}
VB_PRT(vbl, "N%d.LMC%d.R%d: Wlevel Rank %#4x, %s : %5d %5d %5d %5d %5d %5d %5d %5d %5d\n",
node, ddr_interface_num, rank,
lmc_wlevel_rank.s.status,
msg_buf,
lmc_wlevel_rank.s.byte8,
lmc_wlevel_rank.s.byte7,
lmc_wlevel_rank.s.byte6,
lmc_wlevel_rank.s.byte5,
lmc_wlevel_rank.s.byte4,
lmc_wlevel_rank.s.byte3,
lmc_wlevel_rank.s.byte2,
lmc_wlevel_rank.s.byte1,
lmc_wlevel_rank.s.byte0
);
}
static inline void
display_WL(bdk_node_t node, int ddr_interface_num, bdk_lmcx_wlevel_rankx_t lmc_wlevel_rank, int rank)
{
do_display_WL(node, ddr_interface_num, lmc_wlevel_rank, rank, WITH_NOTHING);
}
static inline void
display_WL_with_final(bdk_node_t node, int ddr_interface_num, bdk_lmcx_wlevel_rankx_t lmc_wlevel_rank, int rank)
{
do_display_WL(node, ddr_interface_num, lmc_wlevel_rank, rank, WITH_FINAL);
}
// pretty-print bitmask adjuster
static uint64_t
PPBM(uint64_t bm)
{
if (bm != 0ul) {
while ((bm & 0x0fful) == 0ul)
bm >>= 4;
}
return bm;
}
// xlate PACKED index to UNPACKED index to use with rlevel_byte
#define XPU(i,e) (((i) < 4)?(i):((i)<8)?(i)+(e):4)
// xlate UNPACKED index to PACKED index to use with rlevel_bitmask
#define XUP(i,e) (((i) < 4)?(i):((i)>4)?(i)-(e):8)
// flag values
#define WITH_WL_BITMASKS 0
#define WITH_RL_BITMASKS 1
#define WITH_RL_MASK_SCORES 2
#define WITH_RL_SEQ_SCORES 3
static void
do_display_BM(bdk_node_t node, int ddr_interface_num, int rank, void *bm, int flags, int ecc_ena)
{
int ecc = !!ecc_ena;
if (flags == WITH_WL_BITMASKS) { // wlevel_bitmask array in PACKED index order, so just print them
int *bitmasks = (int *)bm;
ddr_print("N%d.LMC%d.R%d: Wlevel Debug Results : %05x %05x %05x %05x %05x %05x %05x %05x %05x\n",
node, ddr_interface_num, rank,
bitmasks[8],
bitmasks[7],
bitmasks[6],
bitmasks[5],
bitmasks[4],
bitmasks[3],
bitmasks[2],
bitmasks[1],
bitmasks[0]
);
} else
if (flags == WITH_RL_BITMASKS) { // rlevel_bitmask array in PACKED index order, so just print them
rlevel_bitmask_t *rlevel_bitmask = (rlevel_bitmask_t *)bm;
ddr_print("N%d.LMC%d.R%d: Rlevel Debug Bitmasks 8:0 : %05llx %05llx %05llx %05llx %05llx %05llx %05llx %05llx %05llx\n",
node, ddr_interface_num, rank,
PPBM(rlevel_bitmask[8].bm),
PPBM(rlevel_bitmask[7].bm),
PPBM(rlevel_bitmask[6].bm),
PPBM(rlevel_bitmask[5].bm),
PPBM(rlevel_bitmask[4].bm),
PPBM(rlevel_bitmask[3].bm),
PPBM(rlevel_bitmask[2].bm),
PPBM(rlevel_bitmask[1].bm),
PPBM(rlevel_bitmask[0].bm)
);
} else
if (flags == WITH_RL_MASK_SCORES) { // rlevel_bitmask array in PACKED index order, so just print them
rlevel_bitmask_t *rlevel_bitmask = (rlevel_bitmask_t *)bm;
ddr_print("N%d.LMC%d.R%d: Rlevel Debug Bitmask Scores 8:0 : %5d %5d %5d %5d %5d %5d %5d %5d %5d\n",
node, ddr_interface_num, rank,
rlevel_bitmask[8].errs,
rlevel_bitmask[7].errs,
rlevel_bitmask[6].errs,
rlevel_bitmask[5].errs,
rlevel_bitmask[4].errs,
rlevel_bitmask[3].errs,
rlevel_bitmask[2].errs,
rlevel_bitmask[1].errs,
rlevel_bitmask[0].errs
);
} else
if (flags == WITH_RL_SEQ_SCORES) { // rlevel_byte array in UNPACKED index order, so xlate and print them
rlevel_byte_data_t *rlevel_byte = (rlevel_byte_data_t *)bm;
ddr_print("N%d.LMC%d.R%d: Rlevel Debug Non-seq Scores 8:0 : %5d %5d %5d %5d %5d %5d %5d %5d %5d\n",
node, ddr_interface_num, rank,
rlevel_byte[XPU(8,ecc)].sqerrs,
rlevel_byte[XPU(7,ecc)].sqerrs,
rlevel_byte[XPU(6,ecc)].sqerrs,
rlevel_byte[XPU(5,ecc)].sqerrs,
rlevel_byte[XPU(4,ecc)].sqerrs,
rlevel_byte[XPU(3,ecc)].sqerrs,
rlevel_byte[XPU(2,ecc)].sqerrs,
rlevel_byte[XPU(1,ecc)].sqerrs,
rlevel_byte[XPU(0,ecc)].sqerrs
);
}
}
static inline void
display_WL_BM(bdk_node_t node, int ddr_interface_num, int rank, int *bitmasks)
{
do_display_BM(node, ddr_interface_num, rank, (void *)bitmasks, WITH_WL_BITMASKS, 0);
}
static inline void
display_RL_BM(bdk_node_t node, int ddr_interface_num, int rank, rlevel_bitmask_t *bitmasks, int ecc_ena)
{
do_display_BM(node, ddr_interface_num, rank, (void *)bitmasks, WITH_RL_BITMASKS, ecc_ena);
}
static inline void
display_RL_BM_scores(bdk_node_t node, int ddr_interface_num, int rank, rlevel_bitmask_t *bitmasks, int ecc_ena)
{
do_display_BM(node, ddr_interface_num, rank, (void *)bitmasks, WITH_RL_MASK_SCORES, ecc_ena);
}
static inline void
display_RL_SEQ_scores(bdk_node_t node, int ddr_interface_num, int rank, rlevel_byte_data_t *bytes, int ecc_ena)
{
do_display_BM(node, ddr_interface_num, rank, (void *)bytes, WITH_RL_SEQ_SCORES, ecc_ena);
}
unsigned short load_dll_offset(bdk_node_t node, int ddr_interface_num,
int dll_offset_mode, int byte_offset, int byte)
{
bdk_lmcx_dll_ctl3_t ddr_dll_ctl3;
/* byte_sel:
0x1 = byte 0, ..., 0x9 = byte 8
0xA = all bytes */
int byte_sel = (byte == 10) ? byte : byte + 1;
ddr_dll_ctl3.u = BDK_CSR_READ(node, BDK_LMCX_DLL_CTL3(ddr_interface_num));
SET_DDR_DLL_CTL3(load_offset, 0);
DRAM_CSR_WRITE(node, BDK_LMCX_DLL_CTL3(ddr_interface_num), ddr_dll_ctl3.u);
ddr_dll_ctl3.u = BDK_CSR_READ(node, BDK_LMCX_DLL_CTL3(ddr_interface_num));
SET_DDR_DLL_CTL3(mode_sel, dll_offset_mode);
SET_DDR_DLL_CTL3(offset, (_abs(byte_offset)&0x3f) | (_sign(byte_offset) << 6)); /* Always 6-bit field? */
SET_DDR_DLL_CTL3(byte_sel, byte_sel);
DRAM_CSR_WRITE(node, BDK_LMCX_DLL_CTL3(ddr_interface_num), ddr_dll_ctl3.u);
ddr_dll_ctl3.u = BDK_CSR_READ(node, BDK_LMCX_DLL_CTL3(ddr_interface_num));
SET_DDR_DLL_CTL3(load_offset, 1);
DRAM_CSR_WRITE(node, BDK_LMCX_DLL_CTL3(ddr_interface_num), ddr_dll_ctl3.u);
ddr_dll_ctl3.u = BDK_CSR_READ(node, BDK_LMCX_DLL_CTL3(ddr_interface_num));
return ((unsigned short) GET_DDR_DLL_CTL3(offset));
}
void change_dll_offset_enable(bdk_node_t node, int ddr_interface_num, int change)
{
bdk_lmcx_dll_ctl3_t ddr_dll_ctl3;
ddr_dll_ctl3.u = BDK_CSR_READ(node, BDK_LMCX_DLL_CTL3(ddr_interface_num));
SET_DDR_DLL_CTL3(offset_ena, !!change);
DRAM_CSR_WRITE(node, BDK_LMCX_DLL_CTL3(ddr_interface_num), ddr_dll_ctl3.u);
ddr_dll_ctl3.u = BDK_CSR_READ(node, BDK_LMCX_DLL_CTL3(ddr_interface_num));
}
static void process_custom_dll_offsets(bdk_node_t node, int ddr_interface_num, const char *enable_str,
const int8_t *offsets, const char *byte_str, int mode)
{
const char *s;
int enabled;
int provided;
if ((s = lookup_env_parameter("%s", enable_str)) != NULL) {
enabled = !!strtol(s, NULL, 0);
} else
enabled = -1;
// enabled == -1: no override, do only configured offsets if provided
// enabled == 0: override OFF, do NOT do it even if configured offsets provided
// enabled == 1: override ON, do it for overrides plus configured offsets
if (enabled == 0)
return;
provided = is_dll_offset_provided(offsets);
if (enabled < 0 && !provided)
return;
int byte_offset;
unsigned short offset[9] = {0};
int byte;
// offsets need to be disabled while loading
change_dll_offset_enable(node, ddr_interface_num, 0);
for (byte = 0; byte < 9; ++byte) {
// always take the provided, if available
byte_offset = (provided) ? offsets[byte] : 0;
// then, if enabled, use any overrides present
if (enabled > 0) {
if ((s = lookup_env_parameter(byte_str, ddr_interface_num, byte)) != NULL) {
byte_offset = strtol(s, NULL, 0);
}
}
offset[byte] = load_dll_offset(node, ddr_interface_num, mode, byte_offset, byte);
}
// re-enable offsets after loading
change_dll_offset_enable(node, ddr_interface_num, 1);
ddr_print("N%d.LMC%d: DLL %s Offset 8:0 :"
" 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x\n",
node, ddr_interface_num, (mode == 2) ? "Read " : "Write",
offset[8], offset[7], offset[6], offset[5], offset[4],
offset[3], offset[2], offset[1], offset[0]);
}
void perform_octeon3_ddr3_sequence(bdk_node_t node, int rank_mask, int ddr_interface_num, int sequence)
{
/*
* 3. Without changing any other fields in LMC(0)_CONFIG, write
* LMC(0)_CONFIG[RANKMASK] then write both
* LMC(0)_SEQ_CTL[SEQ_SEL,INIT_START] = 1 with a single CSR write
* operation. LMC(0)_CONFIG[RANKMASK] bits should be set to indicate
* the ranks that will participate in the sequence.
*
* The LMC(0)_SEQ_CTL[SEQ_SEL] value should select power-up/init or
* selfrefresh exit, depending on whether the DRAM parts are in
* self-refresh and whether their contents should be preserved. While
* LMC performs these sequences, it will not perform any other DDR3
* transactions. When the sequence is complete, hardware sets the
* LMC(0)_CONFIG[INIT_STATUS] bits for the ranks that have been
* initialized.
*
* If power-up/init is selected immediately following a DRESET
* assertion, LMC executes the sequence described in the "Reset and
* Initialization Procedure" section of the JEDEC DDR3
* specification. This includes activating CKE, writing all four DDR3
* mode registers on all selected ranks, and issuing the required ZQCL
* command. The LMC(0)_CONFIG[RANKMASK] value should select all ranks
* with attached DRAM in this case. If LMC(0)_CONTROL[RDIMM_ENA] = 1,
* LMC writes the JEDEC standard SSTE32882 control words selected by
* LMC(0)_DIMM_CTL[DIMM*_WMASK] between DDR_CKE* signal assertion and
* the first DDR3 mode register write operation.
* LMC(0)_DIMM_CTL[DIMM*_WMASK] should be cleared to 0 if the
* corresponding DIMM is not present.
*
* If self-refresh exit is selected, LMC executes the required SRX
* command followed by a refresh and ZQ calibration. Section 4.5
* describes behavior of a REF + ZQCS. LMC does not write the DDR3
* mode registers as part of this sequence, and the mode register
* parameters must match at self-refresh entry and exit times.
*
* 4. Read LMC(0)_SEQ_CTL and wait for LMC(0)_SEQ_CTL[SEQ_COMPLETE] to be
* set.
*
* 5. Read LMC(0)_CONFIG[INIT_STATUS] and confirm that all ranks have
* been initialized.
*/
const char *s;
static const char *sequence_str[] = {
"Power-up/init",
"Read-leveling",
"Self-refresh entry",
"Self-refresh exit",
"Illegal",
"Illegal",
"Write-leveling",
"Init Register Control Words",
"Mode Register Write",
"MPR Register Access",
"LMC Deskew/Internal Vref training",
"Offset Training"
};
bdk_lmcx_seq_ctl_t seq_ctl;
bdk_lmcx_config_t lmc_config;
lmc_config.u = BDK_CSR_READ(node, BDK_LMCX_CONFIG(ddr_interface_num));
lmc_config.s.rankmask = rank_mask;
DRAM_CSR_WRITE(node, BDK_LMCX_CONFIG(ddr_interface_num), lmc_config.u);
seq_ctl.u = 0;
seq_ctl.s.init_start = 1;
seq_ctl.s.seq_sel = sequence;
VB_PRT(VBL_SEQ, "N%d.LMC%d: Performing LMC sequence=%x: rank_mask=0x%02x, %s\n",
node, ddr_interface_num, sequence, rank_mask, sequence < 12 ? sequence_str[sequence] : "");
if ((s = lookup_env_parameter("ddr_trigger_sequence%d", sequence)) != NULL) {
/* FIXME(dhendrix): this appears to be meant for the eval board */
#if 0
int trigger = strtoul(s, NULL, 0);
if (trigger)
pulse_gpio_pin(node, 1, 2);
#endif
error_print("env parameter ddr_trigger_sequence%d not found\n", sequence);
}
DRAM_CSR_WRITE(node, BDK_LMCX_SEQ_CTL(ddr_interface_num), seq_ctl.u);
BDK_CSR_READ(node, BDK_LMCX_SEQ_CTL(ddr_interface_num));
/* Wait 100us minimum before checking for sequence complete */
bdk_wait_usec(100);
if (BDK_CSR_WAIT_FOR_FIELD(node, BDK_LMCX_SEQ_CTL(ddr_interface_num), seq_complete, ==, 1, 1000000))
{
error_print("N%d.LMC%d: Timeout waiting for LMC sequence=%x, rank_mask=0x%02x, ignoring...\n",
node, ddr_interface_num, sequence, rank_mask);
}
else {
VB_PRT(VBL_SEQ, "N%d.LMC%d: LMC sequence=%x: Completed.\n", node, ddr_interface_num, sequence);
}
}
void ddr4_mrw(bdk_node_t node, int ddr_interface_num, int rank,
int mr_wr_addr, int mr_wr_sel, int mr_wr_bg1)
{
bdk_lmcx_mr_mpr_ctl_t lmc_mr_mpr_ctl;
lmc_mr_mpr_ctl.u = 0;
lmc_mr_mpr_ctl.s.mr_wr_addr = (mr_wr_addr == -1) ? 0 : mr_wr_addr;
lmc_mr_mpr_ctl.s.mr_wr_sel = mr_wr_sel;
lmc_mr_mpr_ctl.s.mr_wr_rank = rank;
//lmc_mr_mpr_ctl.s.mr_wr_pda_mask =
//lmc_mr_mpr_ctl.s.mr_wr_pda_enable =
//lmc_mr_mpr_ctl.s.mpr_loc =
//lmc_mr_mpr_ctl.s.mpr_wr =
//lmc_mr_mpr_ctl.s.mpr_bit_select =
//lmc_mr_mpr_ctl.s.mpr_byte_select =
//lmc_mr_mpr_ctl.s.mpr_whole_byte_enable =
lmc_mr_mpr_ctl.s.mr_wr_use_default_value = (mr_wr_addr == -1) ? 1 : 0;
lmc_mr_mpr_ctl.s.mr_wr_bg1 = mr_wr_bg1;
DRAM_CSR_WRITE(node, BDK_LMCX_MR_MPR_CTL(ddr_interface_num), lmc_mr_mpr_ctl.u);
/* Mode Register Write */
perform_octeon3_ddr3_sequence(node, 1 << rank, ddr_interface_num, 0x8);
}
#define InvA0_17(x) (x ^ 0x22bf8)
static void set_mpr_mode (bdk_node_t node, int rank_mask,
int ddr_interface_num, int dimm_count, int mpr, int bg1)
{
int rankx;
ddr_print("All Ranks: Set mpr mode = %x %c-side\n",
mpr, (bg1==0) ? 'A' : 'B');
for (rankx = 0; rankx < dimm_count*4; rankx++) {
if (!(rank_mask & (1 << rankx)))
continue;
if (bg1 == 0)
ddr4_mrw(node, ddr_interface_num, rankx, mpr<<2, 3, bg1); /* MR3 A-side */
else
ddr4_mrw(node, ddr_interface_num, rankx, InvA0_17(mpr<<2), ~3, bg1); /* MR3 B-side */
}
}
#if ENABLE_DISPLAY_MPR_PAGE
static void do_ddr4_mpr_read(bdk_node_t node, int ddr_interface_num, int rank,
int page, int location)
{
bdk_lmcx_mr_mpr_ctl_t lmc_mr_mpr_ctl;
lmc_mr_mpr_ctl.u = BDK_CSR_READ(node, BDK_LMCX_MR_MPR_CTL(ddr_interface_num));
lmc_mr_mpr_ctl.s.mr_wr_addr = 0;
lmc_mr_mpr_ctl.s.mr_wr_sel = page; /* Page */
lmc_mr_mpr_ctl.s.mr_wr_rank = rank;
//lmc_mr_mpr_ctl.s.mr_wr_pda_mask =
//lmc_mr_mpr_ctl.s.mr_wr_pda_enable =
lmc_mr_mpr_ctl.s.mpr_loc = location;
lmc_mr_mpr_ctl.s.mpr_wr = 0; /* Read=0, Write=1 */
//lmc_mr_mpr_ctl.s.mpr_bit_select =
//lmc_mr_mpr_ctl.s.mpr_byte_select =
//lmc_mr_mpr_ctl.s.mpr_whole_byte_enable =
//lmc_mr_mpr_ctl.s.mr_wr_use_default_value =
//lmc_mr_mpr_ctl.s.mr_wr_bg1 =
DRAM_CSR_WRITE(node, BDK_LMCX_MR_MPR_CTL(ddr_interface_num), lmc_mr_mpr_ctl.u);
/* MPR register access sequence */
perform_octeon3_ddr3_sequence(node, 1 << rank, ddr_interface_num, 0x9);
debug_print("LMC_MR_MPR_CTL : 0x%016lx\n", lmc_mr_mpr_ctl.u);
debug_print("lmc_mr_mpr_ctl.s.mr_wr_addr: 0x%02x\n", lmc_mr_mpr_ctl.s.mr_wr_addr);
debug_print("lmc_mr_mpr_ctl.s.mr_wr_sel : 0x%02x\n", lmc_mr_mpr_ctl.s.mr_wr_sel);
debug_print("lmc_mr_mpr_ctl.s.mpr_loc : 0x%02x\n", lmc_mr_mpr_ctl.s.mpr_loc);
debug_print("lmc_mr_mpr_ctl.s.mpr_wr : 0x%02x\n", lmc_mr_mpr_ctl.s.mpr_wr);
}
#endif
static int set_rdimm_mode(bdk_node_t node, int ddr_interface_num, int enable)
{
bdk_lmcx_control_t lmc_control;
int save_rdimm_mode;
lmc_control.u = BDK_CSR_READ(node, BDK_LMCX_CONTROL(ddr_interface_num));
save_rdimm_mode = lmc_control.s.rdimm_ena;
lmc_control.s.rdimm_ena = enable;
VB_PRT(VBL_FAE, "Setting RDIMM_ENA = %x\n", enable);
DRAM_CSR_WRITE(node, BDK_LMCX_CONTROL(ddr_interface_num), lmc_control.u);
return (save_rdimm_mode);
}
#if ENABLE_DISPLAY_MPR_PAGE
static void ddr4_mpr_read(bdk_node_t node, int ddr_interface_num, int rank,
int page, int location, uint64_t *mpr_data)
{
do_ddr4_mpr_read(node, ddr_interface_num, rank, page, location);
mpr_data[0] = BDK_CSR_READ(node, BDK_LMCX_MPR_DATA0(ddr_interface_num));
mpr_data[1] = BDK_CSR_READ(node, BDK_LMCX_MPR_DATA1(ddr_interface_num));
mpr_data[2] = BDK_CSR_READ(node, BDK_LMCX_MPR_DATA2(ddr_interface_num));
debug_print("MPR Read %016lx.%016lx.%016lx\n", mpr_data[2], mpr_data[1], mpr_data[0]);
}
/* Display MPR values for Page Location */
static void Display_MPR_Page_Location(bdk_node_t node, int rank,
int ddr_interface_num, int dimm_count,
int page, int location, uint64_t *mpr_data)
{
ddr4_mpr_read(node, ddr_interface_num, rank, page, location, mpr_data);
ddr_print("MPR Page %d, Loc %d %016lx.%016lx.%016lx\n",
page, location, mpr_data[2], mpr_data[1], mpr_data[0]);
}
/* Display MPR values for Page */
static void Display_MPR_Page(bdk_node_t node, int rank_mask,
int ddr_interface_num, int dimm_count, int page)
{
int rankx;
uint64_t mpr_data[3];
for (rankx = 0; rankx < dimm_count * 4;rankx++) {
if (!(rank_mask & (1 << rankx)))
continue;
ddr_print("Rank %d: MPR values for Page %d\n", rankx, page);
for (int location = 0; location < 4; location++) {
Display_MPR_Page_Location(node, rankx, ddr_interface_num, dimm_count,
page, location, &mpr_data[0]);
}
} /* for (rankx = 0; rankx < dimm_count * 4; rankx++) */
}
#endif
static void ddr4_mpr_write(bdk_node_t node, int ddr_interface_num, int rank,
int page, int location, uint8_t mpr_data)
{
bdk_lmcx_mr_mpr_ctl_t lmc_mr_mpr_ctl;
lmc_mr_mpr_ctl.u = 0;
lmc_mr_mpr_ctl.s.mr_wr_addr = mpr_data;
lmc_mr_mpr_ctl.s.mr_wr_sel = page; /* Page */
lmc_mr_mpr_ctl.s.mr_wr_rank = rank;
//lmc_mr_mpr_ctl.s.mr_wr_pda_mask =
//lmc_mr_mpr_ctl.s.mr_wr_pda_enable =
lmc_mr_mpr_ctl.s.mpr_loc = location;
lmc_mr_mpr_ctl.s.mpr_wr = 1; /* Read=0, Write=1 */
//lmc_mr_mpr_ctl.s.mpr_bit_select =
//lmc_mr_mpr_ctl.s.mpr_byte_select =
//lmc_mr_mpr_ctl.s.mpr_whole_byte_enable =
//lmc_mr_mpr_ctl.s.mr_wr_use_default_value =
//lmc_mr_mpr_ctl.s.mr_wr_bg1 =
DRAM_CSR_WRITE(node, BDK_LMCX_MR_MPR_CTL(ddr_interface_num), lmc_mr_mpr_ctl.u);
/* MPR register access sequence */
perform_octeon3_ddr3_sequence(node, (1 << rank), ddr_interface_num, 0x9);
debug_print("LMC_MR_MPR_CTL : 0x%016lx\n", lmc_mr_mpr_ctl.u);
debug_print("lmc_mr_mpr_ctl.s.mr_wr_addr: 0x%02x\n", lmc_mr_mpr_ctl.s.mr_wr_addr);
debug_print("lmc_mr_mpr_ctl.s.mr_wr_sel : 0x%02x\n", lmc_mr_mpr_ctl.s.mr_wr_sel);
debug_print("lmc_mr_mpr_ctl.s.mpr_loc : 0x%02x\n", lmc_mr_mpr_ctl.s.mpr_loc);
debug_print("lmc_mr_mpr_ctl.s.mpr_wr : 0x%02x\n", lmc_mr_mpr_ctl.s.mpr_wr);
}
void set_vref(bdk_node_t node, int ddr_interface_num, int rank,
int range, int value)
{
bdk_lmcx_mr_mpr_ctl_t lmc_mr_mpr_ctl;
bdk_lmcx_modereg_params3_t lmc_modereg_params3;
int mr_wr_addr = 0;
lmc_mr_mpr_ctl.u = 0;
lmc_modereg_params3.u = BDK_CSR_READ(node, BDK_LMCX_MODEREG_PARAMS3(ddr_interface_num));
mr_wr_addr |= lmc_modereg_params3.s.tccd_l<<10; /* A12:A10 tCCD_L */
mr_wr_addr |= 1<<7; /* A7 1 = Enable(Training Mode) */
mr_wr_addr |= range<<6; /* A6 VrefDQ Training Range */
mr_wr_addr |= value<<0; /* A5:A0 VrefDQ Training Value */
lmc_mr_mpr_ctl.s.mr_wr_addr = mr_wr_addr;
lmc_mr_mpr_ctl.s.mr_wr_sel = 6; /* Write MR6 */
lmc_mr_mpr_ctl.s.mr_wr_rank = rank;
//lmc_mr_mpr_ctl.s.mr_wr_pda_mask =
//lmc_mr_mpr_ctl.s.mr_wr_pda_enable =
//lmc_mr_mpr_ctl.s.mpr_loc = location;
//lmc_mr_mpr_ctl.s.mpr_wr = 0; /* Read=0, Write=1 */
//lmc_mr_mpr_ctl.s.mpr_bit_select =
//lmc_mr_mpr_ctl.s.mpr_byte_select =
//lmc_mr_mpr_ctl.s.mpr_whole_byte_enable =
//lmc_mr_mpr_ctl.s.mr_wr_use_default_value =
//lmc_mr_mpr_ctl.s.mr_wr_bg1 =
DRAM_CSR_WRITE(node, BDK_LMCX_MR_MPR_CTL(ddr_interface_num), lmc_mr_mpr_ctl.u);
/* 0x8 = Mode Register Write */
perform_octeon3_ddr3_sequence(node, 1<<rank, ddr_interface_num, 0x8);
/* It is vendor specific whether Vref_value is captured with A7=1.
A subsequent MRS might be necessary. */
perform_octeon3_ddr3_sequence(node, 1<<rank, ddr_interface_num, 0x8);
mr_wr_addr &= ~(1<<7); /* A7 0 = Disable(Training Mode) */
lmc_mr_mpr_ctl.s.mr_wr_addr = mr_wr_addr;
DRAM_CSR_WRITE(node, BDK_LMCX_MR_MPR_CTL(ddr_interface_num), lmc_mr_mpr_ctl.u);
}
static void set_DRAM_output_inversion (bdk_node_t node,
int ddr_interface_num,
int dimm_count,
int rank_mask,
int inversion)
{
bdk_lmcx_ddr4_dimm_ctl_t lmc_ddr4_dimm_ctl;
bdk_lmcx_dimmx_params_t lmc_dimmx_params;
bdk_lmcx_dimm_ctl_t lmc_dimm_ctl;
int dimm_no;
lmc_ddr4_dimm_ctl.u = 0; /* Don't touch extended register control words */
DRAM_CSR_WRITE(node, BDK_LMCX_DDR4_DIMM_CTL(ddr_interface_num), lmc_ddr4_dimm_ctl.u);
ddr_print("All DIMMs: Register Control Word RC0 : %x\n", (inversion & 1));
for (dimm_no = 0; dimm_no < dimm_count; ++dimm_no) {
lmc_dimmx_params.u = BDK_CSR_READ(node, BDK_LMCX_DIMMX_PARAMS(ddr_interface_num, dimm_no));
lmc_dimmx_params.s.rc0 = (lmc_dimmx_params.s.rc0 & ~1) | (inversion & 1);
DRAM_CSR_WRITE(node, BDK_LMCX_DIMMX_PARAMS(ddr_interface_num, dimm_no), lmc_dimmx_params.u);
}
/* LMC0_DIMM_CTL */
lmc_dimm_ctl.u = BDK_CSR_READ(node, BDK_LMCX_DIMM_CTL(ddr_interface_num));
lmc_dimm_ctl.s.dimm0_wmask = 0x1;
lmc_dimm_ctl.s.dimm1_wmask = (dimm_count > 1) ? 0x0001 : 0x0000;
ddr_print("LMC DIMM_CTL : 0x%016llx\n",
lmc_dimm_ctl.u);
DRAM_CSR_WRITE(node, BDK_LMCX_DIMM_CTL(ddr_interface_num), lmc_dimm_ctl.u);
perform_octeon3_ddr3_sequence(node, rank_mask, ddr_interface_num, 0x7 ); /* Init RCW */
}
static void write_mpr_page0_pattern (bdk_node_t node, int rank_mask,
int ddr_interface_num, int dimm_count, int pattern, int location_mask)
{
int rankx;
int location;
for (rankx = 0; rankx < dimm_count*4; rankx++) {
if (!(rank_mask & (1 << rankx)))
continue;
for (location = 0; location < 4; ++location) {
if (!(location_mask & (1 << location)))
continue;
ddr4_mpr_write(node, ddr_interface_num, rankx,
/* page */ 0, /* location */ location, pattern);
}
}
}
static void change_rdimm_mpr_pattern (bdk_node_t node, int rank_mask,
int ddr_interface_num, int dimm_count)
{
int save_ref_zqcs_int;
bdk_lmcx_config_t lmc_config;
/*
Okay, here is the latest sequence. This should work for all
chips and passes (78,88,73,etc). This sequence should be run
immediately after DRAM INIT. The basic idea is to write the
same pattern into each of the 4 MPR locations in the DRAM, so
that the same value is returned when doing MPR reads regardless
of the inversion state. My advice is to put this into a
function, change_rdimm_mpr_pattern or something like that, so
that it can be called multiple times, as I think David wants a
clock-like pattern for OFFSET training, but does not want a
clock pattern for Bit-Deskew. You should then be able to call
this at any point in the init sequence (after DRAM init) to
change the pattern to a new value.
Mike
A correction: PHY doesn't need any pattern during offset
training, but needs clock like pattern for internal vref and
bit-dskew training. So for that reason, these steps below have
to be conducted before those trainings to pre-condition
the pattern. David
Note: Step 3, 4, 8 and 9 have to be done through RDIMM
sequence. If you issue MRW sequence to do RCW write (in o78 pass
1 at least), LMC will still do two commands because
CONTROL[RDIMM_ENA] is still set high. We don't want it to have
any unintentional mode register write so it's best to do what
Mike is doing here.
Andrew
*/
/* 1) Disable refresh (REF_ZQCS_INT = 0) */
debug_print("1) Disable refresh (REF_ZQCS_INT = 0)\n");
lmc_config.u = BDK_CSR_READ(node, BDK_LMCX_CONFIG(ddr_interface_num));
save_ref_zqcs_int = lmc_config.s.ref_zqcs_int;
lmc_config.s.ref_zqcs_int = 0;
DRAM_CSR_WRITE(node, BDK_LMCX_CONFIG(ddr_interface_num), lmc_config.u);
/* 2) Put all devices in MPR mode (Run MRW sequence (sequence=8)
with MODEREG_PARAMS0[MPRLOC]=0,
MODEREG_PARAMS0[MPR]=1, MR_MPR_CTL[MR_WR_SEL]=3, and
MR_MPR_CTL[MR_WR_USE_DEFAULT_VALUE]=1) */
debug_print("2) Put all devices in MPR mode (Run MRW sequence (sequence=8)\n");
set_mpr_mode(node, rank_mask, ddr_interface_num, dimm_count, /* mpr */ 1, /* bg1 */ 0); /* A-side */
set_mpr_mode(node, rank_mask, ddr_interface_num, dimm_count, /* mpr */ 1, /* bg1 */ 1); /* B-side */
/* a. Or you can set MR_MPR_CTL[MR_WR_USE_DEFAULT_VALUE]=0 and set
the value you would like directly into
MR_MPR_CTL[MR_WR_ADDR] */
/* 3) Disable RCD Parity (if previously enabled) - parity does not
work if inversion disabled */
debug_print("3) Disable RCD Parity\n");
/* 4) Disable Inversion in the RCD. */
/* a. I did (3&4) via the RDIMM sequence (seq_sel=7), but it
may be easier to use the MRW sequence (seq_sel=8). Just set
MR_MPR_CTL[MR_WR_SEL]=7, MR_MPR_CTL[MR_WR_ADDR][3:0]=data,
MR_MPR_CTL[MR_WR_ADDR][7:4]=RCD reg */
debug_print("4) Disable Inversion in the RCD.\n");
set_DRAM_output_inversion(node, ddr_interface_num, dimm_count, rank_mask,
1 /* 1=disable output inversion*/);
/* 5) Disable CONTROL[RDIMM_ENA] so that MR sequence goes out
non-inverted. */
debug_print("5) Disable CONTROL[RDIMM_ENA]\n");
set_rdimm_mode(node, ddr_interface_num, 0);
/* 6) Write all 4 MPR registers with the desired pattern (have to
do this for all enabled ranks) */
/* a. MR_MPR_CTL.MPR_WR=1, MR_MPR_CTL.MPR_LOC=0..3,
MR_MPR_CTL.MR_WR_SEL=0, MR_MPR_CTL.MR_WR_ADDR[7:0]=pattern */
debug_print("6) Write all 4 MPR page 0 Training Patterns\n");
write_mpr_page0_pattern(node, rank_mask,
ddr_interface_num, dimm_count, 0x55, 0x8);
/* 7) Re-enable RDIMM_ENA */
debug_print("7) Re-enable RDIMM_ENA\n");
set_rdimm_mode(node, ddr_interface_num, 1);
/* 8) Re-enable RDIMM inversion */
debug_print("8) Re-enable RDIMM inversion\n");
set_DRAM_output_inversion(node, ddr_interface_num, dimm_count, rank_mask,
0 /* 0=re-enable output inversion*/);
/* 9) Re-enable RDIMM parity (if desired) */
debug_print("9) Re-enable RDIMM parity (if desired)\n");
/* 10)Take B-side devices out of MPR mode (Run MRW sequence
(sequence=8) with MODEREG_PARAMS0[MPRLOC]=0,
MODEREG_PARAMS0[MPR]=0, MR_MPR_CTL[MR_WR_SEL]=3, and
MR_MPR_CTL[MR_WR_USE_DEFAULT_VALUE]=1) */
debug_print("10)Take B-side devices out of MPR mode\n");
set_mpr_mode(node, rank_mask, ddr_interface_num, dimm_count, /* mpr */ 0, /* bg1 */ 1);
/* a. Or you can set MR_MPR_CTL[MR_WR_USE_DEFAULT_VALUE]=0 and
set the value you would like directly into
MR_MPR_CTL[MR_WR_ADDR] */
/* 11)Re-enable refresh (REF_ZQCS_INT=previous value) */
debug_print("11)Re-enable refresh (REF_ZQCS_INT=previous value)\n");
lmc_config.u = BDK_CSR_READ(node, BDK_LMCX_CONFIG(ddr_interface_num));
lmc_config.s.ref_zqcs_int = save_ref_zqcs_int;
DRAM_CSR_WRITE(node, BDK_LMCX_CONFIG(ddr_interface_num), lmc_config.u);
}
static unsigned char ddr4_rodt_ohms [RODT_OHMS_COUNT ] = { 0, 40, 60, 80, 120, 240, 34, 48 };
static unsigned char ddr4_rtt_nom_ohms [RTT_NOM_OHMS_COUNT ] = { 0, 60, 120, 40, 240, 48, 80, 34 };
static unsigned char ddr4_rtt_nom_table [RTT_NOM_TABLE_COUNT ] = { 0, 4, 2, 6, 1, 5, 3, 7 };
static unsigned char ddr4_rtt_wr_ohms [RTT_WR_OHMS_COUNT ] = { 0, 120, 240, 99, 80 }; // setting HiZ ohms to 99 for computed vref
static unsigned char ddr4_dic_ohms [DIC_OHMS_COUNT ] = { 34, 48 };
static short ddr4_drive_strength[DRIVE_STRENGTH_COUNT] = { 0, 0, 26, 30, 34, 40, 48, 68, 0,0,0,0,0,0,0 };
static short ddr4_dqx_strength [DRIVE_STRENGTH_COUNT] = { 0, 24, 27, 30, 34, 40, 48, 60, 0,0,0,0,0,0,0 };
impedence_values_t ddr4_impedence_values = {
.rodt_ohms = ddr4_rodt_ohms ,
.rtt_nom_ohms = ddr4_rtt_nom_ohms ,
.rtt_nom_table = ddr4_rtt_nom_table ,
.rtt_wr_ohms = ddr4_rtt_wr_ohms ,
.dic_ohms = ddr4_dic_ohms ,
.drive_strength = ddr4_drive_strength,
.dqx_strength = ddr4_dqx_strength ,
};
static unsigned char ddr3_rodt_ohms [RODT_OHMS_COUNT ] = { 0, 20, 30, 40, 60, 120, 0, 0 };
static unsigned char ddr3_rtt_nom_ohms [RTT_NOM_OHMS_COUNT ] = { 0, 60, 120, 40, 20, 30, 0, 0 };
static unsigned char ddr3_rtt_nom_table [RTT_NOM_TABLE_COUNT ] = { 0, 2, 1, 3, 5, 4, 0, 0 };
static unsigned char ddr3_rtt_wr_ohms [RTT_WR_OHMS_COUNT ] = { 0, 60, 120 };
static unsigned char ddr3_dic_ohms [DIC_OHMS_COUNT ] = { 40, 34 };
static short ddr3_drive_strength[DRIVE_STRENGTH_COUNT] = { 0, 24, 27, 30, 34, 40, 48, 60, 0,0,0,0,0,0,0 };
static impedence_values_t ddr3_impedence_values = {
.rodt_ohms = ddr3_rodt_ohms ,
.rtt_nom_ohms = ddr3_rtt_nom_ohms ,
.rtt_nom_table = ddr3_rtt_nom_table ,
.rtt_wr_ohms = ddr3_rtt_wr_ohms ,
.dic_ohms = ddr3_dic_ohms ,
.drive_strength = ddr3_drive_strength,
.dqx_strength = ddr3_drive_strength,
};
uint64_t
hertz_to_psecs(uint64_t hertz)
{
return divide_nint((uint64_t) 1000*1000*1000*1000, hertz); /* Clock in psecs */
}
#define DIVIDEND_SCALE 1000 /* Scale to avoid rounding error. */
uint64_t
psecs_to_mts(uint64_t psecs)
{
//ddr_print("psecs %ld, divisor %ld\n", psecs, divide_nint((uint64_t)(2 * 1000000 * DIVIDEND_SCALE), psecs));
return divide_nint(divide_nint((uint64_t)(2 * 1000000 * DIVIDEND_SCALE), psecs), DIVIDEND_SCALE);
}
#define WITHIN(v,b,m) (((v)>=((b)-(m)))&&((v)<=((b)+(m))))
// pretty-print version, only works with what comes from the SPD: tCKmin or tCKAVGmin
unsigned long
pretty_psecs_to_mts(uint64_t psecs)
{
uint64_t ret = 0; // default to error
if (WITHIN(psecs, 1250, 1))
ret = 1600;
else if (WITHIN(psecs, 1071, 1))
ret = 1866;
else if (WITHIN(psecs, 937, 1))
ret = 2133;
else if (WITHIN(psecs, 833, 1))
ret = 2400;
else if (WITHIN(psecs, 750, 1))
ret = 2666;
return ret;
}
uint64_t
mts_to_hertz(uint64_t mts)
{
return ((mts * 1000 * 1000) / 2);
}
#define DEBUG_RC3X_COMPUTE 0
#define rc3x_print(...) \
do { if (DEBUG_RC3X_COMPUTE) printf(__VA_ARGS__); } while (0)
static int compute_rc3x (int64_t tclk_psecs)
{
long speed;
long tclk_psecs_min, tclk_psecs_max;
long data_rate_mhz, data_rate_mhz_min, data_rate_mhz_max;
int rc3x;
#define ENCODING_BASE 1240
data_rate_mhz = psecs_to_mts(tclk_psecs);
/* 2400 MT/s is a special case. Using integer arithmetic it rounds
from 833 psecs to 2401 MT/s. Force it to 2400 to pick the
proper setting from the table. */
if (tclk_psecs == 833)
data_rate_mhz = 2400;
for (speed = ENCODING_BASE; speed < 3200; speed += 20) {
int error = 0;
tclk_psecs_min = hertz_to_psecs(mts_to_hertz(speed + 00)); /* Clock in psecs */
tclk_psecs_max = hertz_to_psecs(mts_to_hertz(speed + 18)); /* Clock in psecs */
data_rate_mhz_min = psecs_to_mts(tclk_psecs_min);
data_rate_mhz_max = psecs_to_mts(tclk_psecs_max);
/* Force alingment to multiple to avound rounding errors. */
data_rate_mhz_min = ((data_rate_mhz_min + 18) / 20) * 20;
data_rate_mhz_max = ((data_rate_mhz_max + 18) / 20) * 20;
error += (speed + 00 != data_rate_mhz_min);
error += (speed + 20 != data_rate_mhz_max);
rc3x = (speed - ENCODING_BASE) / 20;
rc3x_print("rc3x: %02x speed: %4ld MT/s < f <= %4ld MT/s, psec: %3ld:%3ld %4ld:%4ld %s\n",
rc3x,
speed, speed + 20,
tclk_psecs_min, tclk_psecs_max,
data_rate_mhz_min, data_rate_mhz_max,
error ? "****" : "");
if (data_rate_mhz <= (speed + 20)) {
rc3x_print("rc3x: %4ld MT/s <= %4ld MT/s\n", data_rate_mhz, speed + 20);
break;
}
}
return rc3x;
}
static const int rlevel_separate_ab = 1;
int init_octeon3_ddr3_interface(bdk_node_t node,
const ddr_configuration_t *ddr_configuration,
uint32_t ddr_hertz,
uint32_t cpu_hertz,
uint32_t ddr_ref_hertz,
int board_type,
int board_rev_maj,
int board_rev_min,
int ddr_interface_num,
uint32_t ddr_interface_mask
)
{
const char *s;
const dimm_odt_config_t *odt_1rank_config = ddr_configuration->odt_1rank_config;
const dimm_odt_config_t *odt_2rank_config = ddr_configuration->odt_2rank_config;
const dimm_odt_config_t *odt_4rank_config = ddr_configuration->odt_4rank_config;
const dimm_config_t *dimm_config_table = ddr_configuration->dimm_config_table;
const dimm_odt_config_t *odt_config;
const ddr3_custom_config_t *custom_lmc_config = &ddr_configuration->custom_lmc_config;
int odt_idx;
/*
** Compute clock rates to the nearest picosecond.
*/
uint64_t tclk_psecs = hertz_to_psecs(ddr_hertz); /* Clock in psecs */
uint64_t eclk_psecs = hertz_to_psecs(cpu_hertz); /* Clock in psecs */
int row_bits, col_bits, num_banks, num_ranks, dram_width;
int dimm_count = 0;
int fatal_error = 0; /* Accumulate and report all the errors before giving up */
int safe_ddr_flag = 0; /* Flag that indicates safe DDR settings should be used */
int ddr_interface_64b = 1; /* THUNDER Default: 64bit interface width */
int ddr_interface_bytemask;
uint32_t mem_size_mbytes = 0;
unsigned int didx;
int bank_bits = 0;
int bunk_enable;
int rank_mask;
int column_bits_start = 1;
int row_lsb;
int pbank_lsb;
int use_ecc = 1;
int mtb_psec = 0; /* quiet */
short ftb_Dividend;
short ftb_Divisor;
int tAAmin;
int tCKmin;
int CL, min_cas_latency = 0, max_cas_latency = 0, override_cas_latency = 0;
int ddr_rtt_nom_auto, ddr_rodt_ctl_auto;
int i;
int spd_addr;
int spd_org;
int spd_banks;
int spd_rdimm;
int spd_dimm_type;
int spd_ecc;
uint32_t spd_cas_latency;
int spd_mtb_dividend;
int spd_mtb_divisor;
int spd_tck_min;
int spd_taa_min;
int spd_twr;
int spd_trcd;
int spd_trrd;
int spd_trp;
int spd_tras;
int spd_trc;
int spd_trfc;
int spd_twtr;
int spd_trtp;
int spd_tfaw;
int spd_addr_mirror;
int spd_package = 0;
int spd_rawcard = 0;
int spd_rawcard_AorB = 0;
int is_stacked_die = 0;
int disable_stacked_die = 0;
int is_3ds_dimm = 0; // 3DS
int lranks_per_prank = 1; // 3DS: logical ranks per package rank
int lranks_bits = 0; // 3DS: logical ranks bits
int die_capacity = 0; // in Mbits; only used for 3DS
/* FTB values are two's complement ranging from +127 to -128. */
typedef signed char SC_t;
int twr;
int trcd;
int trrd;
int trp;
int tras;
int trc;
int trfc;
int twtr;
int trtp = 0; /* quiet */
int tfaw;
int wlevel_bitmask_errors = 0;
int wlevel_loops;
int default_rtt_nom[4];
int dyn_rtt_nom_mask = 0;
ddr_type_t ddr_type;
int ddr4_tCKAVGmin = 0; /* quiet */
int ddr4_tCKAVGmax = 0; /* quiet */
int ddr4_tRCDmin = 0; /* quiet */
int ddr4_tRPmin = 0; /* quiet */
int ddr4_tRASmin = 0; /* quiet */
int ddr4_tRCmin = 0; /* quiet */
int ddr4_tRFC1min = 0; /* quiet */
int ddr4_tRFC2min = 0; /* quiet */
int ddr4_tRFC4min = 0; /* quiet */
int ddr4_tFAWmin = 0; /* quiet */
int ddr4_tRRD_Smin = 0; /* quiet */
int ddr4_tRRD_Lmin;
int ddr4_tCCD_Lmin;
impedence_values_t *imp_values;
int default_rodt_ctl;
// default to disabled (ie, LMC restart, not chip reset)
int ddr_disable_chip_reset = 1;
int disable_deskew_training = 0;
const char *dimm_type_name;
/* Allow the Write bit-deskew feature to be enabled when desired. */
// NOTE: THUNDER pass 2.x only, 81xx, 83xx
int enable_write_deskew = ENABLE_WRITE_DESKEW_DEFAULT;
#if SWL_TRY_HWL_ALT
typedef struct {
uint16_t hwl_alt_mask; // mask of bytelanes with alternate
uint16_t hwl_alt_delay[9]; // bytelane alternate avail if mask=1
} hwl_alt_by_rank_t;
hwl_alt_by_rank_t hwl_alts[4];
memset(hwl_alts, 0, sizeof(hwl_alts));
#endif /* SWL_TRY_HWL_ALT */
bdk_lmcx_config_t lmc_config;
/* Initialize these to shut up the compiler. They are configured
and used only for DDR4 */
ddr4_tRRD_Lmin = 6000;
ddr4_tCCD_Lmin = 6000;
ddr_print("\nInitializing node %d DDR interface %d, DDR Clock %d, DDR Reference Clock %d\n",
node, ddr_interface_num, ddr_hertz, ddr_ref_hertz);
if (dimm_config_table[0].spd_addr == 0 && !dimm_config_table[0].spd_ptr) {
error_print("ERROR: No dimms specified in the dimm_config_table.\n");
return (-1);
}
// allow some overrides to be done
// this one controls whether chip RESET is done, or LMC init restarted from step 6.9.6
if ((s = lookup_env_parameter("ddr_disable_chip_reset")) != NULL) {
ddr_disable_chip_reset = !!strtoul(s, NULL, 0);
}
// this one controls whether Deskew Training is performed
if ((s = lookup_env_parameter("ddr_disable_deskew_training")) != NULL) {
disable_deskew_training = !!strtoul(s, NULL, 0);
}
// this one is in Validate_Read_Deskew_Training and controls a preliminary delay
if ((s = lookup_env_parameter("ddr_deskew_validation_delay")) != NULL) {
deskew_validation_delay = strtoul(s, NULL, 0);
}
// this one is in Perform_Read_Deskew_Training and controls lock retries
if ((s = lookup_env_parameter("ddr_lock_retries")) != NULL) {
default_lock_retry_limit = strtoul(s, NULL, 0);
}
// this one controls whether stacked die status can affect processing
// disabling it will affect computed vref adjustment, and rodt_row_skip_mask
if ((s = lookup_env_parameter("ddr_disable_stacked_die")) != NULL) {
disable_stacked_die = !!strtoul(s, NULL, 0);
}
// setup/override for write bit-deskew feature
if (! CAVIUM_IS_MODEL(CAVIUM_CN88XX_PASS1_X)) { // added 81xx and 83xx
// FIXME: allow override
if ((s = lookup_env_parameter("ddr_enable_write_deskew")) != NULL) {
enable_write_deskew = !!strtoul(s, NULL, 0);
} // else take default setting
} else { // not pass 2.x
enable_write_deskew = 0; // force disabled
}
#if 0 // FIXME: do we really need this anymore?
if (dram_is_verbose(VBL_NORM)) {
printf("DDR SPD Table:");
for (didx = 0; didx < DDR_CFG_T_MAX_DIMMS; ++didx) {
if (dimm_config_table[didx].spd_addr == 0) break;
printf(" --ddr%dspd=0x%02x", ddr_interface_num, dimm_config_table[didx].spd_addr);
}
printf("\n");
}
#endif
/*
** Walk the DRAM Socket Configuration Table to see what is installed.
*/
for (didx = 0; didx < DDR_CFG_T_MAX_DIMMS; ++didx)
{
/* Check for lower DIMM socket populated */
if (validate_dimm(node, &dimm_config_table[didx]) == 1) {
// NOTE: DIMM info printing is now done later when more details are available
++dimm_count;
} else { break; } /* Finished when there is no lower DIMM */
}
initialize_ddr_clock(node,
ddr_configuration,
cpu_hertz,
ddr_hertz,
ddr_ref_hertz,
ddr_interface_num,
ddr_interface_mask);
if (!odt_1rank_config)
odt_1rank_config = disable_odt_config;
if (!odt_2rank_config)
odt_2rank_config = disable_odt_config;
if (!odt_4rank_config)
odt_4rank_config = disable_odt_config;
if ((s = lookup_env_parameter("ddr_safe")) != NULL) {
safe_ddr_flag = !!strtoul(s, NULL, 0);
}
if (dimm_count == 0) {
error_print("ERROR: DIMM 0 not detected.\n");
return(-1);
}
// look for 32-bit mode specified in the config
if (custom_lmc_config->mode32b) {
ddr_interface_64b = 0;
}
if (ddr_interface_64b == 0) { // check if 32-bit mode is bad
if (!CAVIUM_IS_MODEL(CAVIUM_CN81XX)) {
error_print("32-bit interface width is NOT supported for this Thunder model\n");
ddr_interface_64b = 1; // force to 64-bit
}
} else { // check if 64-bit mode is bad
if (CAVIUM_IS_MODEL(CAVIUM_CN81XX)) { // check the fuses on 81XX for forced 32-bit mode
BDK_CSR_INIT(mio_fus_dat2, node, BDK_MIO_FUS_DAT2);
if (mio_fus_dat2.s.lmc_mode32) {
error_print("32-bit interface width is ONLY supported for this Thunder model\n");
ddr_interface_64b = 0; // force to 32-bit
}
}
}
// finally, say we are in 32-bit mode when it has been validated
if (ddr_interface_64b == 0) {
ddr_print("N%d.LMC%d: Setting 32-bit data width\n",
node, ddr_interface_num);
}
/* ddr_type only indicates DDR4 or DDR3 */
ddr_type = get_ddr_type(node, &dimm_config_table[0]);
debug_print("DRAM Device Type: DDR%d\n", ddr_type);
spd_dimm_type = get_dimm_module_type(node, &dimm_config_table[0], ddr_type);
if (ddr_type == DDR4_DRAM) {
int spd_module_type;
int asymmetric;
const char *signal_load[4] = {"", "MLS", "3DS", "RSV"};
imp_values = &ddr4_impedence_values;
dimm_type_name = ddr4_dimm_types[spd_dimm_type];
spd_addr = read_spd(node, &dimm_config_table[0], DDR4_SPD_ADDRESSING_ROW_COL_BITS);
spd_org = read_spd(node, &dimm_config_table[0], DDR4_SPD_MODULE_ORGANIZATION);
spd_banks = 0xFF & read_spd(node, &dimm_config_table[0], DDR4_SPD_DENSITY_BANKS);
bank_bits = (2 + ((spd_banks >> 4) & 0x3)) + ((spd_banks >> 6) & 0x3);
bank_bits = min((int)bank_bits, 4); /* Controller can only address 4 bits. */
spd_package = 0xFF & read_spd(node, &dimm_config_table[0], DDR4_SPD_PACKAGE_TYPE);
if (spd_package & 0x80) { // non-monolithic device
is_stacked_die = (!disable_stacked_die) ? ((spd_package & 0x73) == 0x11) : 0;
ddr_print("DDR4: Package Type 0x%x (%s), %d die\n", spd_package,
signal_load[(spd_package & 3)], ((spd_package >> 4) & 7) + 1);
is_3ds_dimm = ((spd_package & 3) == 2); // is it 3DS?
if (is_3ds_dimm) { // is it 3DS?
lranks_per_prank = ((spd_package >> 4) & 7) + 1;
// FIXME: should make sure it is only 2H or 4H or 8H?
lranks_bits = lranks_per_prank >> 1;
if (lranks_bits == 4) lranks_bits = 3;
}
} else if (spd_package != 0) {
// FIXME: print non-zero monolithic device definition
ddr_print("DDR4: Package Type MONOLITHIC: %d die, signal load %d\n",
((spd_package >> 4) & 7) + 1, (spd_package & 3));
}
asymmetric = (spd_org >> 6) & 1;
if (asymmetric) {
int spd_secondary_pkg = read_spd(node, &dimm_config_table[0],
DDR4_SPD_SECONDARY_PACKAGE_TYPE);
ddr_print("DDR4: Module Organization: ASYMMETRICAL: Secondary Package Type 0x%x\n",
spd_secondary_pkg);
} else {
uint64_t bus_width = 8 << (0x07 & read_spd(node, &dimm_config_table[0],
DDR4_SPD_MODULE_MEMORY_BUS_WIDTH));
uint64_t ddr_width = 4 << ((spd_org >> 0) & 0x7);
uint64_t module_cap;
int shift = (spd_banks & 0x0F);
die_capacity = (shift < 8) ? (256UL << shift) : ((12UL << (shift & 1)) << 10);
ddr_print("DDR4: Module Organization: SYMMETRICAL: capacity per die %d %cbit\n",
(die_capacity > 512) ? (die_capacity >> 10) : die_capacity,
(die_capacity > 512) ? 'G' : 'M');
module_cap = ((uint64_t)die_capacity << 20) / 8UL * bus_width / ddr_width *
/* no. pkg ranks*/(1UL + ((spd_org >> 3) & 0x7));
if (is_3ds_dimm) // is it 3DS?
module_cap *= /* die_count */(uint64_t)(((spd_package >> 4) & 7) + 1);
ddr_print("DDR4: Module Organization: SYMMETRICAL: capacity per module %lld GB\n",
module_cap >> 30);
}
spd_rawcard = 0xFF & read_spd(node, &dimm_config_table[0], DDR4_SPD_REFERENCE_RAW_CARD);
ddr_print("DDR4: Reference Raw Card 0x%x \n", spd_rawcard);
spd_module_type = read_spd(node, &dimm_config_table[0], DDR4_SPD_KEY_BYTE_MODULE_TYPE);
if (spd_module_type & 0x80) { // HYBRID module
ddr_print("DDR4: HYBRID module, type %s\n",
((spd_module_type & 0x70) == 0x10) ? "NVDIMM" : "UNKNOWN");
}
spd_dimm_type = spd_module_type & 0x0F;
spd_rdimm = (spd_dimm_type == 1) || (spd_dimm_type == 5) || (spd_dimm_type == 8);
if (spd_rdimm) {
int spd_mfgr_id = read_spd(node, &dimm_config_table[0], DDR4_SPD_REGISTER_MANUFACTURER_ID_LSB) |
(read_spd(node, &dimm_config_table[0], DDR4_SPD_REGISTER_MANUFACTURER_ID_MSB) << 8);
int spd_register_rev = read_spd(node, &dimm_config_table[0], DDR4_SPD_REGISTER_REVISION_NUMBER);
ddr_print("DDR4: RDIMM Register Manufacturer ID 0x%x Revision 0x%x\n",
spd_mfgr_id, spd_register_rev);
// RAWCARD A or B must be bit 7=0 and bits 4-0 either 00000(A) or 00001(B)
spd_rawcard_AorB = ((spd_rawcard & 0x9fUL) <= 1);
}
} else {
imp_values = &ddr3_impedence_values;
dimm_type_name = ddr3_dimm_types[spd_dimm_type];
spd_addr = read_spd(node, &dimm_config_table[0], DDR3_SPD_ADDRESSING_ROW_COL_BITS);
spd_org = read_spd(node, &dimm_config_table[0], DDR3_SPD_MODULE_ORGANIZATION);
spd_banks = read_spd(node, &dimm_config_table[0], DDR3_SPD_DENSITY_BANKS) & 0xff;
bank_bits = 3 + ((spd_banks >> 4) & 0x7);
bank_bits = min((int)bank_bits, 3); /* Controller can only address 3 bits. */
spd_rdimm = (spd_dimm_type == 1) || (spd_dimm_type == 5) || (spd_dimm_type == 9);
}
#if 0 // FIXME: why should this be possible OR needed?
if ((s = lookup_env_parameter("ddr_rdimm_ena")) != NULL) {
spd_rdimm = !!strtoul(s, NULL, 0);
}
#endif
debug_print("spd_addr : %#06x\n", spd_addr );
debug_print("spd_org : %#06x\n", spd_org );
debug_print("spd_banks : %#06x\n", spd_banks );
row_bits = 12 + ((spd_addr >> 3) & 0x7);
col_bits = 9 + ((spd_addr >> 0) & 0x7);
num_ranks = 1 + ((spd_org >> 3) & 0x7);
dram_width = 4 << ((spd_org >> 0) & 0x7);
num_banks = 1 << bank_bits;
if ((s = lookup_env_parameter("ddr_num_ranks")) != NULL) {
num_ranks = strtoul(s, NULL, 0);
}
/* FIX
** Check that values are within some theoretical limits.
** col_bits(min) = row_lsb(min) - bank_bits(max) - bus_bits(max) = 14 - 3 - 4 = 7
** col_bits(max) = row_lsb(max) - bank_bits(min) - bus_bits(min) = 18 - 2 - 3 = 13
*/
if ((col_bits > 13) || (col_bits < 7)) {
error_print("Unsupported number of Col Bits: %d\n", col_bits);
++fatal_error;
}
/* FIX
** Check that values are within some theoretical limits.
** row_bits(min) = pbank_lsb(min) - row_lsb(max) - rank_bits = 26 - 18 - 1 = 7
** row_bits(max) = pbank_lsb(max) - row_lsb(min) - rank_bits = 33 - 14 - 1 = 18
*/
if ((row_bits > 18) || (row_bits < 7)) {
error_print("Unsupported number of Row Bits: %d\n", row_bits);
++fatal_error;
}
wlevel_loops = WLEVEL_LOOPS_DEFAULT;
// accept generic or interface-specific override but not for ASIM...
if ((s = lookup_env_parameter("ddr_wlevel_loops")) == NULL)
s = lookup_env_parameter("ddr%d_wlevel_loops", ddr_interface_num);
if (s != NULL) {
wlevel_loops = strtoul(s, NULL, 0);
}
bunk_enable = (num_ranks > 1);
column_bits_start = 3;
row_lsb = column_bits_start + col_bits + bank_bits - (! ddr_interface_64b);
debug_print("row_lsb = column_bits_start + col_bits + bank_bits = %d\n", row_lsb);
pbank_lsb = row_lsb + row_bits + bunk_enable;
debug_print("pbank_lsb = row_lsb + row_bits + bunk_enable = %d\n", pbank_lsb);
if (lranks_per_prank > 1) {
pbank_lsb = row_lsb + row_bits + lranks_bits + bunk_enable;
ddr_print("DDR4: 3DS: pbank_lsb = (%d row_lsb) + (%d row_bits) + (%d lranks_bits) + (%d bunk_enable) = %d\n",
row_lsb, row_bits, lranks_bits, bunk_enable, pbank_lsb);
}
mem_size_mbytes = dimm_count * ((1ull << pbank_lsb) >> 20);
if (num_ranks == 4) {
/* Quad rank dimm capacity is equivalent to two dual-rank dimms. */
mem_size_mbytes *= 2;
}
/* Mask with 1 bits set for each active rank, allowing 2 bits per dimm.
** This makes later calculations simpler, as a variety of CSRs use this layout.
** This init needs to be updated for dual configs (ie non-identical DIMMs).
** Bit 0 = dimm0, rank 0
** Bit 1 = dimm0, rank 1
** Bit 2 = dimm1, rank 0
** Bit 3 = dimm1, rank 1
** ...
*/
rank_mask = 0x1;
if (num_ranks > 1)
rank_mask = 0x3;
if (num_ranks > 2)
rank_mask = 0xf;
for (i = 1; i < dimm_count; i++)
rank_mask |= ((rank_mask & 0x3) << (2*i));
#ifdef CAVIUM_ONLY
/* Special request: mismatched DIMM support. Slot 0: 2-Rank, Slot 1: 1-Rank */
if (0)
{
/*
** Calculate the total memory size in terms of the total
** number of ranks instead of the number of dimms. The usual
** requirement is for both dimms to be identical. This check
** works around that requirement to allow one exception. The
** dimm in the second slot may now have fewer ranks than the
** first slot.
*/
int spd_org_dimm1;
int num_ranks_dimm1;
int rank_count;
int rank_mask_dimm1;
if (dimm_count > 1) {
spd_org_dimm1 = read_spd(node, &dimm_config_table[1] /* dimm 1*/,
DDR3_SPD_MODULE_ORGANIZATION);
num_ranks_dimm1 = 1 + ((spd_org_dimm1 >> 3) & 0x7);
rank_count = num_ranks/* dimm 0 */ + num_ranks_dimm1 /* dimm 1 */;
if (num_ranks != num_ranks_dimm1) {
mem_size_mbytes = rank_count * ((1ull << (pbank_lsb-bunk_enable)) >> 20);
rank_mask = 1 | ((num_ranks > 1) << 1);
rank_mask_dimm1 = 1 | ((num_ranks_dimm1 > 1) << 1);
rank_mask |= ((rank_mask_dimm1 & 0x3) << 2);
ddr_print("DIMM 1 - ranks: %d, size: %d MB\n",
num_ranks_dimm1, num_ranks_dimm1 * ((1ull << (pbank_lsb-bunk_enable)) >> 20));
}
}
}
#endif /* CAVIUM_ONLY */
spd_ecc = get_dimm_ecc(node, &dimm_config_table[0], ddr_type);
VB_PRT(VBL_DEV, "Summary: - %d %s%s %dRx%d %s, row bits=%d, col bits=%d, bank bits=%d\n",
dimm_count, dimm_type_name, (dimm_count > 1) ? "s" : "",
num_ranks, dram_width, (spd_ecc) ? "ECC" : "non-ECC",
row_bits, col_bits, bank_bits);
// always print out the useful DIMM information...
for (i = 0; i < DDR_CFG_T_MAX_DIMMS; i++) {
if (i < dimm_count)
report_dimm(node, &dimm_config_table[i], i, ddr_interface_num,
num_ranks, dram_width, mem_size_mbytes / dimm_count);
else
if (validate_dimm(node, &dimm_config_table[i]) == 0) // only if there is a slot
printf("N%d.LMC%d.DIMM%d: Not Present\n", node, ddr_interface_num, i);
}
if (ddr_type == DDR4_DRAM) {
spd_cas_latency = ((0xff & read_spd(node, &dimm_config_table[0], DDR4_SPD_CAS_LATENCIES_BYTE0)) << 0);
spd_cas_latency |= ((0xff & read_spd(node, &dimm_config_table[0], DDR4_SPD_CAS_LATENCIES_BYTE1)) << 8);
spd_cas_latency |= ((0xff & read_spd(node, &dimm_config_table[0], DDR4_SPD_CAS_LATENCIES_BYTE2)) << 16);
spd_cas_latency |= ((0xff & read_spd(node, &dimm_config_table[0], DDR4_SPD_CAS_LATENCIES_BYTE3)) << 24);
} else {
spd_cas_latency = 0xff & read_spd(node, &dimm_config_table[0], DDR3_SPD_CAS_LATENCIES_LSB);
spd_cas_latency |= ((0xff & read_spd(node, &dimm_config_table[0], DDR3_SPD_CAS_LATENCIES_MSB)) << 8);
}
debug_print("spd_cas_latency : %#06x\n", spd_cas_latency );
if (ddr_type == DDR4_DRAM) {
/* No other values for DDR4 MTB and FTB are specified at the
* current time so don't bother reading them. Can't speculate how
* new values will be represented.
*/
int spdMTB = 125;
int spdFTB = 1;
tAAmin
= spdMTB * read_spd(node, &dimm_config_table[0], DDR4_SPD_MIN_CAS_LATENCY_TAAMIN)
+ spdFTB * (SC_t) read_spd(node, &dimm_config_table[0], DDR4_SPD_MIN_CAS_LATENCY_FINE_TAAMIN);
ddr4_tCKAVGmin
= spdMTB * read_spd(node, &dimm_config_table[0], DDR4_SPD_MINIMUM_CYCLE_TIME_TCKAVGMIN)
+ spdFTB * (SC_t) read_spd(node, &dimm_config_table[0], DDR4_SPD_MIN_CYCLE_TIME_FINE_TCKAVGMIN);
ddr4_tCKAVGmax
= spdMTB * read_spd(node, &dimm_config_table[0], DDR4_SPD_MAXIMUM_CYCLE_TIME_TCKAVGMAX)
+ spdFTB * (SC_t) read_spd(node, &dimm_config_table[0], DDR4_SPD_MAX_CYCLE_TIME_FINE_TCKAVGMAX);
ddr4_tRCDmin
= spdMTB * read_spd(node, &dimm_config_table[0], DDR4_SPD_MIN_RAS_CAS_DELAY_TRCDMIN)
+ spdFTB * (SC_t) read_spd(node, &dimm_config_table[0], DDR4_SPD_MIN_RAS_TO_CAS_DELAY_FINE_TRCDMIN);
ddr4_tRPmin
= spdMTB * read_spd(node, &dimm_config_table[0], DDR4_SPD_MIN_ROW_PRECHARGE_DELAY_TRPMIN)
+ spdFTB * (SC_t) read_spd(node, &dimm_config_table[0], DDR4_SPD_MIN_ROW_PRECHARGE_DELAY_FINE_TRPMIN);
ddr4_tRASmin
= spdMTB * (((read_spd(node, &dimm_config_table[0], DDR4_SPD_UPPER_NIBBLES_TRAS_TRC) & 0xf) << 8) +
( read_spd(node, &dimm_config_table[0], DDR4_SPD_MIN_ACTIVE_PRECHARGE_LSB_TRASMIN) & 0xff));
ddr4_tRCmin
= spdMTB * ((((read_spd(node, &dimm_config_table[0], DDR4_SPD_UPPER_NIBBLES_TRAS_TRC) >> 4) & 0xf) << 8) +
( read_spd(node, &dimm_config_table[0], DDR4_SPD_MIN_ACTIVE_REFRESH_LSB_TRCMIN) & 0xff))
+ spdFTB * (SC_t) read_spd(node, &dimm_config_table[0], DDR4_SPD_MIN_ACT_TO_ACT_REFRESH_DELAY_FINE_TRCMIN);
ddr4_tRFC1min
= spdMTB * (((read_spd(node, &dimm_config_table[0], DDR4_SPD_MIN_REFRESH_RECOVERY_MSB_TRFC1MIN) & 0xff) << 8) +
( read_spd(node, &dimm_config_table[0], DDR4_SPD_MIN_REFRESH_RECOVERY_LSB_TRFC1MIN) & 0xff));
ddr4_tRFC2min
= spdMTB * (((read_spd(node, &dimm_config_table[0], DDR4_SPD_MIN_REFRESH_RECOVERY_MSB_TRFC2MIN) & 0xff) << 8) +
( read_spd(node, &dimm_config_table[0], DDR4_SPD_MIN_REFRESH_RECOVERY_LSB_TRFC2MIN) & 0xff));
ddr4_tRFC4min
= spdMTB * (((read_spd(node, &dimm_config_table[0], DDR4_SPD_MIN_REFRESH_RECOVERY_MSB_TRFC4MIN) & 0xff) << 8) +
( read_spd(node, &dimm_config_table[0], DDR4_SPD_MIN_REFRESH_RECOVERY_LSB_TRFC4MIN) & 0xff));
ddr4_tFAWmin
= spdMTB * (((read_spd(node, &dimm_config_table[0], DDR4_SPD_MIN_FOUR_ACTIVE_WINDOW_MSN_TFAWMIN) & 0xf) << 8) +
( read_spd(node, &dimm_config_table[0], DDR4_SPD_MIN_FOUR_ACTIVE_WINDOW_LSB_TFAWMIN) & 0xff));
ddr4_tRRD_Smin
= spdMTB * read_spd(node, &dimm_config_table[0], DDR4_SPD_MIN_ROW_ACTIVE_DELAY_SAME_TRRD_SMIN)
+ spdFTB * (SC_t) read_spd(node, &dimm_config_table[0], DDR4_SPD_MIN_ACT_TO_ACT_DELAY_DIFF_FINE_TRRD_SMIN);
ddr4_tRRD_Lmin
= spdMTB * read_spd(node, &dimm_config_table[0], DDR4_SPD_MIN_ROW_ACTIVE_DELAY_DIFF_TRRD_LMIN)
+ spdFTB * (SC_t) read_spd(node, &dimm_config_table[0], DDR4_SPD_MIN_ACT_TO_ACT_DELAY_SAME_FINE_TRRD_LMIN);
ddr4_tCCD_Lmin
= spdMTB * read_spd(node, &dimm_config_table[0], DDR4_SPD_MIN_CAS_TO_CAS_DELAY_TCCD_LMIN)
+ spdFTB * (SC_t) read_spd(node, &dimm_config_table[0], DDR4_SPD_MIN_CAS_TO_CAS_DELAY_FINE_TCCD_LMIN);
ddr_print("%-45s : %6d ps\n", "Medium Timebase (MTB)", spdMTB);
ddr_print("%-45s : %6d ps\n", "Fine Timebase (FTB)", spdFTB);
#define DDR4_TWR 15000
#define DDR4_TWTR_S 2500
tCKmin = ddr4_tCKAVGmin;
twr = DDR4_TWR;
trcd = ddr4_tRCDmin;
trrd = ddr4_tRRD_Smin;
trp = ddr4_tRPmin;
tras = ddr4_tRASmin;
trc = ddr4_tRCmin;
trfc = ddr4_tRFC1min;
twtr = DDR4_TWTR_S;
tfaw = ddr4_tFAWmin;
if (spd_rdimm) {
spd_addr_mirror = read_spd(node, &dimm_config_table[0], DDR4_SPD_RDIMM_ADDR_MAPPING_FROM_REGISTER_TO_DRAM) & 0x1;
} else {
spd_addr_mirror = read_spd(node, &dimm_config_table[0], DDR4_SPD_UDIMM_ADDR_MAPPING_FROM_EDGE) & 0x1;
}
debug_print("spd_addr_mirror : %#06x\n", spd_addr_mirror );
} else { /* if (ddr_type == DDR4_DRAM) */
spd_mtb_dividend = 0xff & read_spd(node, &dimm_config_table[0], DDR3_SPD_MEDIUM_TIMEBASE_DIVIDEND);
spd_mtb_divisor = 0xff & read_spd(node, &dimm_config_table[0], DDR3_SPD_MEDIUM_TIMEBASE_DIVISOR);
spd_tck_min = 0xff & read_spd(node, &dimm_config_table[0], DDR3_SPD_MINIMUM_CYCLE_TIME_TCKMIN);
spd_taa_min = 0xff & read_spd(node, &dimm_config_table[0], DDR3_SPD_MIN_CAS_LATENCY_TAAMIN);
spd_twr = 0xff & read_spd(node, &dimm_config_table[0], DDR3_SPD_MIN_WRITE_RECOVERY_TWRMIN);
spd_trcd = 0xff & read_spd(node, &dimm_config_table[0], DDR3_SPD_MIN_RAS_CAS_DELAY_TRCDMIN);
spd_trrd = 0xff & read_spd(node, &dimm_config_table[0], DDR3_SPD_MIN_ROW_ACTIVE_DELAY_TRRDMIN);
spd_trp = 0xff & read_spd(node, &dimm_config_table[0], DDR3_SPD_MIN_ROW_PRECHARGE_DELAY_TRPMIN);
spd_tras = 0xff & read_spd(node, &dimm_config_table[0], DDR3_SPD_MIN_ACTIVE_PRECHARGE_LSB_TRASMIN);
spd_tras |= ((0xff & read_spd(node, &dimm_config_table[0], DDR3_SPD_UPPER_NIBBLES_TRAS_TRC)&0xf) << 8);
spd_trc = 0xff & read_spd(node, &dimm_config_table[0], DDR3_SPD_MIN_ACTIVE_REFRESH_LSB_TRCMIN);
spd_trc |= ((0xff & read_spd(node, &dimm_config_table[0], DDR3_SPD_UPPER_NIBBLES_TRAS_TRC)&0xf0) << 4);
spd_trfc = 0xff & read_spd(node, &dimm_config_table[0], DDR3_SPD_MIN_REFRESH_RECOVERY_LSB_TRFCMIN);
spd_trfc |= ((0xff & read_spd(node, &dimm_config_table[0], DDR3_SPD_MIN_REFRESH_RECOVERY_MSB_TRFCMIN)) << 8);
spd_twtr = 0xff & read_spd(node, &dimm_config_table[0], DDR3_SPD_MIN_INTERNAL_WRITE_READ_CMD_TWTRMIN);
spd_trtp = 0xff & read_spd(node, &dimm_config_table[0], DDR3_SPD_MIN_INTERNAL_READ_PRECHARGE_CMD_TRTPMIN);
spd_tfaw = 0xff & read_spd(node, &dimm_config_table[0], DDR3_SPD_MIN_FOUR_ACTIVE_WINDOW_TFAWMIN);
spd_tfaw |= ((0xff & read_spd(node, &dimm_config_table[0], DDR3_SPD_UPPER_NIBBLE_TFAW)&0xf) << 8);
spd_addr_mirror = 0xff & read_spd(node, &dimm_config_table[0], DDR3_SPD_ADDRESS_MAPPING) & 0x1;
spd_addr_mirror = spd_addr_mirror && !spd_rdimm; /* Only address mirror unbuffered dimms. */
ftb_Dividend = read_spd(node, &dimm_config_table[0], DDR3_SPD_FINE_TIMEBASE_DIVIDEND_DIVISOR) >> 4;
ftb_Divisor = read_spd(node, &dimm_config_table[0], DDR3_SPD_FINE_TIMEBASE_DIVIDEND_DIVISOR) & 0xf;
ftb_Divisor = (ftb_Divisor == 0) ? 1 : ftb_Divisor; /* Make sure that it is not 0 */
debug_print("spd_twr : %#06x\n", spd_twr );
debug_print("spd_trcd : %#06x\n", spd_trcd);
debug_print("spd_trrd : %#06x\n", spd_trrd);
debug_print("spd_trp : %#06x\n", spd_trp );
debug_print("spd_tras : %#06x\n", spd_tras);
debug_print("spd_trc : %#06x\n", spd_trc );
debug_print("spd_trfc : %#06x\n", spd_trfc);
debug_print("spd_twtr : %#06x\n", spd_twtr);
debug_print("spd_trtp : %#06x\n", spd_trtp);
debug_print("spd_tfaw : %#06x\n", spd_tfaw);
debug_print("spd_addr_mirror : %#06x\n", spd_addr_mirror);
mtb_psec = spd_mtb_dividend * 1000 / spd_mtb_divisor;
tAAmin = mtb_psec * spd_taa_min;
tAAmin += ftb_Dividend * (SC_t) read_spd(node, &dimm_config_table[0], DDR3_SPD_MIN_CAS_LATENCY_FINE_TAAMIN) / ftb_Divisor;
tCKmin = mtb_psec * spd_tck_min;
tCKmin += ftb_Dividend * (SC_t) read_spd(node, &dimm_config_table[0], DDR3_SPD_MINIMUM_CYCLE_TIME_FINE_TCKMIN) / ftb_Divisor;
twr = spd_twr * mtb_psec;
trcd = spd_trcd * mtb_psec;
trrd = spd_trrd * mtb_psec;
trp = spd_trp * mtb_psec;
tras = spd_tras * mtb_psec;
trc = spd_trc * mtb_psec;
trfc = spd_trfc * mtb_psec;
twtr = spd_twtr * mtb_psec;
trtp = spd_trtp * mtb_psec;
tfaw = spd_tfaw * mtb_psec;
} /* if (ddr_type == DDR4_DRAM) */
if (ddr_type == DDR4_DRAM) {
ddr_print("%-45s : %6d ps (%ld MT/s)\n", "SDRAM Minimum Cycle Time (tCKAVGmin)",ddr4_tCKAVGmin,
pretty_psecs_to_mts(ddr4_tCKAVGmin));
ddr_print("%-45s : %6d ps\n", "SDRAM Maximum Cycle Time (tCKAVGmax)", ddr4_tCKAVGmax);
ddr_print("%-45s : %6d ps\n", "Minimum CAS Latency Time (tAAmin)", tAAmin);
ddr_print("%-45s : %6d ps\n", "Minimum RAS to CAS Delay Time (tRCDmin)", ddr4_tRCDmin);
ddr_print("%-45s : %6d ps\n", "Minimum Row Precharge Delay Time (tRPmin)", ddr4_tRPmin);
ddr_print("%-45s : %6d ps\n", "Minimum Active to Precharge Delay (tRASmin)", ddr4_tRASmin);
ddr_print("%-45s : %6d ps\n", "Minimum Active to Active/Refr. Delay (tRCmin)", ddr4_tRCmin);
ddr_print("%-45s : %6d ps\n", "Minimum Refresh Recovery Delay (tRFC1min)", ddr4_tRFC1min);
ddr_print("%-45s : %6d ps\n", "Minimum Refresh Recovery Delay (tRFC2min)", ddr4_tRFC2min);
ddr_print("%-45s : %6d ps\n", "Minimum Refresh Recovery Delay (tRFC4min)", ddr4_tRFC4min);
ddr_print("%-45s : %6d ps\n", "Minimum Four Activate Window Time (tFAWmin)", ddr4_tFAWmin);
ddr_print("%-45s : %6d ps\n", "Minimum Act. to Act. Delay (tRRD_Smin)", ddr4_tRRD_Smin);
ddr_print("%-45s : %6d ps\n", "Minimum Act. to Act. Delay (tRRD_Lmin)", ddr4_tRRD_Lmin);
ddr_print("%-45s : %6d ps\n", "Minimum CAS to CAS Delay Time (tCCD_Lmin)", ddr4_tCCD_Lmin);
} else {
ddr_print("Medium Timebase (MTB) : %6d ps\n", mtb_psec);
ddr_print("Minimum Cycle Time (tCKmin) : %6d ps (%ld MT/s)\n", tCKmin,
pretty_psecs_to_mts(tCKmin));
ddr_print("Minimum CAS Latency Time (tAAmin) : %6d ps\n", tAAmin);
ddr_print("Write Recovery Time (tWR) : %6d ps\n", twr);
ddr_print("Minimum RAS to CAS delay (tRCD) : %6d ps\n", trcd);
ddr_print("Minimum Row Active to Row Active delay (tRRD) : %6d ps\n", trrd);
ddr_print("Minimum Row Precharge Delay (tRP) : %6d ps\n", trp);
ddr_print("Minimum Active to Precharge (tRAS) : %6d ps\n", tras);
ddr_print("Minimum Active to Active/Refresh Delay (tRC) : %6d ps\n", trc);
ddr_print("Minimum Refresh Recovery Delay (tRFC) : %6d ps\n", trfc);
ddr_print("Internal write to read command delay (tWTR) : %6d ps\n", twtr);
ddr_print("Min Internal Rd to Precharge Cmd Delay (tRTP) : %6d ps\n", trtp);
ddr_print("Minimum Four Activate Window Delay (tFAW) : %6d ps\n", tfaw);
}
/* When the cycle time is within 1 psec of the minimum accept it
as a slight rounding error and adjust it to exactly the minimum
cycle time. This avoids an unnecessary warning. */
if (_abs(tclk_psecs - tCKmin) < 2)
tclk_psecs = tCKmin;
if (tclk_psecs < (uint64_t)tCKmin) {
ddr_print("WARNING!!!!: DDR Clock Rate (tCLK: %lld) exceeds DIMM specifications (tCKmin: %lld)!!!!\n",
tclk_psecs, (uint64_t)tCKmin);
}
ddr_print("DDR Clock Rate (tCLK) : %6llu ps\n", tclk_psecs);
ddr_print("Core Clock Rate (eCLK) : %6llu ps\n", eclk_psecs);
if ((s = lookup_env_parameter("ddr_use_ecc")) != NULL) {
use_ecc = !!strtoul(s, NULL, 0);
}
use_ecc = use_ecc && spd_ecc;
ddr_interface_bytemask = ddr_interface_64b
? (use_ecc ? 0x1ff : 0xff)
: (use_ecc ? 0x01f : 0x0f); // FIXME? 81xx does diff from 70xx
ddr_print("DRAM Interface width: %d bits %s bytemask 0x%x\n",
ddr_interface_64b ? 64 : 32, use_ecc ? "+ECC" : "",
ddr_interface_bytemask);
ddr_print("\n------ Board Custom Configuration Settings ------\n");
ddr_print("%-45s : %d\n", "MIN_RTT_NOM_IDX ", custom_lmc_config->min_rtt_nom_idx);
ddr_print("%-45s : %d\n", "MAX_RTT_NOM_IDX ", custom_lmc_config->max_rtt_nom_idx);
ddr_print("%-45s : %d\n", "MIN_RODT_CTL ", custom_lmc_config->min_rodt_ctl);
ddr_print("%-45s : %d\n", "MAX_RODT_CTL ", custom_lmc_config->max_rodt_ctl);
ddr_print("%-45s : %d\n", "MIN_CAS_LATENCY ", custom_lmc_config->min_cas_latency);
ddr_print("%-45s : %d\n", "OFFSET_EN ", custom_lmc_config->offset_en);
ddr_print("%-45s : %d\n", "OFFSET_UDIMM ", custom_lmc_config->offset_udimm);
ddr_print("%-45s : %d\n", "OFFSET_RDIMM ", custom_lmc_config->offset_rdimm);
ddr_print("%-45s : %d\n", "DDR_RTT_NOM_AUTO ", custom_lmc_config->ddr_rtt_nom_auto);
ddr_print("%-45s : %d\n", "DDR_RODT_CTL_AUTO ", custom_lmc_config->ddr_rodt_ctl_auto);
if (spd_rdimm)
ddr_print("%-45s : %d\n", "RLEVEL_COMP_OFFSET", custom_lmc_config->rlevel_comp_offset_rdimm);
else
ddr_print("%-45s : %d\n", "RLEVEL_COMP_OFFSET", custom_lmc_config->rlevel_comp_offset_udimm);
ddr_print("%-45s : %d\n", "RLEVEL_COMPUTE ", custom_lmc_config->rlevel_compute);
ddr_print("%-45s : %d\n", "DDR2T_UDIMM ", custom_lmc_config->ddr2t_udimm);
ddr_print("%-45s : %d\n", "DDR2T_RDIMM ", custom_lmc_config->ddr2t_rdimm);
ddr_print("%-45s : %d\n", "FPRCH2 ", custom_lmc_config->fprch2);
ddr_print("-------------------------------------------------\n");
CL = divide_roundup(tAAmin, tclk_psecs);
ddr_print("Desired CAS Latency : %6d\n", CL);
min_cas_latency = custom_lmc_config->min_cas_latency;
if ((s = lookup_env_parameter("ddr_min_cas_latency")) != NULL) {
min_cas_latency = strtoul(s, NULL, 0);
}
{
int base_CL;
ddr_print("CAS Latencies supported in DIMM :");
base_CL = (ddr_type == DDR4_DRAM) ? 7 : 4;
for (i=0; i<32; ++i) {
if ((spd_cas_latency >> i) & 1) {
ddr_print(" %d", i+base_CL);
max_cas_latency = i+base_CL;
if (min_cas_latency == 0)
min_cas_latency = i+base_CL;
}
}
ddr_print("\n");
/* Use relaxed timing when running slower than the minimum
supported speed. Adjust timing to match the smallest supported
CAS Latency. */
if (CL < min_cas_latency) {
uint64_t adjusted_tclk = tAAmin / min_cas_latency;
CL = min_cas_latency;
ddr_print("Slow clock speed. Adjusting timing: tClk = %llu, Adjusted tClk = %lld\n",
tclk_psecs, adjusted_tclk);
tclk_psecs = adjusted_tclk;
}
if ((s = lookup_env_parameter("ddr_cas_latency")) != NULL) {
override_cas_latency = strtoul(s, NULL, 0);
}
/* Make sure that the selected cas latency is legal */
for (i=(CL-base_CL); i<32; ++i) {
if ((spd_cas_latency >> i) & 1) {
CL = i+base_CL;
break;
}
}
}
if (CL > max_cas_latency)
CL = max_cas_latency;
if (override_cas_latency != 0) {
CL = override_cas_latency;
}
ddr_print("CAS Latency : %6d\n", CL);
if ((CL * tCKmin) > 20000)
{
ddr_print("(CLactual * tCKmin) = %d exceeds 20 ns\n", (CL * tCKmin));
}
if ((num_banks != 4) && (num_banks != 8) && (num_banks != 16))
{
error_print("Unsupported number of banks %d. Must be 4 or 8 or 16.\n", num_banks);
++fatal_error;
}
if ((num_ranks != 1) && (num_ranks != 2) && (num_ranks != 4))
{
error_print("Unsupported number of ranks: %d\n", num_ranks);
++fatal_error;
}
if (! CAVIUM_IS_MODEL(CAVIUM_CN81XX)) { // 88XX or 83XX, but not 81XX
if ((dram_width != 8) && (dram_width != 16) && (dram_width != 4)) {
error_print("Unsupported SDRAM Width, x%d. Must be x4, x8 or x16.\n", dram_width);
++fatal_error;
}
} else if ((dram_width != 8) && (dram_width != 16)) { // 81XX can only do x8 or x16
error_print("Unsupported SDRAM Width, x%d. Must be x8 or x16.\n", dram_width);
++fatal_error;
}
/*
** Bail out here if things are not copasetic.
*/
if (fatal_error)
return(-1);
/*
* 6.9.6 LMC RESET Initialization
*
* The purpose of this step is to assert/deassert the RESET# pin at the
* DDR3/DDR4 parts.
*
* This LMC RESET step is done for all enabled LMCs.
*/
perform_lmc_reset(node, ddr_interface_num);
// Make sure scrambling is disabled during init...
{
bdk_lmcx_control_t lmc_control;
lmc_control.u = BDK_CSR_READ(node, BDK_LMCX_CONTROL(ddr_interface_num));
lmc_control.s.scramble_ena = 0;
DRAM_CSR_WRITE(node, BDK_LMCX_CONTROL(ddr_interface_num), lmc_control.u);
DRAM_CSR_WRITE(node, BDK_LMCX_SCRAMBLE_CFG0(ddr_interface_num), 0);
DRAM_CSR_WRITE(node, BDK_LMCX_SCRAMBLE_CFG1(ddr_interface_num), 0);
DRAM_CSR_WRITE(node, BDK_LMCX_SCRAMBLE_CFG2(ddr_interface_num), 0);
}
odt_idx = dimm_count - 1;
switch (num_ranks) {
case 1:
odt_config = odt_1rank_config;
break;
case 2:
odt_config = odt_2rank_config;
break;
case 4:
odt_config = odt_4rank_config;
break;
default:
odt_config = disable_odt_config;
error_print("Unsupported number of ranks: %d\n", num_ranks);
++fatal_error;
}
/* Parameters from DDR3 Specifications */
#define DDR3_tREFI 7800000 /* 7.8 us */
#define DDR3_ZQCS 80000ull /* 80 ns */
#define DDR3_ZQCS_Interval 1280000000 /* 128ms/100 */
#define DDR3_tCKE 5000 /* 5 ns */
#define DDR3_tMRD 4 /* 4 nCK */
#define DDR3_tDLLK 512 /* 512 nCK */
#define DDR3_tMPRR 1 /* 1 nCK */
#define DDR3_tWLMRD 40 /* 40 nCK */
#define DDR3_tWLDQSEN 25 /* 25 nCK */
/* Parameters from DDR4 Specifications */
#define DDR4_tMRD 8 /* 8 nCK */
#define DDR4_tDLLK 768 /* 768 nCK */
/*
* 6.9.7 Early LMC Initialization
*
* All of DDR PLL, LMC CK, and LMC DRESET initializations must be
* completed prior to starting this LMC initialization sequence.
*
* Perform the following five substeps for early LMC initialization:
*
* 1. Software must ensure there are no pending DRAM transactions.
*
* 2. Write LMC(0)_CONFIG, LMC(0)_CONTROL, LMC(0)_TIMING_PARAMS0,
* LMC(0)_TIMING_PARAMS1, LMC(0)_MODEREG_PARAMS0,
* LMC(0)_MODEREG_PARAMS1, LMC(0)_DUAL_MEMCFG, LMC(0)_NXM,
* LMC(0)_WODT_MASK, LMC(0)_RODT_MASK, LMC(0)_COMP_CTL2,
* LMC(0)_PHY_CTL, LMC(0)_DIMM0/1_PARAMS, and LMC(0)_DIMM_CTL with
* appropriate values. All sections in this chapter can be used to
* derive proper register settings.
*/
/* LMC(0)_CONFIG */
{
lmc_config.u = 0;
lmc_config.s.ecc_ena = use_ecc;
lmc_config.s.row_lsb = encode_row_lsb_ddr3(row_lsb, ddr_interface_64b);
lmc_config.s.pbank_lsb = encode_pbank_lsb_ddr3(pbank_lsb, ddr_interface_64b);
lmc_config.s.idlepower = 0; /* Disabled */
if ((s = lookup_env_parameter("ddr_idlepower")) != NULL) {
lmc_config.s.idlepower = strtoul(s, NULL, 0);
}
lmc_config.s.forcewrite = 0; /* Disabled */
lmc_config.s.ecc_adr = 1; /* Include memory reference address in the ECC */
if ((s = lookup_env_parameter("ddr_ecc_adr")) != NULL) {
lmc_config.s.ecc_adr = strtoul(s, NULL, 0);
}
lmc_config.s.reset = 0;
/*
* Program LMC0_CONFIG[24:18], ref_zqcs_int(6:0) to
* RND-DN(tREFI/clkPeriod/512) Program LMC0_CONFIG[36:25],
* ref_zqcs_int(18:7) to
* RND-DN(ZQCS_Interval/clkPeriod/(512*128)). Note that this
* value should always be greater than 32, to account for
* resistor calibration delays.
*/
lmc_config.s.ref_zqcs_int = ((DDR3_tREFI/tclk_psecs/512) & 0x7f);
lmc_config.s.ref_zqcs_int |= ((max(33ull, (DDR3_ZQCS_Interval/(tclk_psecs/100)/(512*128))) & 0xfff) << 7);
lmc_config.s.early_dqx = 1; /* Default to enabled */
if ((s = lookup_env_parameter("ddr_early_dqx")) == NULL)
s = lookup_env_parameter("ddr%d_early_dqx", ddr_interface_num);
if (s != NULL) {
lmc_config.s.early_dqx = strtoul(s, NULL, 0);
}
lmc_config.s.sref_with_dll = 0;
lmc_config.s.rank_ena = bunk_enable;
lmc_config.s.rankmask = rank_mask; /* Set later */
lmc_config.s.mirrmask = (spd_addr_mirror << 1 | spd_addr_mirror << 3) & rank_mask;
lmc_config.s.init_status = rank_mask; /* Set once and don't change it. */
lmc_config.s.early_unload_d0_r0 = 0;
lmc_config.s.early_unload_d0_r1 = 0;
lmc_config.s.early_unload_d1_r0 = 0;
lmc_config.s.early_unload_d1_r1 = 0;
lmc_config.s.scrz = 0;
// set 32-bit mode for real only when selected AND 81xx...
if (!ddr_interface_64b && CAVIUM_IS_MODEL(CAVIUM_CN81XX)) {
lmc_config.s.mode32b = 1;
}
VB_PRT(VBL_DEV, "%-45s : %d\n", "MODE32B (init)", lmc_config.s.mode32b);
lmc_config.s.mode_x4dev = (dram_width == 4) ? 1 : 0;
lmc_config.s.bg2_enable = ((ddr_type == DDR4_DRAM) && (dram_width == 16)) ? 0 : 1;
if ((s = lookup_env_parameter_ull("ddr_config")) != NULL) {
lmc_config.u = strtoull(s, NULL, 0);
}
ddr_print("LMC_CONFIG : 0x%016llx\n", lmc_config.u);
DRAM_CSR_WRITE(node, BDK_LMCX_CONFIG(ddr_interface_num), lmc_config.u);
}
/* LMC(0)_CONTROL */
{
bdk_lmcx_control_t lmc_control;
lmc_control.u = BDK_CSR_READ(node, BDK_LMCX_CONTROL(ddr_interface_num));
lmc_control.s.rdimm_ena = spd_rdimm;
lmc_control.s.bwcnt = 0; /* Clear counter later */
if (spd_rdimm)
lmc_control.s.ddr2t = (safe_ddr_flag ? 1 : custom_lmc_config->ddr2t_rdimm );
else
lmc_control.s.ddr2t = (safe_ddr_flag ? 1 : custom_lmc_config->ddr2t_udimm );
lmc_control.s.pocas = 0;
lmc_control.s.fprch2 = (safe_ddr_flag ? 2 : custom_lmc_config->fprch2 );
lmc_control.s.throttle_rd = safe_ddr_flag ? 1 : 0;
lmc_control.s.throttle_wr = safe_ddr_flag ? 1 : 0;
lmc_control.s.inorder_rd = safe_ddr_flag ? 1 : 0;
lmc_control.s.inorder_wr = safe_ddr_flag ? 1 : 0;
lmc_control.cn81xx.elev_prio_dis = safe_ddr_flag ? 1 : 0;
lmc_control.s.nxm_write_en = 0; /* discards writes to
addresses that don't exist
in the DRAM */
lmc_control.s.max_write_batch = 8;
lmc_control.s.xor_bank = 1;
lmc_control.s.auto_dclkdis = 1;
lmc_control.s.int_zqcs_dis = 0;
lmc_control.s.ext_zqcs_dis = 0;
lmc_control.s.bprch = 1;
lmc_control.s.wodt_bprch = 1;
lmc_control.s.rodt_bprch = 1;
if ((s = lookup_env_parameter("ddr_xor_bank")) != NULL) {
lmc_control.s.xor_bank = strtoul(s, NULL, 0);
}
if ((s = lookup_env_parameter("ddr_2t")) != NULL) {
lmc_control.s.ddr2t = strtoul(s, NULL, 0);
}
if ((s = lookup_env_parameter("ddr_fprch2")) != NULL) {
lmc_control.s.fprch2 = strtoul(s, NULL, 0);
}
if ((s = lookup_env_parameter("ddr_bprch")) != NULL) {
lmc_control.s.bprch = strtoul(s, NULL, 0);
}
if ((s = lookup_env_parameter("ddr_wodt_bprch")) != NULL) {
lmc_control.s.wodt_bprch = strtoul(s, NULL, 0);
}
if ((s = lookup_env_parameter("ddr_rodt_bprch")) != NULL) {
lmc_control.s.rodt_bprch = strtoul(s, NULL, 0);
}
if ((s = lookup_env_parameter("ddr_int_zqcs_dis")) != NULL) {
lmc_control.s.int_zqcs_dis = strtoul(s, NULL, 0);
}
if ((s = lookup_env_parameter("ddr_ext_zqcs_dis")) != NULL) {
lmc_control.s.ext_zqcs_dis = strtoul(s, NULL, 0);
}
if ((s = lookup_env_parameter_ull("ddr_control")) != NULL) {
lmc_control.u = strtoull(s, NULL, 0);
}
ddr_print("LMC_CONTROL : 0x%016llx\n", lmc_control.u);
DRAM_CSR_WRITE(node, BDK_LMCX_CONTROL(ddr_interface_num), lmc_control.u);
}
/* LMC(0)_TIMING_PARAMS0 */
{
unsigned trp_value;
bdk_lmcx_timing_params0_t lmc_timing_params0;
lmc_timing_params0.u = BDK_CSR_READ(node, BDK_LMCX_TIMING_PARAMS0(ddr_interface_num));
trp_value = divide_roundup(trp, tclk_psecs) - 1;
ddr_print("TIMING_PARAMS0[TRP]: NEW 0x%x, OLD 0x%x\n", trp_value,
trp_value + (unsigned)(divide_roundup(max(4*tclk_psecs, 7500ull), tclk_psecs)) - 4);
#if 1
if ((s = lookup_env_parameter_ull("ddr_use_old_trp")) != NULL) {
if (!!strtoull(s, NULL, 0)) {
trp_value += divide_roundup(max(4*tclk_psecs, 7500ull), tclk_psecs) - 4;
ddr_print("TIMING_PARAMS0[trp]: USING OLD 0x%x\n", trp_value);
}
}
#endif
lmc_timing_params0.s.txpr = divide_roundup(max(5*tclk_psecs, trfc+10000ull), 16*tclk_psecs);
lmc_timing_params0.s.tzqinit = divide_roundup(max(512*tclk_psecs, 640000ull), (256*tclk_psecs));
lmc_timing_params0.s.trp = trp_value & 0x1f;
lmc_timing_params0.s.tcksre = divide_roundup(max(5*tclk_psecs, 10000ull), tclk_psecs) - 1;
if (ddr_type == DDR4_DRAM) {
lmc_timing_params0.s.tzqcs = divide_roundup(128*tclk_psecs, (16*tclk_psecs)); /* Always 8. */
lmc_timing_params0.s.tcke = divide_roundup(max(3*tclk_psecs, (uint64_t) DDR3_tCKE), tclk_psecs) - 1;
lmc_timing_params0.s.tmrd = divide_roundup((DDR4_tMRD*tclk_psecs), tclk_psecs) - 1;
//lmc_timing_params0.s.tmod = divide_roundup(max(24*tclk_psecs, 15000ull), tclk_psecs) - 1;
lmc_timing_params0.s.tmod = 25; /* 25 is the max allowed */
lmc_timing_params0.s.tdllk = divide_roundup(DDR4_tDLLK, 256);
} else {
lmc_timing_params0.s.tzqcs = divide_roundup(max(64*tclk_psecs, DDR3_ZQCS), (16*tclk_psecs));
lmc_timing_params0.s.tcke = divide_roundup(DDR3_tCKE, tclk_psecs) - 1;
lmc_timing_params0.s.tmrd = divide_roundup((DDR3_tMRD*tclk_psecs), tclk_psecs) - 1;
lmc_timing_params0.s.tmod = divide_roundup(max(12*tclk_psecs, 15000ull), tclk_psecs) - 1;
lmc_timing_params0.s.tdllk = divide_roundup(DDR3_tDLLK, 256);
}
if ((s = lookup_env_parameter_ull("ddr_timing_params0")) != NULL) {
lmc_timing_params0.u = strtoull(s, NULL, 0);
}
ddr_print("TIMING_PARAMS0 : 0x%016llx\n", lmc_timing_params0.u);
DRAM_CSR_WRITE(node, BDK_LMCX_TIMING_PARAMS0(ddr_interface_num), lmc_timing_params0.u);
}
/* LMC(0)_TIMING_PARAMS1 */
{
int txp, temp_trcd, trfc_dlr;
bdk_lmcx_timing_params1_t lmc_timing_params1;
lmc_timing_params1.u = BDK_CSR_READ(node, BDK_LMCX_TIMING_PARAMS1(ddr_interface_num));
lmc_timing_params1.s.tmprr = divide_roundup(DDR3_tMPRR*tclk_psecs, tclk_psecs) - 1;
lmc_timing_params1.s.tras = divide_roundup(tras, tclk_psecs) - 1;
// NOTE: this is reworked for pass 2.x
temp_trcd = divide_roundup(trcd, tclk_psecs);
#if 1
if (temp_trcd > 15)
ddr_print("TIMING_PARAMS1[trcd]: need extension bit for 0x%x\n", temp_trcd);
#endif
if (CAVIUM_IS_MODEL(CAVIUM_CN88XX_PASS1_X) && (temp_trcd > 15)) {
/* Let .trcd=0 serve as a flag that the field has
overflowed. Must use Additive Latency mode as a
workaround. */
temp_trcd = 0;
}
lmc_timing_params1.s.trcd = temp_trcd & 0x0f;
lmc_timing_params1.s.trcd_ext = (temp_trcd >> 4) & 1;
lmc_timing_params1.s.twtr = divide_roundup(twtr, tclk_psecs) - 1;
lmc_timing_params1.s.trfc = divide_roundup(trfc, 8*tclk_psecs);
// workaround needed for all THUNDER chips thru T88 Pass 2.0,
// but not 81xx and 83xx...
if ((ddr_type == DDR4_DRAM) && CAVIUM_IS_MODEL(CAVIUM_CN88XX)) {
/* Workaround bug 24006. Use Trrd_l. */
lmc_timing_params1.s.trrd = divide_roundup(ddr4_tRRD_Lmin, tclk_psecs) - 2;
} else
lmc_timing_params1.s.trrd = divide_roundup(trrd, tclk_psecs) - 2;
/*
** tXP = max( 3nCK, 7.5 ns) DDR3-800 tCLK = 2500 psec
** tXP = max( 3nCK, 7.5 ns) DDR3-1066 tCLK = 1875 psec
** tXP = max( 3nCK, 6.0 ns) DDR3-1333 tCLK = 1500 psec
** tXP = max( 3nCK, 6.0 ns) DDR3-1600 tCLK = 1250 psec
** tXP = max( 3nCK, 6.0 ns) DDR3-1866 tCLK = 1071 psec
** tXP = max( 3nCK, 6.0 ns) DDR3-2133 tCLK = 937 psec
*/
txp = (tclk_psecs < 1875) ? 6000 : 7500;
// NOTE: this is reworked for pass 2.x
int temp_txp = divide_roundup(max(3*tclk_psecs, (unsigned)txp), tclk_psecs) - 1;
#if 1
if (temp_txp > 7)
ddr_print("TIMING_PARAMS1[txp]: need extension bit for 0x%x\n", temp_txp);
#endif
if (CAVIUM_IS_MODEL(CAVIUM_CN88XX_PASS1_X) && (temp_txp > 7)) {
temp_txp = 7; // max it out
}
lmc_timing_params1.s.txp = temp_txp & 7;
lmc_timing_params1.s.txp_ext = (temp_txp >> 3) & 1;
lmc_timing_params1.s.twlmrd = divide_roundup(DDR3_tWLMRD*tclk_psecs, 4*tclk_psecs);
lmc_timing_params1.s.twldqsen = divide_roundup(DDR3_tWLDQSEN*tclk_psecs, 4*tclk_psecs);
lmc_timing_params1.s.tfaw = divide_roundup(tfaw, 4*tclk_psecs);
lmc_timing_params1.s.txpdll = divide_roundup(max(10*tclk_psecs, 24000ull), tclk_psecs) - 1;
if ((ddr_type == DDR4_DRAM) && is_3ds_dimm) {
/*
4 Gb: tRFC_DLR = 90 ns
8 Gb: tRFC_DLR = 120 ns
16 Gb: tRFC_DLR = 190 ns FIXME?
*/
// RNDUP[tRFC_DLR(ns) / (8 * TCYC(ns))]
if (die_capacity == 0x1000) // 4 Gbit
trfc_dlr = 90;
else if (die_capacity == 0x2000) // 8 Gbit
trfc_dlr = 120;
else if (die_capacity == 0x4000) // 16 Gbit
trfc_dlr = 190;
else
trfc_dlr = 0;
if (trfc_dlr == 0) {
ddr_print("N%d.LMC%d: ERROR: tRFC_DLR: die_capacity %u Mbit is illegal\n",
node, ddr_interface_num, die_capacity);
} else {
lmc_timing_params1.s.trfc_dlr = divide_roundup(trfc_dlr * 1000UL, 8*tclk_psecs);
ddr_print("N%d.LMC%d: TIMING_PARAMS1[trfc_dlr] set to %u\n",
node, ddr_interface_num, lmc_timing_params1.s.trfc_dlr);
}
}
if ((s = lookup_env_parameter_ull("ddr_timing_params1")) != NULL) {
lmc_timing_params1.u = strtoull(s, NULL, 0);
}
ddr_print("TIMING_PARAMS1 : 0x%016llx\n", lmc_timing_params1.u);
DRAM_CSR_WRITE(node, BDK_LMCX_TIMING_PARAMS1(ddr_interface_num), lmc_timing_params1.u);
}
/* LMC(0)_TIMING_PARAMS2 */
if (ddr_type == DDR4_DRAM) {
bdk_lmcx_timing_params1_t lmc_timing_params1;
bdk_lmcx_timing_params2_t lmc_timing_params2;
lmc_timing_params1.u = BDK_CSR_READ(node, BDK_LMCX_TIMING_PARAMS1(ddr_interface_num));
lmc_timing_params2.u = BDK_CSR_READ(node, BDK_LMCX_TIMING_PARAMS2(ddr_interface_num));
ddr_print("TIMING_PARAMS2 : 0x%016llx\n", lmc_timing_params2.u);
//lmc_timing_params2.s.trrd_l = divide_roundup(ddr4_tRRD_Lmin, tclk_psecs) - 1;
// NOTE: this is reworked for pass 2.x
int temp_trrd_l = divide_roundup(ddr4_tRRD_Lmin, tclk_psecs) - 2;
#if 1
if (temp_trrd_l > 7)
ddr_print("TIMING_PARAMS2[trrd_l]: need extension bit for 0x%x\n", temp_trrd_l);
#endif
if (CAVIUM_IS_MODEL(CAVIUM_CN88XX_PASS1_X) && (temp_trrd_l > 7)) {
temp_trrd_l = 7; // max it out
}
lmc_timing_params2.s.trrd_l = temp_trrd_l & 7;
lmc_timing_params2.s.trrd_l_ext = (temp_trrd_l >> 3) & 1;
lmc_timing_params2.s.twtr_l = divide_nint(max(4*tclk_psecs, 7500ull), tclk_psecs) - 1; // correct for 1600-2400
lmc_timing_params2.s.t_rw_op_max = 7;
lmc_timing_params2.s.trtp = divide_roundup(max(4*tclk_psecs, 7500ull), tclk_psecs) - 1;
ddr_print("TIMING_PARAMS2 : 0x%016llx\n", lmc_timing_params2.u);
DRAM_CSR_WRITE(node, BDK_LMCX_TIMING_PARAMS2(ddr_interface_num), lmc_timing_params2.u);
/* Workaround Errata 25823 - LMC: Possible DDR4 tWTR_L not met
for Write-to-Read operations to the same Bank Group */
if (lmc_timing_params1.s.twtr < (lmc_timing_params2.s.twtr_l - 4)) {
lmc_timing_params1.s.twtr = lmc_timing_params2.s.twtr_l - 4;
ddr_print("ERRATA 25823: NEW: TWTR: %d, TWTR_L: %d\n", lmc_timing_params1.s.twtr, lmc_timing_params2.s.twtr_l);
ddr_print("TIMING_PARAMS1 : 0x%016llx\n", lmc_timing_params1.u);
DRAM_CSR_WRITE(node, BDK_LMCX_TIMING_PARAMS1(ddr_interface_num), lmc_timing_params1.u);
}
}
/* LMC(0)_MODEREG_PARAMS0 */
{
bdk_lmcx_modereg_params0_t lmc_modereg_params0;
int param;
lmc_modereg_params0.u = BDK_CSR_READ(node, BDK_LMCX_MODEREG_PARAMS0(ddr_interface_num));
if (ddr_type == DDR4_DRAM) {
lmc_modereg_params0.s.cwl = 0; /* 1600 (1250ps) */
if (tclk_psecs < 1250)
lmc_modereg_params0.s.cwl = 1; /* 1866 (1072ps) */
if (tclk_psecs < 1072)
lmc_modereg_params0.s.cwl = 2; /* 2133 (938ps) */
if (tclk_psecs < 938)
lmc_modereg_params0.s.cwl = 3; /* 2400 (833ps) */
if (tclk_psecs < 833)
lmc_modereg_params0.s.cwl = 4; /* 2666 (750ps) */
if (tclk_psecs < 750)
lmc_modereg_params0.s.cwl = 5; /* 3200 (625ps) */
} else {
/*
** CSR CWL CAS write Latency
** === === =================================
** 0 5 ( tCK(avg) >= 2.5 ns)
** 1 6 (2.5 ns > tCK(avg) >= 1.875 ns)
** 2 7 (1.875 ns > tCK(avg) >= 1.5 ns)
** 3 8 (1.5 ns > tCK(avg) >= 1.25 ns)
** 4 9 (1.25 ns > tCK(avg) >= 1.07 ns)
** 5 10 (1.07 ns > tCK(avg) >= 0.935 ns)
** 6 11 (0.935 ns > tCK(avg) >= 0.833 ns)
** 7 12 (0.833 ns > tCK(avg) >= 0.75 ns)
*/
lmc_modereg_params0.s.cwl = 0;
if (tclk_psecs < 2500)
lmc_modereg_params0.s.cwl = 1;
if (tclk_psecs < 1875)
lmc_modereg_params0.s.cwl = 2;
if (tclk_psecs < 1500)
lmc_modereg_params0.s.cwl = 3;
if (tclk_psecs < 1250)
lmc_modereg_params0.s.cwl = 4;
if (tclk_psecs < 1070)
lmc_modereg_params0.s.cwl = 5;
if (tclk_psecs < 935)
lmc_modereg_params0.s.cwl = 6;
if (tclk_psecs < 833)
lmc_modereg_params0.s.cwl = 7;
}
if ((s = lookup_env_parameter("ddr_cwl")) != NULL) {
lmc_modereg_params0.s.cwl = strtoul(s, NULL, 0) - 5;
}
if (ddr_type == DDR4_DRAM) {
ddr_print("%-45s : %d, [0x%x]\n", "CAS Write Latency CWL, [CSR]",
lmc_modereg_params0.s.cwl + 9
+ ((lmc_modereg_params0.s.cwl>2) ? (lmc_modereg_params0.s.cwl-3) * 2 : 0),
lmc_modereg_params0.s.cwl);
} else {
ddr_print("%-45s : %d, [0x%x]\n", "CAS Write Latency CWL, [CSR]",
lmc_modereg_params0.s.cwl + 5,
lmc_modereg_params0.s.cwl);
}
lmc_modereg_params0.s.mprloc = 0;
lmc_modereg_params0.s.mpr = 0;
lmc_modereg_params0.s.dll = (ddr_type == DDR4_DRAM)?1:0; /* disable(0) for DDR3 and enable(1) for DDR4 */
lmc_modereg_params0.s.al = 0;
lmc_modereg_params0.s.wlev = 0; /* Read Only */
lmc_modereg_params0.s.tdqs = ((ddr_type == DDR4_DRAM) || (dram_width != 8))?0:1; /* disable(0) for DDR4 and x4/x16 DDR3 */
lmc_modereg_params0.s.qoff = 0;
//lmc_modereg_params0.s.bl = 0; /* Don't touch block dirty logic */
if ((s = lookup_env_parameter("ddr_cl")) != NULL) {
CL = strtoul(s, NULL, 0);
ddr_print("CAS Latency : %6d\n", CL);
}
if (ddr_type == DDR4_DRAM) {
lmc_modereg_params0.s.cl = 0x0;
if (CL > 9)
lmc_modereg_params0.s.cl = 0x1;
if (CL > 10)
lmc_modereg_params0.s.cl = 0x2;
if (CL > 11)
lmc_modereg_params0.s.cl = 0x3;
if (CL > 12)
lmc_modereg_params0.s.cl = 0x4;
if (CL > 13)
lmc_modereg_params0.s.cl = 0x5;
if (CL > 14)
lmc_modereg_params0.s.cl = 0x6;
if (CL > 15)
lmc_modereg_params0.s.cl = 0x7;
if (CL > 16)
lmc_modereg_params0.s.cl = 0x8;
if (CL > 18)
lmc_modereg_params0.s.cl = 0x9;
if (CL > 20)
lmc_modereg_params0.s.cl = 0xA;
if (CL > 24)
lmc_modereg_params0.s.cl = 0xB;
} else {
lmc_modereg_params0.s.cl = 0x2;
if (CL > 5)
lmc_modereg_params0.s.cl = 0x4;
if (CL > 6)
lmc_modereg_params0.s.cl = 0x6;
if (CL > 7)
lmc_modereg_params0.s.cl = 0x8;
if (CL > 8)
lmc_modereg_params0.s.cl = 0xA;
if (CL > 9)
lmc_modereg_params0.s.cl = 0xC;
if (CL > 10)
lmc_modereg_params0.s.cl = 0xE;
if (CL > 11)
lmc_modereg_params0.s.cl = 0x1;
if (CL > 12)
lmc_modereg_params0.s.cl = 0x3;
if (CL > 13)
lmc_modereg_params0.s.cl = 0x5;
if (CL > 14)
lmc_modereg_params0.s.cl = 0x7;
if (CL > 15)
lmc_modereg_params0.s.cl = 0x9;
}
lmc_modereg_params0.s.rbt = 0; /* Read Only. */
lmc_modereg_params0.s.tm = 0;
lmc_modereg_params0.s.dllr = 0;
param = divide_roundup(twr, tclk_psecs);
if (ddr_type == DDR4_DRAM) { /* DDR4 */
lmc_modereg_params0.s.wrp = 1;
if (param > 12)
lmc_modereg_params0.s.wrp = 2;
if (param > 14)
lmc_modereg_params0.s.wrp = 3;
if (param > 16)
lmc_modereg_params0.s.wrp = 4;
if (param > 18)
lmc_modereg_params0.s.wrp = 5;
if (param > 20)
lmc_modereg_params0.s.wrp = 6;
if (param > 24) /* RESERVED in DDR4 spec */
lmc_modereg_params0.s.wrp = 7;
} else { /* DDR3 */
lmc_modereg_params0.s.wrp = 1;
if (param > 5)
lmc_modereg_params0.s.wrp = 2;
if (param > 6)
lmc_modereg_params0.s.wrp = 3;
if (param > 7)
lmc_modereg_params0.s.wrp = 4;
if (param > 8)
lmc_modereg_params0.s.wrp = 5;
if (param > 10)
lmc_modereg_params0.s.wrp = 6;
if (param > 12)
lmc_modereg_params0.s.wrp = 7;
}
lmc_modereg_params0.s.ppd = 0;
if ((s = lookup_env_parameter("ddr_wrp")) != NULL) {
lmc_modereg_params0.s.wrp = strtoul(s, NULL, 0);
}
ddr_print("%-45s : %d, [0x%x]\n", "Write recovery for auto precharge WRP, [CSR]",
param, lmc_modereg_params0.s.wrp);
if ((s = lookup_env_parameter_ull("ddr_modereg_params0")) != NULL) {
lmc_modereg_params0.u = strtoull(s, NULL, 0);
}
ddr_print("MODEREG_PARAMS0 : 0x%016llx\n", lmc_modereg_params0.u);
DRAM_CSR_WRITE(node, BDK_LMCX_MODEREG_PARAMS0(ddr_interface_num), lmc_modereg_params0.u);
}
/* LMC(0)_MODEREG_PARAMS1 */
{
bdk_lmcx_modereg_params1_t lmc_modereg_params1;
lmc_modereg_params1.u = odt_config[odt_idx].odt_mask1.u;
#ifdef CAVIUM_ONLY
/* Special request: mismatched DIMM support. Slot 0: 2-Rank, Slot 1: 1-Rank */
if (rank_mask == 0x7) { /* 2-Rank, 1-Rank */
lmc_modereg_params1.s.rtt_nom_00 = 0;
lmc_modereg_params1.s.rtt_nom_01 = 3; /* rttnom_40ohm */
lmc_modereg_params1.s.rtt_nom_10 = 3; /* rttnom_40ohm */
lmc_modereg_params1.s.rtt_nom_11 = 0;
dyn_rtt_nom_mask = 0x6;
}
#endif /* CAVIUM_ONLY */
if ((s = lookup_env_parameter("ddr_rtt_nom_mask")) != NULL) {
dyn_rtt_nom_mask = strtoul(s, NULL, 0);
}
/* Save the original rtt_nom settings before sweeping through settings. */
default_rtt_nom[0] = lmc_modereg_params1.s.rtt_nom_00;
default_rtt_nom[1] = lmc_modereg_params1.s.rtt_nom_01;
default_rtt_nom[2] = lmc_modereg_params1.s.rtt_nom_10;
default_rtt_nom[3] = lmc_modereg_params1.s.rtt_nom_11;
ddr_rtt_nom_auto = custom_lmc_config->ddr_rtt_nom_auto;
for (i=0; i<4; ++i) {
uint64_t value;
if ((s = lookup_env_parameter("ddr_rtt_nom_%1d%1d", !!(i&2), !!(i&1))) == NULL)
s = lookup_env_parameter("ddr%d_rtt_nom_%1d%1d", ddr_interface_num, !!(i&2), !!(i&1));
if (s != NULL) {
value = strtoul(s, NULL, 0);
lmc_modereg_params1.u &= ~((uint64_t)0x7 << (i*12+9));
lmc_modereg_params1.u |= ( (value & 0x7) << (i*12+9));
default_rtt_nom[i] = value;
ddr_rtt_nom_auto = 0;
}
}
if ((s = lookup_env_parameter("ddr_rtt_nom")) == NULL)
s = lookup_env_parameter("ddr%d_rtt_nom", ddr_interface_num);
if (s != NULL) {
uint64_t value;
value = strtoul(s, NULL, 0);
if (dyn_rtt_nom_mask & 1)
default_rtt_nom[0] = lmc_modereg_params1.s.rtt_nom_00 = value;
if (dyn_rtt_nom_mask & 2)
default_rtt_nom[1] = lmc_modereg_params1.s.rtt_nom_01 = value;
if (dyn_rtt_nom_mask & 4)
default_rtt_nom[2] = lmc_modereg_params1.s.rtt_nom_10 = value;
if (dyn_rtt_nom_mask & 8)
default_rtt_nom[3] = lmc_modereg_params1.s.rtt_nom_11 = value;
ddr_rtt_nom_auto = 0;
}
if ((s = lookup_env_parameter("ddr_rtt_wr")) != NULL) {
uint64_t value = strtoul(s, NULL, 0);
for (i=0; i<4; ++i) {
INSRT_WR(&lmc_modereg_params1.u, i, value);
}
}
for (i = 0; i < 4; ++i) {
uint64_t value;
if ((s = lookup_env_parameter("ddr_rtt_wr_%1d%1d", !!(i&2), !!(i&1))) == NULL)
s = lookup_env_parameter("ddr%d_rtt_wr_%1d%1d", ddr_interface_num, !!(i&2), !!(i&1));
if (s != NULL) {
value = strtoul(s, NULL, 0);
INSRT_WR(&lmc_modereg_params1.u, i, value);
}
}
// Make sure pass 1 has valid RTT_WR settings, because
// configuration files may be set-up for pass 2, and
// pass 1 supports no RTT_WR extension bits
if (CAVIUM_IS_MODEL(CAVIUM_CN88XX_PASS1_X)) {
for (i = 0; i < 4; ++i) {
if (EXTR_WR(lmc_modereg_params1.u, i) > 3) { // if 80 or undefined
INSRT_WR(&lmc_modereg_params1.u, i, 1); // FIXME? always insert 120
ddr_print("RTT_WR_%d%d set to 120 for CN88XX pass 1\n", !!(i&2), i&1);
}
}
}
if ((s = lookup_env_parameter("ddr_dic")) != NULL) {
uint64_t value = strtoul(s, NULL, 0);
for (i=0; i<4; ++i) {
lmc_modereg_params1.u &= ~((uint64_t)0x3 << (i*12+7));
lmc_modereg_params1.u |= ( (value & 0x3) << (i*12+7));
}
}
for (i=0; i<4; ++i) {
uint64_t value;
if ((s = lookup_env_parameter("ddr_dic_%1d%1d", !!(i&2), !!(i&1))) != NULL) {
value = strtoul(s, NULL, 0);
lmc_modereg_params1.u &= ~((uint64_t)0x3 << (i*12+7));
lmc_modereg_params1.u |= ( (value & 0x3) << (i*12+7));
}
}
if ((s = lookup_env_parameter_ull("ddr_modereg_params1")) != NULL) {
lmc_modereg_params1.u = strtoull(s, NULL, 0);
}
ddr_print("RTT_NOM %3d, %3d, %3d, %3d ohms : %x,%x,%x,%x\n",
imp_values->rtt_nom_ohms[lmc_modereg_params1.s.rtt_nom_11],
imp_values->rtt_nom_ohms[lmc_modereg_params1.s.rtt_nom_10],
imp_values->rtt_nom_ohms[lmc_modereg_params1.s.rtt_nom_01],
imp_values->rtt_nom_ohms[lmc_modereg_params1.s.rtt_nom_00],
lmc_modereg_params1.s.rtt_nom_11,
lmc_modereg_params1.s.rtt_nom_10,
lmc_modereg_params1.s.rtt_nom_01,
lmc_modereg_params1.s.rtt_nom_00);
ddr_print("RTT_WR %3d, %3d, %3d, %3d ohms : %x,%x,%x,%x\n",
imp_values->rtt_wr_ohms[EXTR_WR(lmc_modereg_params1.u, 3)],
imp_values->rtt_wr_ohms[EXTR_WR(lmc_modereg_params1.u, 2)],
imp_values->rtt_wr_ohms[EXTR_WR(lmc_modereg_params1.u, 1)],
imp_values->rtt_wr_ohms[EXTR_WR(lmc_modereg_params1.u, 0)],
EXTR_WR(lmc_modereg_params1.u, 3),
EXTR_WR(lmc_modereg_params1.u, 2),
EXTR_WR(lmc_modereg_params1.u, 1),
EXTR_WR(lmc_modereg_params1.u, 0));
ddr_print("DIC %3d, %3d, %3d, %3d ohms : %x,%x,%x,%x\n",
imp_values->dic_ohms[lmc_modereg_params1.s.dic_11],
imp_values->dic_ohms[lmc_modereg_params1.s.dic_10],
imp_values->dic_ohms[lmc_modereg_params1.s.dic_01],
imp_values->dic_ohms[lmc_modereg_params1.s.dic_00],
lmc_modereg_params1.s.dic_11,
lmc_modereg_params1.s.dic_10,
lmc_modereg_params1.s.dic_01,
lmc_modereg_params1.s.dic_00);
ddr_print("MODEREG_PARAMS1 : 0x%016llx\n", lmc_modereg_params1.u);
DRAM_CSR_WRITE(node, BDK_LMCX_MODEREG_PARAMS1(ddr_interface_num), lmc_modereg_params1.u);
} /* LMC(0)_MODEREG_PARAMS1 */
/* LMC(0)_MODEREG_PARAMS2 */
if (ddr_type == DDR4_DRAM) {
bdk_lmcx_modereg_params2_t lmc_modereg_params2;
lmc_modereg_params2.u = odt_config[odt_idx].odt_mask2.u;
for (i=0; i<4; ++i) {
uint64_t value;
if ((s = lookup_env_parameter("ddr_rtt_park_%1d%1d", !!(i&2), !!(i&1))) != NULL) {
value = strtoul(s, NULL, 0);
lmc_modereg_params2.u &= ~((uint64_t)0x7 << (i*10+0));
lmc_modereg_params2.u |= ( (value & 0x7) << (i*10+0));
}
}
if ((s = lookup_env_parameter("ddr_rtt_park")) != NULL) {
uint64_t value = strtoul(s, NULL, 0);
for (i=0; i<4; ++i) {
lmc_modereg_params2.u &= ~((uint64_t)0x7 << (i*10+0));
lmc_modereg_params2.u |= ( (value & 0x7) << (i*10+0));
}
}
if ((s = lookup_env_parameter_ull("ddr_modereg_params2")) != NULL) {
lmc_modereg_params2.u = strtoull(s, NULL, 0);
}
ddr_print("RTT_PARK %3d, %3d, %3d, %3d ohms : %x,%x,%x,%x\n",
imp_values->rtt_nom_ohms[lmc_modereg_params2.s.rtt_park_11],
imp_values->rtt_nom_ohms[lmc_modereg_params2.s.rtt_park_10],
imp_values->rtt_nom_ohms[lmc_modereg_params2.s.rtt_park_01],
imp_values->rtt_nom_ohms[lmc_modereg_params2.s.rtt_park_00],
lmc_modereg_params2.s.rtt_park_11,
lmc_modereg_params2.s.rtt_park_10,
lmc_modereg_params2.s.rtt_park_01,
lmc_modereg_params2.s.rtt_park_00);
ddr_print("%-45s : 0x%x,0x%x,0x%x,0x%x\n", "VREF_RANGE",
lmc_modereg_params2.s.vref_range_11,
lmc_modereg_params2.s.vref_range_10,
lmc_modereg_params2.s.vref_range_01,
lmc_modereg_params2.s.vref_range_00);
ddr_print("%-45s : 0x%x,0x%x,0x%x,0x%x\n", "VREF_VALUE",
lmc_modereg_params2.s.vref_value_11,
lmc_modereg_params2.s.vref_value_10,
lmc_modereg_params2.s.vref_value_01,
lmc_modereg_params2.s.vref_value_00);
ddr_print("MODEREG_PARAMS2 : 0x%016llx\n", lmc_modereg_params2.u);
DRAM_CSR_WRITE(node, BDK_LMCX_MODEREG_PARAMS2(ddr_interface_num), lmc_modereg_params2.u);
} /* LMC(0)_MODEREG_PARAMS2 */
/* LMC(0)_MODEREG_PARAMS3 */
if (ddr_type == DDR4_DRAM) {
bdk_lmcx_modereg_params3_t lmc_modereg_params3;
lmc_modereg_params3.u = BDK_CSR_READ(node, BDK_LMCX_MODEREG_PARAMS3(ddr_interface_num));
//lmc_modereg_params3.s.max_pd =
//lmc_modereg_params3.s.tc_ref =
//lmc_modereg_params3.s.vref_mon =
//lmc_modereg_params3.s.cal =
//lmc_modereg_params3.s.sre_abort =
//lmc_modereg_params3.s.rd_preamble =
//lmc_modereg_params3.s.wr_preamble =
//lmc_modereg_params3.s.par_lat_mode =
//lmc_modereg_params3.s.odt_pd =
//lmc_modereg_params3.s.ca_par_pers =
//lmc_modereg_params3.s.dm =
//lmc_modereg_params3.s.wr_dbi =
//lmc_modereg_params3.s.rd_dbi =
lmc_modereg_params3.s.tccd_l = max(divide_roundup(ddr4_tCCD_Lmin, tclk_psecs), 5ull) - 4;
//lmc_modereg_params3.s.lpasr =
//lmc_modereg_params3.s.crc =
//lmc_modereg_params3.s.gd =
//lmc_modereg_params3.s.pda =
//lmc_modereg_params3.s.temp_sense =
//lmc_modereg_params3.s.fgrm =
//lmc_modereg_params3.s.wr_cmd_lat =
//lmc_modereg_params3.s.mpr_fmt =
if (!CAVIUM_IS_MODEL(CAVIUM_CN88XX_PASS1_X)) {
int delay = 0;
if ((lranks_per_prank == 4) && (ddr_hertz >= 1000000000))
delay = 1;
lmc_modereg_params3.s.xrank_add_tccd_l = delay;
lmc_modereg_params3.s.xrank_add_tccd_s = delay;
}
ddr_print("MODEREG_PARAMS3 : 0x%016llx\n", lmc_modereg_params3.u);
DRAM_CSR_WRITE(node, BDK_LMCX_MODEREG_PARAMS3(ddr_interface_num), lmc_modereg_params3.u);
} /* LMC(0)_MODEREG_PARAMS3 */
/* LMC(0)_NXM */
{
bdk_lmcx_nxm_t lmc_nxm;
int num_bits = row_lsb + row_bits + lranks_bits - 26;
lmc_nxm.u = BDK_CSR_READ(node, BDK_LMCX_NXM(ddr_interface_num));
if (rank_mask & 0x1)
lmc_nxm.s.mem_msb_d0_r0 = num_bits;
if (rank_mask & 0x2)
lmc_nxm.s.mem_msb_d0_r1 = num_bits;
if (rank_mask & 0x4)
lmc_nxm.s.mem_msb_d1_r0 = num_bits;
if (rank_mask & 0x8)
lmc_nxm.s.mem_msb_d1_r1 = num_bits;
lmc_nxm.s.cs_mask = ~rank_mask & 0xff; /* Set the mask for non-existant ranks. */
if ((s = lookup_env_parameter_ull("ddr_nxm")) != NULL) {
lmc_nxm.u = strtoull(s, NULL, 0);
}
ddr_print("LMC_NXM : 0x%016llx\n", lmc_nxm.u);
DRAM_CSR_WRITE(node, BDK_LMCX_NXM(ddr_interface_num), lmc_nxm.u);
}
/* LMC(0)_WODT_MASK */
{
bdk_lmcx_wodt_mask_t lmc_wodt_mask;
lmc_wodt_mask.u = odt_config[odt_idx].odt_mask;
if ((s = lookup_env_parameter_ull("ddr_wodt_mask")) != NULL) {
lmc_wodt_mask.u = strtoull(s, NULL, 0);
}
ddr_print("WODT_MASK : 0x%016llx\n", lmc_wodt_mask.u);
DRAM_CSR_WRITE(node, BDK_LMCX_WODT_MASK(ddr_interface_num), lmc_wodt_mask.u);
}
/* LMC(0)_RODT_MASK */
{
int rankx;
bdk_lmcx_rodt_mask_t lmc_rodt_mask;
lmc_rodt_mask.u = odt_config[odt_idx].rodt_ctl;
if ((s = lookup_env_parameter_ull("ddr_rodt_mask")) != NULL) {
lmc_rodt_mask.u = strtoull(s, NULL, 0);
}
ddr_print("%-45s : 0x%016llx\n", "RODT_MASK", lmc_rodt_mask.u);
DRAM_CSR_WRITE(node, BDK_LMCX_RODT_MASK(ddr_interface_num), lmc_rodt_mask.u);
dyn_rtt_nom_mask = 0;
for (rankx = 0; rankx < dimm_count * 4;rankx++) {
if (!(rank_mask & (1 << rankx)))
continue;
dyn_rtt_nom_mask |= ((lmc_rodt_mask.u >> (8*rankx)) & 0xff);
}
if (num_ranks == 4) {
/* Normally ODT1 is wired to rank 1. For quad-ranked DIMMs
ODT1 is wired to the third rank (rank 2). The mask,
dyn_rtt_nom_mask, is used to indicate for which ranks
to sweep RTT_NOM during read-leveling. Shift the bit
from the ODT1 position over to the "ODT2" position so
that the read-leveling analysis comes out right. */
int odt1_bit = dyn_rtt_nom_mask & 2;
dyn_rtt_nom_mask &= ~2;
dyn_rtt_nom_mask |= odt1_bit<<1;
}
ddr_print("%-45s : 0x%02x\n", "DYN_RTT_NOM_MASK", dyn_rtt_nom_mask);
}
/* LMC(0)_COMP_CTL2 */
{
bdk_lmcx_comp_ctl2_t comp_ctl2;
comp_ctl2.u = BDK_CSR_READ(node, BDK_LMCX_COMP_CTL2(ddr_interface_num));
comp_ctl2.s.dqx_ctl = odt_config[odt_idx].odt_ena;
comp_ctl2.s.ck_ctl = (custom_lmc_config->ck_ctl == 0) ? 4 : custom_lmc_config->ck_ctl; /* Default 4=34.3 ohm */
comp_ctl2.s.cmd_ctl = (custom_lmc_config->cmd_ctl == 0) ? 4 : custom_lmc_config->cmd_ctl; /* Default 4=34.3 ohm */
comp_ctl2.s.control_ctl = (custom_lmc_config->ctl_ctl == 0) ? 4 : custom_lmc_config->ctl_ctl; /* Default 4=34.3 ohm */
// NOTE: these are now done earlier, in Step 6.9.3
// comp_ctl2.s.ntune_offset = 0;
// comp_ctl2.s.ptune_offset = 0;
ddr_rodt_ctl_auto = custom_lmc_config->ddr_rodt_ctl_auto;
if ((s = lookup_env_parameter("ddr_rodt_ctl_auto")) != NULL) {
ddr_rodt_ctl_auto = !!strtoul(s, NULL, 0);
}
default_rodt_ctl = odt_config[odt_idx].qs_dic;
if ((s = lookup_env_parameter("ddr_rodt_ctl")) == NULL)
s = lookup_env_parameter("ddr%d_rodt_ctl", ddr_interface_num);
if (s != NULL) {
default_rodt_ctl = strtoul(s, NULL, 0);
ddr_rodt_ctl_auto = 0;
}
comp_ctl2.s.rodt_ctl = default_rodt_ctl;
// if DDR4, force CK_CTL to 26 ohms if it is currently 34 ohms, and DCLK speed is 1 GHz or more...
if ((ddr_type == DDR4_DRAM) && (comp_ctl2.s.ck_ctl == ddr4_driver_34_ohm) && (ddr_hertz >= 1000000000)) {
comp_ctl2.s.ck_ctl = ddr4_driver_26_ohm; // lowest for DDR4 is 26 ohms
ddr_print("Forcing DDR4 COMP_CTL2[CK_CTL] to %d, %d ohms\n", comp_ctl2.s.ck_ctl,
imp_values->drive_strength[comp_ctl2.s.ck_ctl]);
}
if ((s = lookup_env_parameter("ddr_ck_ctl")) != NULL) {
comp_ctl2.s.ck_ctl = strtoul(s, NULL, 0);
}
if ((s = lookup_env_parameter("ddr_cmd_ctl")) != NULL) {
comp_ctl2.s.cmd_ctl = strtoul(s, NULL, 0);
}
if ((s = lookup_env_parameter("ddr_control_ctl")) != NULL) {
comp_ctl2.s.control_ctl = strtoul(s, NULL, 0);
}
if ((s = lookup_env_parameter("ddr_dqx_ctl")) != NULL) {
comp_ctl2.s.dqx_ctl = strtoul(s, NULL, 0);
}
ddr_print("%-45s : %d, %d ohms\n", "DQX_CTL ", comp_ctl2.s.dqx_ctl,
imp_values->dqx_strength [comp_ctl2.s.dqx_ctl ]);
ddr_print("%-45s : %d, %d ohms\n", "CK_CTL ", comp_ctl2.s.ck_ctl,
imp_values->drive_strength[comp_ctl2.s.ck_ctl ]);
ddr_print("%-45s : %d, %d ohms\n", "CMD_CTL ", comp_ctl2.s.cmd_ctl,
imp_values->drive_strength[comp_ctl2.s.cmd_ctl ]);
ddr_print("%-45s : %d, %d ohms\n", "CONTROL_CTL ", comp_ctl2.s.control_ctl,
imp_values->drive_strength[comp_ctl2.s.control_ctl]);
ddr_print("Read ODT_CTL : 0x%x (%d ohms)\n",
comp_ctl2.s.rodt_ctl, imp_values->rodt_ohms[comp_ctl2.s.rodt_ctl]);
DRAM_CSR_WRITE(node, BDK_LMCX_COMP_CTL2(ddr_interface_num), comp_ctl2.u);
}
/* LMC(0)_PHY_CTL */
{
bdk_lmcx_phy_ctl_t lmc_phy_ctl;
lmc_phy_ctl.u = BDK_CSR_READ(node, BDK_LMCX_PHY_CTL(ddr_interface_num));
lmc_phy_ctl.s.ts_stagger = 0;
if (!CAVIUM_IS_MODEL(CAVIUM_CN88XX_PASS1_X) && (lranks_per_prank > 1)) {
lmc_phy_ctl.cn81xx.c0_sel = lmc_phy_ctl.cn81xx.c1_sel = 2; // C0 is TEN, C1 is A17
ddr_print("N%d.LMC%d: 3DS: setting PHY_CTL[cx_csel] = %d\n",
node, ddr_interface_num, lmc_phy_ctl.cn81xx.c1_sel);
}
ddr_print("PHY_CTL : 0x%016llx\n", lmc_phy_ctl.u);
DRAM_CSR_WRITE(node, BDK_LMCX_PHY_CTL(ddr_interface_num), lmc_phy_ctl.u);
}
/* LMC(0)_DIMM0/1_PARAMS */
if (spd_rdimm) {
bdk_lmcx_dimm_ctl_t lmc_dimm_ctl;
for (didx = 0; didx < (unsigned)dimm_count; ++didx) {
bdk_lmcx_dimmx_params_t lmc_dimmx_params;
int dimm = didx;
int rc;
lmc_dimmx_params.u = BDK_CSR_READ(node, BDK_LMCX_DIMMX_PARAMS(ddr_interface_num, dimm));
if (ddr_type == DDR4_DRAM) {
bdk_lmcx_dimmx_ddr4_params0_t lmc_dimmx_ddr4_params0;
bdk_lmcx_dimmx_ddr4_params1_t lmc_dimmx_ddr4_params1;
bdk_lmcx_ddr4_dimm_ctl_t lmc_ddr4_dimm_ctl;
lmc_dimmx_params.s.rc0 = 0;
lmc_dimmx_params.s.rc1 = 0;
lmc_dimmx_params.s.rc2 = 0;
rc = read_spd(node, &dimm_config_table[didx], DDR4_SPD_RDIMM_REGISTER_DRIVE_STRENGTH_CTL);
lmc_dimmx_params.s.rc3 = (rc >> 4) & 0xf;
lmc_dimmx_params.s.rc4 = ((rc >> 0) & 0x3) << 2;
lmc_dimmx_params.s.rc4 |= ((rc >> 2) & 0x3) << 0;
rc = read_spd(node, &dimm_config_table[didx], DDR4_SPD_RDIMM_REGISTER_DRIVE_STRENGTH_CK);
lmc_dimmx_params.s.rc5 = ((rc >> 0) & 0x3) << 2;
lmc_dimmx_params.s.rc5 |= ((rc >> 2) & 0x3) << 0;
lmc_dimmx_params.s.rc6 = 0;
lmc_dimmx_params.s.rc7 = 0;
lmc_dimmx_params.s.rc8 = 0;
lmc_dimmx_params.s.rc9 = 0;
/*
** rc10 DDR4 RDIMM Operating Speed
** ==== =========================================================
** 0 tclk_psecs >= 1250 psec DDR4-1600 (1250 ps)
** 1 1250 psec > tclk_psecs >= 1071 psec DDR4-1866 (1071 ps)
** 2 1071 psec > tclk_psecs >= 938 psec DDR4-2133 ( 938 ps)
** 3 938 psec > tclk_psecs >= 833 psec DDR4-2400 ( 833 ps)
** 4 833 psec > tclk_psecs >= 750 psec DDR4-2666 ( 750 ps)
** 5 750 psec > tclk_psecs >= 625 psec DDR4-3200 ( 625 ps)
*/
lmc_dimmx_params.s.rc10 = 0;
if (1250 > tclk_psecs)
lmc_dimmx_params.s.rc10 = 1;
if (1071 > tclk_psecs)
lmc_dimmx_params.s.rc10 = 2;
if (938 > tclk_psecs)
lmc_dimmx_params.s.rc10 = 3;
if (833 > tclk_psecs)
lmc_dimmx_params.s.rc10 = 4;
if (750 > tclk_psecs)
lmc_dimmx_params.s.rc10 = 5;
lmc_dimmx_params.s.rc11 = 0;
lmc_dimmx_params.s.rc12 = 0;
lmc_dimmx_params.s.rc13 = (spd_dimm_type == 4) ? 0 : 4; /* 0=LRDIMM, 1=RDIMM */
lmc_dimmx_params.s.rc13 |= (ddr_type == DDR4_DRAM) ? (spd_addr_mirror << 3) : 0;
lmc_dimmx_params.s.rc14 = 0;
//lmc_dimmx_params.s.rc15 = 4; /* 0 nCK latency adder */
lmc_dimmx_params.s.rc15 = 0; /* 1 nCK latency adder */
lmc_dimmx_ddr4_params0.u = 0;
lmc_dimmx_ddr4_params0.s.rc8x = 0;
lmc_dimmx_ddr4_params0.s.rc7x = 0;
lmc_dimmx_ddr4_params0.s.rc6x = 0;
lmc_dimmx_ddr4_params0.s.rc5x = 0;
lmc_dimmx_ddr4_params0.s.rc4x = 0;
lmc_dimmx_ddr4_params0.s.rc3x = compute_rc3x(tclk_psecs);
lmc_dimmx_ddr4_params0.s.rc2x = 0;
lmc_dimmx_ddr4_params0.s.rc1x = 0;
lmc_dimmx_ddr4_params1.u = 0;
lmc_dimmx_ddr4_params1.s.rcbx = 0;
lmc_dimmx_ddr4_params1.s.rcax = 0;
lmc_dimmx_ddr4_params1.s.rc9x = 0;
lmc_ddr4_dimm_ctl.u = 0;
lmc_ddr4_dimm_ctl.s.ddr4_dimm0_wmask = 0x004;
lmc_ddr4_dimm_ctl.s.ddr4_dimm1_wmask = (dimm_count > 1) ? 0x004 : 0x0000;
/*
* Handle any overrides from envvars here...
*/
if ((s = lookup_env_parameter("ddr_ddr4_params0")) != NULL) {
lmc_dimmx_ddr4_params0.u = strtoul(s, NULL, 0);
}
if ((s = lookup_env_parameter("ddr_ddr4_params1")) != NULL) {
lmc_dimmx_ddr4_params1.u = strtoul(s, NULL, 0);
}
if ((s = lookup_env_parameter("ddr_ddr4_dimm_ctl")) != NULL) {
lmc_ddr4_dimm_ctl.u = strtoul(s, NULL, 0);
}
for (i=0; i<11; ++i) {
uint64_t value;
if ((s = lookup_env_parameter("ddr_ddr4_rc%1xx", i+1)) != NULL) {
value = strtoul(s, NULL, 0);
if (i < 8) {
lmc_dimmx_ddr4_params0.u &= ~((uint64_t)0xff << (i*8));
lmc_dimmx_ddr4_params0.u |= (value << (i*8));
} else {
lmc_dimmx_ddr4_params1.u &= ~((uint64_t)0xff << ((i-8)*8));
lmc_dimmx_ddr4_params1.u |= (value << ((i-8)*8));
}
}
}
/*
* write the final CSR values
*/
DRAM_CSR_WRITE(node, BDK_LMCX_DIMMX_DDR4_PARAMS0(ddr_interface_num, dimm), lmc_dimmx_ddr4_params0.u);
DRAM_CSR_WRITE(node, BDK_LMCX_DDR4_DIMM_CTL(ddr_interface_num), lmc_ddr4_dimm_ctl.u);
DRAM_CSR_WRITE(node, BDK_LMCX_DIMMX_DDR4_PARAMS1(ddr_interface_num, dimm), lmc_dimmx_ddr4_params1.u);
ddr_print("DIMM%d Register Control Words RCBx:RC1x : %x %x %x %x %x %x %x %x %x %x %x\n",
dimm,
lmc_dimmx_ddr4_params1.s.rcbx,
lmc_dimmx_ddr4_params1.s.rcax,
lmc_dimmx_ddr4_params1.s.rc9x,
lmc_dimmx_ddr4_params0.s.rc8x,
lmc_dimmx_ddr4_params0.s.rc7x,
lmc_dimmx_ddr4_params0.s.rc6x,
lmc_dimmx_ddr4_params0.s.rc5x,
lmc_dimmx_ddr4_params0.s.rc4x,
lmc_dimmx_ddr4_params0.s.rc3x,
lmc_dimmx_ddr4_params0.s.rc2x,
lmc_dimmx_ddr4_params0.s.rc1x );
} else { /* if (ddr_type == DDR4_DRAM) */
rc = read_spd(node, &dimm_config_table[didx], 69);
lmc_dimmx_params.s.rc0 = (rc >> 0) & 0xf;
lmc_dimmx_params.s.rc1 = (rc >> 4) & 0xf;
rc = read_spd(node, &dimm_config_table[didx], 70);
lmc_dimmx_params.s.rc2 = (rc >> 0) & 0xf;
lmc_dimmx_params.s.rc3 = (rc >> 4) & 0xf;
rc = read_spd(node, &dimm_config_table[didx], 71);
lmc_dimmx_params.s.rc4 = (rc >> 0) & 0xf;
lmc_dimmx_params.s.rc5 = (rc >> 4) & 0xf;
rc = read_spd(node, &dimm_config_table[didx], 72);
lmc_dimmx_params.s.rc6 = (rc >> 0) & 0xf;
lmc_dimmx_params.s.rc7 = (rc >> 4) & 0xf;
rc = read_spd(node, &dimm_config_table[didx], 73);
lmc_dimmx_params.s.rc8 = (rc >> 0) & 0xf;
lmc_dimmx_params.s.rc9 = (rc >> 4) & 0xf;
rc = read_spd(node, &dimm_config_table[didx], 74);
lmc_dimmx_params.s.rc10 = (rc >> 0) & 0xf;
lmc_dimmx_params.s.rc11 = (rc >> 4) & 0xf;
rc = read_spd(node, &dimm_config_table[didx], 75);
lmc_dimmx_params.s.rc12 = (rc >> 0) & 0xf;
lmc_dimmx_params.s.rc13 = (rc >> 4) & 0xf;
rc = read_spd(node, &dimm_config_table[didx], 76);
lmc_dimmx_params.s.rc14 = (rc >> 0) & 0xf;
lmc_dimmx_params.s.rc15 = (rc >> 4) & 0xf;
if ((s = lookup_env_parameter("ddr_clk_drive")) != NULL) {
if (strcmp(s,"light") == 0) {
lmc_dimmx_params.s.rc5 = 0x0; /* Light Drive */
}
if (strcmp(s,"moderate") == 0) {
lmc_dimmx_params.s.rc5 = 0x5; /* Moderate Drive */
}
if (strcmp(s,"strong") == 0) {
lmc_dimmx_params.s.rc5 = 0xA; /* Strong Drive */
}
}
if ((s = lookup_env_parameter("ddr_cmd_drive")) != NULL) {
if (strcmp(s,"light") == 0) {
lmc_dimmx_params.s.rc3 = 0x0; /* Light Drive */
}
if (strcmp(s,"moderate") == 0) {
lmc_dimmx_params.s.rc3 = 0x5; /* Moderate Drive */
}
if (strcmp(s,"strong") == 0) {
lmc_dimmx_params.s.rc3 = 0xA; /* Strong Drive */
}
}
if ((s = lookup_env_parameter("ddr_ctl_drive")) != NULL) {
if (strcmp(s,"light") == 0) {
lmc_dimmx_params.s.rc4 = 0x0; /* Light Drive */
}
if (strcmp(s,"moderate") == 0) {
lmc_dimmx_params.s.rc4 = 0x5; /* Moderate Drive */
}
}
/*
** rc10 DDR3 RDIMM Operating Speed
** ==== =========================================================
** 0 tclk_psecs >= 2500 psec DDR3/DDR3L-800 (default)
** 1 2500 psec > tclk_psecs >= 1875 psec DDR3/DDR3L-1066
** 2 1875 psec > tclk_psecs >= 1500 psec DDR3/DDR3L-1333
** 3 1500 psec > tclk_psecs >= 1250 psec DDR3/DDR3L-1600
** 4 1250 psec > tclk_psecs >= 1071 psec DDR3-1866
*/
lmc_dimmx_params.s.rc10 = 0;
if (2500 > tclk_psecs)
lmc_dimmx_params.s.rc10 = 1;
if (1875 > tclk_psecs)
lmc_dimmx_params.s.rc10 = 2;
if (1500 > tclk_psecs)
lmc_dimmx_params.s.rc10 = 3;
if (1250 > tclk_psecs)
lmc_dimmx_params.s.rc10 = 4;
} /* if (ddr_type == DDR4_DRAM) */
if ((s = lookup_env_parameter("ddr_dimmx_params")) != NULL) {
lmc_dimmx_params.u = strtoul(s, NULL, 0);
}
for (i=0; i<16; ++i) {
uint64_t value;
if ((s = lookup_env_parameter("ddr_rc%d", i)) != NULL) {
value = strtoul(s, NULL, 0);
lmc_dimmx_params.u &= ~((uint64_t)0xf << (i*4));
lmc_dimmx_params.u |= ( value << (i*4));
}
}
DRAM_CSR_WRITE(node, BDK_LMCX_DIMMX_PARAMS(ddr_interface_num, dimm), lmc_dimmx_params.u);
ddr_print("DIMM%d Register Control Words RC15:RC0 : %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",
dimm,
lmc_dimmx_params.s.rc15,
lmc_dimmx_params.s.rc14,
lmc_dimmx_params.s.rc13,
lmc_dimmx_params.s.rc12,
lmc_dimmx_params.s.rc11,
lmc_dimmx_params.s.rc10,
lmc_dimmx_params.s.rc9 ,
lmc_dimmx_params.s.rc8 ,
lmc_dimmx_params.s.rc7 ,
lmc_dimmx_params.s.rc6 ,
lmc_dimmx_params.s.rc5 ,
lmc_dimmx_params.s.rc4 ,
lmc_dimmx_params.s.rc3 ,
lmc_dimmx_params.s.rc2 ,
lmc_dimmx_params.s.rc1 ,
lmc_dimmx_params.s.rc0 );
} /* for didx */
if (ddr_type == DDR4_DRAM) {
/* LMC0_DIMM_CTL */
lmc_dimm_ctl.u = BDK_CSR_READ(node, BDK_LMCX_DIMM_CTL(ddr_interface_num));
lmc_dimm_ctl.s.dimm0_wmask = 0xdf3f;
lmc_dimm_ctl.s.dimm1_wmask = (dimm_count > 1) ? 0xdf3f : 0x0000;
lmc_dimm_ctl.s.tcws = 0x4e0;
lmc_dimm_ctl.cn88xx.parity = custom_lmc_config->parity;
if ((s = lookup_env_parameter("ddr_dimm0_wmask")) != NULL) {
lmc_dimm_ctl.s.dimm0_wmask = strtoul(s, NULL, 0);
}
if ((s = lookup_env_parameter("ddr_dimm1_wmask")) != NULL) {
lmc_dimm_ctl.s.dimm1_wmask = strtoul(s, NULL, 0);
}
if ((s = lookup_env_parameter("ddr_dimm_ctl_parity")) != NULL) {
lmc_dimm_ctl.cn88xx.parity = strtoul(s, NULL, 0);
}
if ((s = lookup_env_parameter("ddr_dimm_ctl_tcws")) != NULL) {
lmc_dimm_ctl.s.tcws = strtoul(s, NULL, 0);
}
ddr_print("LMC DIMM_CTL : 0x%016llx\n", lmc_dimm_ctl.u);
DRAM_CSR_WRITE(node, BDK_LMCX_DIMM_CTL(ddr_interface_num), lmc_dimm_ctl.u);
perform_octeon3_ddr3_sequence(node, rank_mask,
ddr_interface_num, 0x7 ); /* Init RCW */
/* Write RC0D last */
lmc_dimm_ctl.s.dimm0_wmask = 0x2000;
lmc_dimm_ctl.s.dimm1_wmask = (dimm_count > 1) ? 0x2000 : 0x0000;
ddr_print("LMC DIMM_CTL : 0x%016llx\n", lmc_dimm_ctl.u);
DRAM_CSR_WRITE(node, BDK_LMCX_DIMM_CTL(ddr_interface_num), lmc_dimm_ctl.u);
/* Don't write any extended registers the second time */
DRAM_CSR_WRITE(node, BDK_LMCX_DDR4_DIMM_CTL(ddr_interface_num), 0);
perform_octeon3_ddr3_sequence(node, rank_mask,
ddr_interface_num, 0x7 ); /* Init RCW */
} else {
/* LMC0_DIMM_CTL */
lmc_dimm_ctl.u = BDK_CSR_READ(node, BDK_LMCX_DIMM_CTL(ddr_interface_num));
lmc_dimm_ctl.s.dimm0_wmask = 0xffff;
lmc_dimm_ctl.s.dimm1_wmask = (dimm_count > 1) ? 0xffff : 0x0000;
lmc_dimm_ctl.s.tcws = 0x4e0;
lmc_dimm_ctl.cn88xx.parity = custom_lmc_config->parity;
if ((s = lookup_env_parameter("ddr_dimm0_wmask")) != NULL) {
lmc_dimm_ctl.s.dimm0_wmask = strtoul(s, NULL, 0);
}
if ((s = lookup_env_parameter("ddr_dimm1_wmask")) != NULL) {
lmc_dimm_ctl.s.dimm1_wmask = strtoul(s, NULL, 0);
}
if ((s = lookup_env_parameter("ddr_dimm_ctl_parity")) != NULL) {
lmc_dimm_ctl.cn88xx.parity = strtoul(s, NULL, 0);
}
if ((s = lookup_env_parameter("ddr_dimm_ctl_tcws")) != NULL) {
lmc_dimm_ctl.s.tcws = strtoul(s, NULL, 0);
}
ddr_print("LMC DIMM_CTL : 0x%016llx\n", lmc_dimm_ctl.u);
DRAM_CSR_WRITE(node, BDK_LMCX_DIMM_CTL(ddr_interface_num), lmc_dimm_ctl.u);
perform_octeon3_ddr3_sequence(node, rank_mask,
ddr_interface_num, 0x7 ); /* Init RCW */
}
} else { /* if (spd_rdimm) */
/* Disable register control writes for unbuffered */
bdk_lmcx_dimm_ctl_t lmc_dimm_ctl;
lmc_dimm_ctl.u = BDK_CSR_READ(node, BDK_LMCX_DIMM_CTL(ddr_interface_num));
lmc_dimm_ctl.s.dimm0_wmask = 0;
lmc_dimm_ctl.s.dimm1_wmask = 0;
DRAM_CSR_WRITE(node, BDK_LMCX_DIMM_CTL(ddr_interface_num), lmc_dimm_ctl.u);
} /* if (spd_rdimm) */
/*
* Comments (steps 3 through 5) continue in perform_octeon3_ddr3_sequence()
*/
{
bdk_lmcx_modereg_params0_t lmc_modereg_params0;
if (ddr_memory_preserved(node)) {
/* Contents are being preserved. Take DRAM out of
self-refresh first. Then init steps can procede
normally */
perform_octeon3_ddr3_sequence(node, rank_mask,
ddr_interface_num, 3); /* self-refresh exit */
}
lmc_modereg_params0.u = BDK_CSR_READ(node, BDK_LMCX_MODEREG_PARAMS0(ddr_interface_num));
lmc_modereg_params0.s.dllr = 1; /* Set during first init sequence */
DRAM_CSR_WRITE(node, BDK_LMCX_MODEREG_PARAMS0(ddr_interface_num), lmc_modereg_params0.u);
perform_ddr_init_sequence(node, rank_mask, ddr_interface_num);
lmc_modereg_params0.s.dllr = 0; /* Clear for normal operation */
DRAM_CSR_WRITE(node, BDK_LMCX_MODEREG_PARAMS0(ddr_interface_num), lmc_modereg_params0.u);
}
// NOTE: this must be done for pass 2.x and pass 1.x
if ((spd_rdimm) && (ddr_type == DDR4_DRAM)) {
VB_PRT(VBL_FAE, "Running init sequence 1\n");
change_rdimm_mpr_pattern(node, rank_mask, ddr_interface_num, dimm_count);
}
#define DEFAULT_INTERNAL_VREF_TRAINING_LIMIT 5
int internal_retries = 0;
int deskew_training_errors;
int dac_eval_retries;
int dac_settings[9];
int num_samples;
int sample, lane;
int last_lane = ((ddr_interface_64b) ? 8 : 4) + use_ecc;
#define DEFAULT_DAC_SAMPLES 7 // originally was 5
#define DAC_RETRIES_LIMIT 2
typedef struct {
int16_t bytes[DEFAULT_DAC_SAMPLES];
} bytelane_sample_t;
bytelane_sample_t lanes[9];
memset(lanes, 0, sizeof(lanes));
if ((ddr_type == DDR4_DRAM) && !CAVIUM_IS_MODEL(CAVIUM_CN88XX_PASS1_X)) {
num_samples = DEFAULT_DAC_SAMPLES;
} else {
num_samples = 1; // if DDR3 or no ability to write DAC values
}
perform_internal_vref_training:
for (sample = 0; sample < num_samples; sample++) {
dac_eval_retries = 0;
do { // make offset and internal vref training repeatable
/* 6.9.8 LMC Offset Training
LMC requires input-receiver offset training. */
Perform_Offset_Training(node, rank_mask, ddr_interface_num);
/* 6.9.9 LMC Internal Vref Training
LMC requires input-reference-voltage training. */
Perform_Internal_VREF_Training(node, rank_mask, ddr_interface_num);
// read and maybe display the DAC values for a sample
read_DAC_DBI_settings(node, ddr_interface_num, /*DAC*/1, dac_settings);
if ((num_samples == 1) || dram_is_verbose(VBL_DEV)) {
display_DAC_DBI_settings(node, ddr_interface_num, /*DAC*/1, use_ecc,
dac_settings, (char *)"Internal VREF");
}
// for DDR4, evaluate the DAC settings and retry if any issues
if (ddr_type == DDR4_DRAM) {
if (evaluate_DAC_settings(ddr_interface_64b, use_ecc, dac_settings)) {
if (++dac_eval_retries > DAC_RETRIES_LIMIT) {
ddr_print("N%d.LMC%d: DDR4 internal VREF DAC settings: retries exhausted; continuing...\n",
node, ddr_interface_num);
} else {
ddr_print("N%d.LMC%d: DDR4 internal VREF DAC settings inconsistent; retrying....\n",
node, ddr_interface_num); // FIXME? verbosity!!!
continue;
}
}
if (num_samples > 1) { // taking multiple samples, otherwise do nothing
// good sample or exhausted retries, record it
for (lane = 0; lane < last_lane; lane++) {
lanes[lane].bytes[sample] = dac_settings[lane];
}
}
}
break; // done if DDR3, or good sample, or exhausted retries
} while (1);
} /* for (sample = 0; sample < num_samples; sample++) */
if (num_samples > 1) {
debug_print("N%d.LMC%d: DDR4 internal VREF DAC settings: processing multiple samples...\n",
node, ddr_interface_num);
for (lane = 0; lane < last_lane; lane++) {
dac_settings[lane] = process_samples_average(&lanes[lane].bytes[0], num_samples,
ddr_interface_num, lane);
}
display_DAC_DBI_settings(node, ddr_interface_num, /*DAC*/1, use_ecc, dac_settings, (char *)"Averaged VREF");
// finally, write the final DAC values
for (lane = 0; lane < last_lane; lane++) {
load_dac_override(node, ddr_interface_num, dac_settings[lane], lane);
}
}
#if DAC_OVERRIDE_EARLY
// as a second step, after internal VREF training, before starting deskew training:
// for DDR3 and THUNDER pass 2.x, override the DAC setting to 127
if ((ddr_type == DDR3_DRAM) && !CAVIUM_IS_MODEL(CAVIUM_CN88XX_PASS1_X)) { // added 81xx and 83xx
load_dac_override(node, ddr_interface_num, 127, /* all */0x0A);
ddr_print("N%d.LMC%d: Overriding DDR3 internal VREF DAC settings to 127 (early).\n",
node, ddr_interface_num);
}
#endif
/*
* 6.9.10 LMC Read Deskew Training
* LMC requires input-read-data deskew training.
*/
if (! disable_deskew_training) {
deskew_training_errors = Perform_Read_Deskew_Training(node, rank_mask, ddr_interface_num,
spd_rawcard_AorB, 0, ddr_interface_64b);
// All the Deskew lock and saturation retries (may) have been done,
// but we ended up with nibble errors; so, as a last ditch effort,
// enable retries of the Internal Vref Training...
if (deskew_training_errors) {
if (internal_retries < DEFAULT_INTERNAL_VREF_TRAINING_LIMIT) {
internal_retries++;
VB_PRT(VBL_FAE, "N%d.LMC%d: Deskew training results still unsettled - retrying internal Vref training (%d)\n",
node, ddr_interface_num, internal_retries);
goto perform_internal_vref_training;
} else {
VB_PRT(VBL_FAE, "N%d.LMC%d: Deskew training incomplete - %d retries exhausted, but continuing...\n",
node, ddr_interface_num, internal_retries);
}
}
// FIXME: treat this as the final DSK print from now on, and print if VBL_NORM or above
// also, save the results of the original training
Validate_Read_Deskew_Training(node, rank_mask, ddr_interface_num, &deskew_training_results, VBL_NORM);
// setup write bit-deskew if enabled...
if (enable_write_deskew) {
ddr_print("N%d.LMC%d: WRITE BIT-DESKEW feature enabled- going NEUTRAL.\n",
node, ddr_interface_num);
Neutral_Write_Deskew_Setup(node, ddr_interface_num);
} /* if (enable_write_deskew) */
} /* if (! disable_deskew_training) */
#if !DAC_OVERRIDE_EARLY
// as a final step in internal VREF training, after deskew training but before HW WL:
// for DDR3 and THUNDER pass 2.x, override the DAC setting to 127
if ((ddr_type == DDR3_DRAM) && !CAVIUM_IS_MODEL(CAVIUM_CN88XX_PASS1_X)) { // added 81xx and 83xx
load_dac_override(node, ddr_interface_num, 127, /* all */0x0A);
ddr_print("N%d.LMC%d, Overriding DDR3 internal VREF DAC settings to 127 (late).\n",
node, ddr_interface_num);
}
#endif
/* LMC(0)_EXT_CONFIG */
{
bdk_lmcx_ext_config_t ext_config;
ext_config.u = BDK_CSR_READ(node, BDK_LMCX_EXT_CONFIG(ddr_interface_num));
ext_config.s.vrefint_seq_deskew = 0;
ext_config.s.read_ena_bprch = 1;
ext_config.s.read_ena_fprch = 1;
ext_config.s.drive_ena_fprch = 1;
ext_config.s.drive_ena_bprch = 1;
ext_config.s.invert_data = 0; // make sure this is OFF for all current chips
if ((s = lookup_env_parameter("ddr_read_fprch")) != NULL) {
ext_config.s.read_ena_fprch = strtoul(s, NULL, 0);
}
if ((s = lookup_env_parameter("ddr_read_bprch")) != NULL) {
ext_config.s.read_ena_bprch = strtoul(s, NULL, 0);
}
if ((s = lookup_env_parameter("ddr_drive_fprch")) != NULL) {
ext_config.s.drive_ena_fprch = strtoul(s, NULL, 0);
}
if ((s = lookup_env_parameter("ddr_drive_bprch")) != NULL) {
ext_config.s.drive_ena_bprch = strtoul(s, NULL, 0);
}
if (!CAVIUM_IS_MODEL(CAVIUM_CN88XX_PASS1_X) && (lranks_per_prank > 1)) {
ext_config.s.dimm0_cid = ext_config.s.dimm1_cid = lranks_bits;
ddr_print("N%d.LMC%d: 3DS: setting EXT_CONFIG[dimmx_cid] = %d\n",
node, ddr_interface_num, ext_config.s.dimm0_cid);
}
DRAM_CSR_WRITE(node, BDK_LMCX_EXT_CONFIG(ddr_interface_num), ext_config.u);
ddr_print("%-45s : 0x%016llx\n", "EXT_CONFIG", ext_config.u);
}
{
int save_ref_zqcs_int;
uint64_t temp_delay_usecs;
lmc_config.u = BDK_CSR_READ(node, BDK_LMCX_CONFIG(ddr_interface_num));
/* Temporarily select the minimum ZQCS interval and wait
long enough for a few ZQCS calibrations to occur. This
should ensure that the calibration circuitry is
stabilized before read/write leveling occurs. */
save_ref_zqcs_int = lmc_config.s.ref_zqcs_int;
lmc_config.s.ref_zqcs_int = 1 | (32<<7); /* set smallest interval */
DRAM_CSR_WRITE(node, BDK_LMCX_CONFIG(ddr_interface_num), lmc_config.u);
BDK_CSR_READ(node, BDK_LMCX_CONFIG(ddr_interface_num));
/* Compute an appropriate delay based on the current ZQCS
interval. The delay should be long enough for the
current ZQCS delay counter to expire plus ten of the
minimum intarvals to ensure that some calibrations
occur. */
temp_delay_usecs = (((uint64_t)save_ref_zqcs_int >> 7)
* tclk_psecs * 100 * 512 * 128) / (10000*10000)
+ 10 * ((uint64_t)32 * tclk_psecs * 100 * 512 * 128) / (10000*10000);
VB_PRT(VBL_FAE, "N%d.LMC%d: Waiting %lld usecs for ZQCS calibrations to start\n",
node, ddr_interface_num, temp_delay_usecs);
bdk_wait_usec(temp_delay_usecs);
lmc_config.s.ref_zqcs_int = save_ref_zqcs_int; /* Restore computed interval */
DRAM_CSR_WRITE(node, BDK_LMCX_CONFIG(ddr_interface_num), lmc_config.u);
BDK_CSR_READ(node, BDK_LMCX_CONFIG(ddr_interface_num));
}
/*
* 6.9.11 LMC Write Leveling
*
* LMC supports an automatic write leveling like that described in the
* JEDEC DDR3 specifications separately per byte-lane.
*
* All of DDR PLL, LMC CK, LMC DRESET, and early LMC initializations must
* be completed prior to starting this LMC write-leveling sequence.
*
* There are many possible procedures that will write-level all the
* attached DDR3 DRAM parts. One possibility is for software to simply
* write the desired values into LMC(0)_WLEVEL_RANK(0..3). This section
* describes one possible sequence that uses LMC's autowrite-leveling
* capabilities.
*
* 1. If the DQS/DQ delays on the board may be more than the ADD/CMD
* delays, then ensure that LMC(0)_CONFIG[EARLY_DQX] is set at this
* point.
*
* Do the remaining steps 2-7 separately for each rank i with attached
* DRAM.
*
* 2. Write LMC(0)_WLEVEL_RANKi = 0.
*
* 3. For ×8 parts:
*
* Without changing any other fields in LMC(0)_WLEVEL_CTL, write
* LMC(0)_WLEVEL_CTL[LANEMASK] to select all byte lanes with attached
* DRAM.
*
* For ×16 parts:
*
* Without changing any other fields in LMC(0)_WLEVEL_CTL, write
* LMC(0)_WLEVEL_CTL[LANEMASK] to select all even byte lanes with
* attached DRAM.
*
* 4. Without changing any other fields in LMC(0)_CONFIG,
*
* o write LMC(0)_SEQ_CTL[SEQ_SEL] to select write-leveling
*
* o write LMC(0)_CONFIG[RANKMASK] = (1 << i)
*
* o write LMC(0)_SEQ_CTL[INIT_START] = 1
*
* LMC will initiate write-leveling at this point. Assuming
* LMC(0)_WLEVEL_CTL [SSET] = 0, LMC first enables write-leveling on
* the selected DRAM rank via a DDR3 MR1 write, then sequences through
* and accumulates write-leveling results for eight different delay
* settings twice, starting at a delay of zero in this case since
* LMC(0)_WLEVEL_RANKi[BYTE*<4:3>] = 0, increasing by 1/8 CK each
* setting, covering a total distance of one CK, then disables the
* write-leveling via another DDR3 MR1 write.
*
* After the sequence through 16 delay settings is complete:
*
* o LMC sets LMC(0)_WLEVEL_RANKi[STATUS] = 3
*
* o LMC sets LMC(0)_WLEVEL_RANKi[BYTE*<2:0>] (for all ranks selected
* by LMC(0)_WLEVEL_CTL[LANEMASK]) to indicate the first write
* leveling result of 1 that followed result of 0 during the
* sequence, except that the LMC always writes
* LMC(0)_WLEVEL_RANKi[BYTE*<0>]=0.
*
* o Software can read the eight write-leveling results from the first
* pass through the delay settings by reading
* LMC(0)_WLEVEL_DBG[BITMASK] (after writing
* LMC(0)_WLEVEL_DBG[BYTE]). (LMC does not retain the writeleveling
* results from the second pass through the eight delay
* settings. They should often be identical to the
* LMC(0)_WLEVEL_DBG[BITMASK] results, though.)
*
* 5. Wait until LMC(0)_WLEVEL_RANKi[STATUS] != 2.
*
* LMC will have updated LMC(0)_WLEVEL_RANKi[BYTE*<2:0>] for all byte
* lanes selected by LMC(0)_WLEVEL_CTL[LANEMASK] at this point.
* LMC(0)_WLEVEL_RANKi[BYTE*<4:3>] will still be the value that
* software wrote in substep 2 above, which is 0.
*
* 6. For ×16 parts:
*
* Without changing any other fields in LMC(0)_WLEVEL_CTL, write
* LMC(0)_WLEVEL_CTL[LANEMASK] to select all odd byte lanes with
* attached DRAM.
*
* Repeat substeps 4 and 5 with this new LMC(0)_WLEVEL_CTL[LANEMASK]
* setting. Skip to substep 7 if this has already been done.
*
* For ×8 parts:
*
* Skip this substep. Go to substep 7.
*
* 7. Calculate LMC(0)_WLEVEL_RANKi[BYTE*<4:3>] settings for all byte
* lanes on all ranks with attached DRAM.
*
* At this point, all byte lanes on rank i with attached DRAM should
* have been write-leveled, and LMC(0)_WLEVEL_RANKi[BYTE*<2:0>] has
* the result for each byte lane.
*
* But note that the DDR3 write-leveling sequence will only determine
* the delay modulo the CK cycle time, and cannot determine how many
* additional CK cycles of delay are present. Software must calculate
* the number of CK cycles, or equivalently, the
* LMC(0)_WLEVEL_RANKi[BYTE*<4:3>] settings.
*
* This BYTE*<4:3> calculation is system/board specific.
*
* Many techniques can be used to calculate write-leveling BYTE*<4:3> values,
* including:
*
* o Known values for some byte lanes.
*
* o Relative values for some byte lanes relative to others.
*
* For example, suppose lane X is likely to require a larger
* write-leveling delay than lane Y. A BYTEX<2:0> value that is much
* smaller than the BYTEY<2:0> value may then indicate that the
* required lane X delay wrapped into the next CK, so BYTEX<4:3>
* should be set to BYTEY<4:3>+1.
*
* When ECC DRAM is not present (i.e. when DRAM is not attached to the
* DDR_CBS_0_* and DDR_CB<7:0> chip signals, or the DDR_DQS_<4>_* and
* DDR_DQ<35:32> chip signals), write LMC(0)_WLEVEL_RANK*[BYTE8] =
* LMC(0)_WLEVEL_RANK*[BYTE0], using the final calculated BYTE0 value.
* Write LMC(0)_WLEVEL_RANK*[BYTE4] = LMC(0)_WLEVEL_RANK*[BYTE0],
* using the final calculated BYTE0 value.
*
* 8. Initialize LMC(0)_WLEVEL_RANK* values for all unused ranks.
*
* Let rank i be a rank with attached DRAM.
*
* For all ranks j that do not have attached DRAM, set
* LMC(0)_WLEVEL_RANKj = LMC(0)_WLEVEL_RANKi.
*/
{ // Start HW write-leveling block
#pragma pack(push,1)
bdk_lmcx_wlevel_ctl_t wlevel_ctl;
bdk_lmcx_wlevel_rankx_t lmc_wlevel_rank;
int rankx = 0;
int wlevel_bitmask[9];
int byte_idx;
int ecc_ena;
int ddr_wlevel_roundup = 0;
int ddr_wlevel_printall = (dram_is_verbose(VBL_FAE)); // or default to 1 to print all HW WL samples
int disable_hwl_validity = 0;
int default_wlevel_rtt_nom;
#if WODT_MASK_2R_1S
uint64_t saved_wodt_mask = 0;
#endif
#pragma pack(pop)
if (wlevel_loops)
ddr_print("N%d.LMC%d: Performing Hardware Write-Leveling\n", node, ddr_interface_num);
else {
wlevel_bitmask_errors = 1; /* Force software write-leveling to run */
ddr_print("N%d.LMC%d: Forcing software Write-Leveling\n", node, ddr_interface_num);
}
default_wlevel_rtt_nom = (ddr_type == DDR3_DRAM) ? rttnom_20ohm : ddr4_rttnom_40ohm ; /* FIXME? */
#if WODT_MASK_2R_1S
if ((ddr_type == DDR4_DRAM) && (num_ranks == 2) && (dimm_count == 1)) {
/* LMC(0)_WODT_MASK */
bdk_lmcx_wodt_mask_t lmc_wodt_mask;
// always save original so we can always restore later
saved_wodt_mask = BDK_CSR_READ(node, BDK_LMCX_WODT_MASK(ddr_interface_num));
if ((s = lookup_env_parameter_ull("ddr_hwl_wodt_mask")) != NULL) {
lmc_wodt_mask.u = strtoull(s, NULL, 0);
if (lmc_wodt_mask.u != saved_wodt_mask) { // print/store only when diff
ddr_print("WODT_MASK : 0x%016llx\n", lmc_wodt_mask.u);
DRAM_CSR_WRITE(node, BDK_LMCX_WODT_MASK(ddr_interface_num), lmc_wodt_mask.u);
}
}
}
#endif /* WODT_MASK_2R_1S */
lmc_config.u = BDK_CSR_READ(node, BDK_LMCX_CONFIG(ddr_interface_num));
ecc_ena = lmc_config.s.ecc_ena;
if ((s = lookup_env_parameter("ddr_wlevel_roundup")) != NULL) {
ddr_wlevel_roundup = strtoul(s, NULL, 0);
}
if ((s = lookup_env_parameter("ddr_wlevel_printall")) != NULL) {
ddr_wlevel_printall = strtoul(s, NULL, 0);
}
if ((s = lookup_env_parameter("ddr_disable_hwl_validity")) != NULL) {
disable_hwl_validity = !!strtoul(s, NULL, 0);
}
if ((s = lookup_env_parameter("ddr_wlevel_rtt_nom")) != NULL) {
default_wlevel_rtt_nom = strtoul(s, NULL, 0);
}
// For DDR3, we leave the WLEVEL_CTL fields at default settings
// For DDR4, we touch WLEVEL_CTL fields OR_DIS or BITMASK here
if (ddr_type == DDR4_DRAM) {
int default_or_dis = 1;
int default_bitmask = 0xFF;
// when x4, use only the lower nibble bits
if (dram_width == 4) {
default_bitmask = 0x0F;
VB_PRT(VBL_DEV, "N%d.LMC%d: WLEVEL_CTL: default bitmask is 0x%2x for DDR4 x4\n",
node, ddr_interface_num, default_bitmask);
}
wlevel_ctl.u = BDK_CSR_READ(node, BDK_LMCX_WLEVEL_CTL(ddr_interface_num));
wlevel_ctl.s.or_dis = default_or_dis;
wlevel_ctl.s.bitmask = default_bitmask;
// allow overrides
if ((s = lookup_env_parameter("ddr_wlevel_ctl_or_dis")) != NULL) {
wlevel_ctl.s.or_dis = !!strtoul(s, NULL, 0);
}
if ((s = lookup_env_parameter("ddr_wlevel_ctl_bitmask")) != NULL) {
wlevel_ctl.s.bitmask = strtoul(s, NULL, 0);
}
// print only if not defaults
if ((wlevel_ctl.s.or_dis != default_or_dis) || (wlevel_ctl.s.bitmask != default_bitmask)) {
ddr_print("N%d.LMC%d: WLEVEL_CTL: or_dis=%d, bitmask=0x%02x\n",
node, ddr_interface_num, wlevel_ctl.s.or_dis, wlevel_ctl.s.bitmask);
}
// always write
DRAM_CSR_WRITE(node, BDK_LMCX_WLEVEL_CTL(ddr_interface_num), wlevel_ctl.u);
}
// Start the hardware write-leveling loop per rank
for (rankx = 0; rankx < dimm_count * 4; rankx++) {
if (!(rank_mask & (1 << rankx)))
continue;
#if HW_WL_MAJORITY
// array to collect counts of byte-lane values
// assume low-order 3 bits and even, so really only 2 bit values
int wlevel_bytes[9][4];
memset(wlevel_bytes, 0, sizeof(wlevel_bytes));
#endif
// restructure the looping so we can keep trying until we get the samples we want
//for (int wloop = 0; wloop < wlevel_loops; wloop++) {
int wloop = 0;
int wloop_retries = 0; // retries per sample for HW-related issues with bitmasks or values
int wloop_retries_total = 0;
int wloop_retries_exhausted = 0;
#define WLOOP_RETRIES_DEFAULT 5
int wlevel_validity_errors;
int wlevel_bitmask_errors_rank = 0;
int wlevel_validity_errors_rank = 0;
while (wloop < wlevel_loops) {
wlevel_ctl.u = BDK_CSR_READ(node, BDK_LMCX_WLEVEL_CTL(ddr_interface_num));
wlevel_ctl.s.rtt_nom = (default_wlevel_rtt_nom > 0) ? (default_wlevel_rtt_nom - 1) : 7;
DRAM_CSR_WRITE(node, BDK_LMCX_WLEVEL_RANKX(ddr_interface_num, rankx), 0); /* Clear write-level delays */
wlevel_bitmask_errors = 0; /* Reset error counters */
wlevel_validity_errors = 0;
for (byte_idx=0; byte_idx<9; ++byte_idx) {
wlevel_bitmask[byte_idx] = 0; /* Reset bitmasks */
}
#if HWL_BY_BYTE // FIXME???
/* Make a separate pass for each byte to reduce power. */
for (byte_idx=0; byte_idx<(8+ecc_ena); ++byte_idx) {
if (!(ddr_interface_bytemask&(1<<byte_idx)))
continue;
wlevel_ctl.s.lanemask = (1<<byte_idx);
DRAM_CSR_WRITE(node, BDK_LMCX_WLEVEL_CTL(ddr_interface_num), wlevel_ctl.u);
/* Read and write values back in order to update the
status field. This insures that we read the updated
values after write-leveling has completed. */
DRAM_CSR_WRITE(node, BDK_LMCX_WLEVEL_RANKX(ddr_interface_num, rankx),
BDK_CSR_READ(node, BDK_LMCX_WLEVEL_RANKX(ddr_interface_num, rankx)));
perform_octeon3_ddr3_sequence(node, 1 << rankx, ddr_interface_num, 6); /* write-leveling */
if (!bdk_is_platform(BDK_PLATFORM_ASIM) &&
BDK_CSR_WAIT_FOR_FIELD(node, BDK_LMCX_WLEVEL_RANKX(ddr_interface_num, rankx),
status, ==, 3, 1000000))
{
error_print("ERROR: Timeout waiting for WLEVEL\n");
}
lmc_wlevel_rank.u = BDK_CSR_READ(node, BDK_LMCX_WLEVEL_RANKX(ddr_interface_num, rankx));
wlevel_bitmask[byte_idx] = octeon_read_lmcx_ddr3_wlevel_dbg(node, ddr_interface_num, byte_idx);
if (wlevel_bitmask[byte_idx] == 0)
++wlevel_bitmask_errors;
} /* for (byte_idx=0; byte_idx<(8+ecc_ena); ++byte_idx) */
wlevel_ctl.s.lanemask = /*0x1ff*/ddr_interface_bytemask; // restore for RL
DRAM_CSR_WRITE(node, BDK_LMCX_WLEVEL_CTL(ddr_interface_num), wlevel_ctl.u);
#else
// do all the byte-lanes at the same time
wlevel_ctl.s.lanemask = /*0x1ff*/ddr_interface_bytemask; // FIXME?
DRAM_CSR_WRITE(node, BDK_LMCX_WLEVEL_CTL(ddr_interface_num), wlevel_ctl.u);
/* Read and write values back in order to update the
status field. This insures that we read the updated
values after write-leveling has completed. */
DRAM_CSR_WRITE(node, BDK_LMCX_WLEVEL_RANKX(ddr_interface_num, rankx),
BDK_CSR_READ(node, BDK_LMCX_WLEVEL_RANKX(ddr_interface_num, rankx)));
perform_octeon3_ddr3_sequence(node, 1 << rankx, ddr_interface_num, 6); /* write-leveling */
if (BDK_CSR_WAIT_FOR_FIELD(node, BDK_LMCX_WLEVEL_RANKX(ddr_interface_num, rankx),
status, ==, 3, 1000000))
{
error_print("ERROR: Timeout waiting for WLEVEL\n");
}
lmc_wlevel_rank.u = BDK_CSR_READ(node, BDK_LMCX_WLEVEL_RANKX(ddr_interface_num, rankx));
for (byte_idx=0; byte_idx<(8+ecc_ena); ++byte_idx) {
if (!(ddr_interface_bytemask&(1<<byte_idx)))
continue;
wlevel_bitmask[byte_idx] = octeon_read_lmcx_ddr3_wlevel_dbg(node, ddr_interface_num, byte_idx);
if (wlevel_bitmask[byte_idx] == 0)
++wlevel_bitmask_errors;
} /* for (byte_idx=0; byte_idx<(8+ecc_ena); ++byte_idx) */
#endif
// check validity only if no bitmask errors
if (wlevel_bitmask_errors == 0) {
if ((spd_dimm_type != 5) &&
(spd_dimm_type != 6) &&
(spd_dimm_type != 8) &&
(spd_dimm_type != 9) &&
(dram_width != 16) &&
(ddr_interface_64b) &&
!(disable_hwl_validity))
{ // bypass if mini-[RU]DIMM or x16 or 32-bit or SO-[RU]DIMM
wlevel_validity_errors =
Validate_HW_WL_Settings(node, ddr_interface_num,
&lmc_wlevel_rank, ecc_ena);
wlevel_validity_errors_rank += (wlevel_validity_errors != 0);
}
} else
wlevel_bitmask_errors_rank++;
// before we print, if we had bitmask or validity errors, do a retry...
if ((wlevel_bitmask_errors != 0) || (wlevel_validity_errors != 0)) {
// VBL must be high to show the bad bitmaps or delays here also
if (dram_is_verbose(VBL_DEV2)) {
display_WL_BM(node, ddr_interface_num, rankx, wlevel_bitmask);
display_WL(node, ddr_interface_num, lmc_wlevel_rank, rankx);
}
if (wloop_retries < WLOOP_RETRIES_DEFAULT) {
wloop_retries++;
wloop_retries_total++;
// this printout is per-retry: only when VBL is high enough (DEV2?)
VB_PRT(VBL_DEV2, "N%d.LMC%d.R%d: H/W Write-Leveling had %s errors - retrying...\n",
node, ddr_interface_num, rankx,
(wlevel_bitmask_errors) ? "Bitmask" : "Validity");
continue; // this takes us back to the top without counting a sample
} else { // ran out of retries for this sample
// retries exhausted, do not print at normal VBL
VB_PRT(VBL_DEV2, "N%d.LMC%d.R%d: H/W Write-Leveling issues: %s errors\n",
node, ddr_interface_num, rankx,
(wlevel_bitmask_errors) ? "Bitmask" : "Validity");
wloop_retries_exhausted++;
}
}
// no errors or exhausted retries, use this sample
wloop_retries = 0; //reset for next sample
// when only 1 sample or forced, print the bitmasks first and current HW WL
if ((wlevel_loops == 1) || ddr_wlevel_printall) {
display_WL_BM(node, ddr_interface_num, rankx, wlevel_bitmask);
display_WL(node, ddr_interface_num, lmc_wlevel_rank, rankx);
}
if (ddr_wlevel_roundup) { /* Round up odd bitmask delays */
for (byte_idx=0; byte_idx<(8+ecc_ena); ++byte_idx) {
if (!(ddr_interface_bytemask&(1<<byte_idx)))
continue;
update_wlevel_rank_struct(&lmc_wlevel_rank,
byte_idx,
roundup_ddr3_wlevel_bitmask(wlevel_bitmask[byte_idx]));
} /* for (byte_idx=0; byte_idx<(8+ecc_ena); ++byte_idx) */
DRAM_CSR_WRITE(node, BDK_LMCX_WLEVEL_RANKX(ddr_interface_num, rankx), lmc_wlevel_rank.u);
display_WL(node, ddr_interface_num, lmc_wlevel_rank, rankx);
}
#if HW_WL_MAJORITY
// OK, we have a decent sample, no bitmask or validity errors
for (byte_idx=0; byte_idx<(8+ecc_ena); ++byte_idx) {
if (!(ddr_interface_bytemask&(1<<byte_idx)))
continue;
// increment count of byte-lane value
int ix = (get_wlevel_rank_struct(&lmc_wlevel_rank, byte_idx) >> 1) & 3; // only 4 values
wlevel_bytes[byte_idx][ix]++;
} /* for (byte_idx=0; byte_idx<(8+ecc_ena); ++byte_idx) */
#endif
wloop++; // if we get here, we have taken a decent sample
} /* while (wloop < wlevel_loops) */
#if HW_WL_MAJORITY
// if we did sample more than once, try to pick a majority vote
if (wlevel_loops > 1) {
// look for the majority in each byte-lane
for (byte_idx = 0; byte_idx < (8+ecc_ena); ++byte_idx) {
int mx = -1, mc = 0, xc = 0, cc = 0;
int ix, ic;
if (!(ddr_interface_bytemask&(1<<byte_idx)))
continue;
for (ix = 0; ix < 4; ix++) {
ic = wlevel_bytes[byte_idx][ix];
// make a bitmask of the ones with a count
if (ic > 0) {
mc |= (1 << ix);
cc++; // count how many had non-zero counts
}
// find the majority
if (ic > xc) { // new max?
xc = ic; // yes
mx = ix; // set its index
}
}
#if SWL_TRY_HWL_ALT
// see if there was an alternate
int alts = (mc & ~(1 << mx)); // take out the majority choice
if (alts != 0) {
for (ix = 0; ix < 4; ix++) {
if (alts & (1 << ix)) { // FIXME: could be done multiple times? bad if so
hwl_alts[rankx].hwl_alt_mask |= (1 << byte_idx); // set the mask
hwl_alts[rankx].hwl_alt_delay[byte_idx] = ix << 1; // record the value
VB_PRT(VBL_DEV, "N%d.LMC%d.R%d: SWL_TRY_HWL_ALT: Byte %d maj %d (%d) alt %d (%d).\n",
node, ddr_interface_num, rankx, byte_idx, mx << 1, xc,
ix << 1, wlevel_bytes[byte_idx][ix]);
}
}
} else {
debug_print("N%d.LMC%d.R%d: SWL_TRY_HWL_ALT: Byte %d maj %d alt NONE.\n",
node, ddr_interface_num, rankx, byte_idx, mx << 1);
}
#endif /* SWL_TRY_HWL_ALT */
if (cc > 2) { // unlikely, but...
// assume: counts for 3 indices are all 1
// possiblities are: 0/2/4, 2/4/6, 0/4/6, 0/2/6
// and the desired?: 2 , 4 , 6, 0
// we choose the middle, assuming one of the outliers is bad
// NOTE: this is an ugly hack at the moment; there must be a better way
switch (mc) {
case 0x7: mx = 1; break; // was 0/2/4, choose 2
case 0xb: mx = 0; break; // was 0/2/6, choose 0
case 0xd: mx = 3; break; // was 0/4/6, choose 6
case 0xe: mx = 2; break; // was 2/4/6, choose 4
default:
case 0xf: mx = 1; break; // was 0/2/4/6, choose 2?
}
error_print("N%d.LMC%d.R%d: HW WL MAJORITY: bad byte-lane %d (0x%x), using %d.\n",
node, ddr_interface_num, rankx, byte_idx, mc, mx << 1);
}
update_wlevel_rank_struct(&lmc_wlevel_rank, byte_idx, mx << 1);
} /* for (byte_idx=0; byte_idx<(8+ecc_ena); ++byte_idx) */
DRAM_CSR_WRITE(node, BDK_LMCX_WLEVEL_RANKX(ddr_interface_num, rankx), lmc_wlevel_rank.u);
display_WL_with_final(node, ddr_interface_num, lmc_wlevel_rank, rankx);
} /* if (wlevel_loops > 1) */
#endif /* HW_WL_MAJORITY */
// maybe print an error summary for the rank
if ((wlevel_bitmask_errors_rank != 0) || (wlevel_validity_errors_rank != 0)) {
VB_PRT(VBL_FAE, "N%d.LMC%d.R%d: H/W Write-Leveling errors - %d bitmask, %d validity, %d retries, %d exhausted\n",
node, ddr_interface_num, rankx,
wlevel_bitmask_errors_rank, wlevel_validity_errors_rank,
wloop_retries_total, wloop_retries_exhausted);
}
} /* for (rankx = 0; rankx < dimm_count * 4;rankx++) */
#if WODT_MASK_2R_1S
if ((ddr_type == DDR4_DRAM) && (num_ranks == 2) && (dimm_count == 1)) {
/* LMC(0)_WODT_MASK */
bdk_lmcx_wodt_mask_t lmc_wodt_mask;
// always read current so we can see if its different from saved
lmc_wodt_mask.u = BDK_CSR_READ(node, BDK_LMCX_WODT_MASK(ddr_interface_num));
if (lmc_wodt_mask.u != saved_wodt_mask) { // always restore what was saved if diff
lmc_wodt_mask.u = saved_wodt_mask;
ddr_print("WODT_MASK : 0x%016llx\n", lmc_wodt_mask.u);
DRAM_CSR_WRITE(node, BDK_LMCX_WODT_MASK(ddr_interface_num), lmc_wodt_mask.u);
}
}
#endif /* WODT_MASK_2R_1S */
} // End HW write-leveling block
// At the end of HW Write Leveling, check on some things...
if (! disable_deskew_training) {
deskew_counts_t dsk_counts;
int retry_count = 0;
VB_PRT(VBL_FAE, "N%d.LMC%d: Check Deskew Settings before Read-Leveling.\n", node, ddr_interface_num);
do {
Validate_Read_Deskew_Training(node, rank_mask, ddr_interface_num, &dsk_counts, VBL_FAE);
// only RAWCARD A or B will not benefit from retraining if there's only saturation
// or any rawcard if there is a nibble error
if ((!spd_rawcard_AorB && dsk_counts.saturated > 0) ||
((dsk_counts.nibrng_errs != 0) || (dsk_counts.nibunl_errs != 0)))
{
retry_count++;
VB_PRT(VBL_FAE, "N%d.LMC%d: Deskew Status indicates saturation or nibble errors - retry %d Training.\n",
node, ddr_interface_num, retry_count);
Perform_Read_Deskew_Training(node, rank_mask, ddr_interface_num,
spd_rawcard_AorB, 0, ddr_interface_64b);
} else
break;
} while (retry_count < 5);
// print the last setting only if we had to do retries here
if (retry_count > 0)
Validate_Read_Deskew_Training(node, rank_mask, ddr_interface_num, &dsk_counts, VBL_NORM);
}
/*
* 6.9.12 LMC Read Leveling
*
* LMC supports an automatic read-leveling separately per byte-lane using
* the DDR3 multipurpose register predefined pattern for system
* calibration defined in the JEDEC DDR3 specifications.
*
* All of DDR PLL, LMC CK, and LMC DRESET, and early LMC initializations
* must be completed prior to starting this LMC read-leveling sequence.
*
* Software could simply write the desired read-leveling values into
* LMC(0)_RLEVEL_RANK(0..3). This section describes a sequence that uses
* LMC's autoread-leveling capabilities.
*
* When LMC does the read-leveling sequence for a rank, it first enables
* the DDR3 multipurpose register predefined pattern for system
* calibration on the selected DRAM rank via a DDR3 MR3 write, then
* executes 64 RD operations at different internal delay settings, then
* disables the predefined pattern via another DDR3 MR3 write
* operation. LMC determines the pass or fail of each of the 64 settings
* independently for each byte lane, then writes appropriate
* LMC(0)_RLEVEL_RANK(0..3)[BYTE*] values for the rank.
*
* After read-leveling for a rank, software can read the 64 pass/fail
* indications for one byte lane via LMC(0)_RLEVEL_DBG[BITMASK]. Software
* can observe all pass/fail results for all byte lanes in a rank via
* separate read-leveling sequences on the rank with different
* LMC(0)_RLEVEL_CTL[BYTE] values.
*
* The 64 pass/fail results will typically have failures for the low
* delays, followed by a run of some passing settings, followed by more
* failures in the remaining high delays. LMC sets
* LMC(0)_RLEVEL_RANK(0..3)[BYTE*] to one of the passing settings.
* First, LMC selects the longest run of successes in the 64 results. (In
* the unlikely event that there is more than one longest run, LMC
* selects the first one.) Then if LMC(0)_RLEVEL_CTL[OFFSET_EN] = 1 and
* the selected run has more than LMC(0)_RLEVEL_CTL[OFFSET] successes,
* LMC selects the last passing setting in the run minus
* LMC(0)_RLEVEL_CTL[OFFSET]. Otherwise LMC selects the middle setting in
* the run (rounding earlier when necessary). We expect the read-leveling
* sequence to produce good results with the reset values
* LMC(0)_RLEVEL_CTL [OFFSET_EN]=1, LMC(0)_RLEVEL_CTL[OFFSET] = 2.
*
* The read-leveling sequence has the following steps:
*
* 1. Select desired LMC(0)_RLEVEL_CTL[OFFSET_EN,OFFSET,BYTE] settings.
* Do the remaining substeps 2-4 separately for each rank i with
* attached DRAM.
*
* 2. Without changing any other fields in LMC(0)_CONFIG,
*
* o write LMC(0)_SEQ_CTL[SEQ_SEL] to select read-leveling
*
* o write LMC(0)_CONFIG[RANKMASK] = (1 << i)
*
* o write LMC(0)_SEQ_CTL[INIT_START] = 1
*
* This initiates the previously-described read-leveling.
*
* 3. Wait until LMC(0)_RLEVEL_RANKi[STATUS] != 2
*
* LMC will have updated LMC(0)_RLEVEL_RANKi[BYTE*] for all byte lanes
* at this point.
*
* If ECC DRAM is not present (i.e. when DRAM is not attached to the
* DDR_CBS_0_* and DDR_CB<7:0> chip signals, or the DDR_DQS_<4>_* and
* DDR_DQ<35:32> chip signals), write LMC(0)_RLEVEL_RANK*[BYTE8] =
* LMC(0)_RLEVEL_RANK*[BYTE0]. Write LMC(0)_RLEVEL_RANK*[BYTE4] =
* LMC(0)_RLEVEL_RANK*[BYTE0].
*
* 4. If desired, consult LMC(0)_RLEVEL_DBG[BITMASK] and compare to
* LMC(0)_RLEVEL_RANKi[BYTE*] for the lane selected by
* LMC(0)_RLEVEL_CTL[BYTE]. If desired, modify LMC(0)_RLEVEL_CTL[BYTE]
* to a new value and repeat so that all BITMASKs can be observed.
*
* 5. Initialize LMC(0)_RLEVEL_RANK* values for all unused ranks.
*
* Let rank i be a rank with attached DRAM.
*
* For all ranks j that do not have attached DRAM, set
* LMC(0)_RLEVEL_RANKj = LMC(0)_RLEVEL_RANKi.
*
* This read-leveling sequence can help select the proper CN70XX ODT
* resistance value (LMC(0)_COMP_CTL2[RODT_CTL]). A hardware-generated
* LMC(0)_RLEVEL_RANKi[BYTEj] value (for a used byte lane j) that is
* drastically different from a neighboring LMC(0)_RLEVEL_RANKi[BYTEk]
* (for a used byte lane k) can indicate that the CN70XX ODT value is
* bad. It is possible to simultaneously optimize both
* LMC(0)_COMP_CTL2[RODT_CTL] and LMC(0)_RLEVEL_RANKn[BYTE*] values by
* performing this read-leveling sequence for several
* LMC(0)_COMP_CTL2[RODT_CTL] values and selecting the one with the best
* LMC(0)_RLEVEL_RANKn[BYTE*] profile for the ranks.
*/
{
#pragma pack(push,4)
bdk_lmcx_rlevel_rankx_t lmc_rlevel_rank;
bdk_lmcx_comp_ctl2_t lmc_comp_ctl2;
bdk_lmcx_rlevel_ctl_t rlevel_ctl;
bdk_lmcx_control_t lmc_control;
bdk_lmcx_modereg_params1_t lmc_modereg_params1;
unsigned char rodt_ctl;
unsigned char rankx = 0;
unsigned char ecc_ena;
unsigned char rtt_nom;
unsigned char rtt_idx;
int min_rtt_nom_idx;
int max_rtt_nom_idx;
int min_rodt_ctl;
int max_rodt_ctl;
int rlevel_debug_loops = 1;
unsigned char save_ddr2t;
int rlevel_avg_loops;
int ddr_rlevel_compute;
int saved_ddr__ptune, saved_ddr__ntune, rlevel_comp_offset;
int saved_int_zqcs_dis = 0;
int disable_sequential_delay_check = 0;
int maximum_adjacent_rlevel_delay_increment = 0;
struct {
uint64_t setting;
int score;
} rlevel_scoreboard[RTT_NOM_OHMS_COUNT][RODT_OHMS_COUNT][4];
int print_nom_ohms;
#if PERFECT_BITMASK_COUNTING
typedef struct {
uint8_t count[9][32]; // 8+ECC by 32 values
uint8_t total[9]; // 8+ECC
} rank_perfect_t;
rank_perfect_t rank_perfect_counts[4];
#endif
#pragma pack(pop)
#if PERFECT_BITMASK_COUNTING
memset(rank_perfect_counts, 0, sizeof(rank_perfect_counts));
#endif /* PERFECT_BITMASK_COUNTING */
lmc_control.u = BDK_CSR_READ(node, BDK_LMCX_CONTROL(ddr_interface_num));
save_ddr2t = lmc_control.s.ddr2t;
lmc_config.u = BDK_CSR_READ(node, BDK_LMCX_CONFIG(ddr_interface_num));
ecc_ena = lmc_config.s.ecc_ena;
#if 0
{
int save_ref_zqcs_int;
uint64_t temp_delay_usecs;
/* Temporarily select the minimum ZQCS interval and wait
long enough for a few ZQCS calibrations to occur. This
should ensure that the calibration circuitry is
stabilized before read-leveling occurs. */
save_ref_zqcs_int = lmc_config.s.ref_zqcs_int;
lmc_config.s.ref_zqcs_int = 1 | (32<<7); /* set smallest interval */
DRAM_CSR_WRITE(node, BDK_LMCX_CONFIG(ddr_interface_num), lmc_config.u);
BDK_CSR_READ(node, BDK_LMCX_CONFIG(ddr_interface_num));
/* Compute an appropriate delay based on the current ZQCS
interval. The delay should be long enough for the
current ZQCS delay counter to expire plus ten of the
minimum intarvals to ensure that some calibrations
occur. */
temp_delay_usecs = (((uint64_t)save_ref_zqcs_int >> 7)
* tclk_psecs * 100 * 512 * 128) / (10000*10000)
+ 10 * ((uint64_t)32 * tclk_psecs * 100 * 512 * 128) / (10000*10000);
ddr_print ("Waiting %lu usecs for ZQCS calibrations to start\n",
temp_delay_usecs);
bdk_wait_usec(temp_delay_usecs);
lmc_config.s.ref_zqcs_int = save_ref_zqcs_int; /* Restore computed interval */
DRAM_CSR_WRITE(node, BDK_LMCX_CONFIG(ddr_interface_num), lmc_config.u);
BDK_CSR_READ(node, BDK_LMCX_CONFIG(ddr_interface_num));
}
#endif
if ((s = lookup_env_parameter("ddr_rlevel_2t")) != NULL) {
lmc_control.s.ddr2t = strtoul(s, NULL, 0);
}
DRAM_CSR_WRITE(node, BDK_LMCX_CONTROL(ddr_interface_num), lmc_control.u);
ddr_print("N%d.LMC%d: Performing Read-Leveling\n", node, ddr_interface_num);
rlevel_ctl.u = BDK_CSR_READ(node, BDK_LMCX_RLEVEL_CTL(ddr_interface_num));
rlevel_avg_loops = custom_lmc_config->rlevel_average_loops;
if (rlevel_avg_loops == 0) {
rlevel_avg_loops = RLEVEL_AVG_LOOPS_DEFAULT;
if ((dimm_count == 1) || (num_ranks == 1)) // up the samples for these cases
rlevel_avg_loops = rlevel_avg_loops * 2 + 1;
}
ddr_rlevel_compute = custom_lmc_config->rlevel_compute;
rlevel_ctl.s.offset_en = custom_lmc_config->offset_en;
rlevel_ctl.s.offset = spd_rdimm
? custom_lmc_config->offset_rdimm
: custom_lmc_config->offset_udimm;
rlevel_ctl.s.delay_unload_0 = 1; /* should normally be set */
rlevel_ctl.s.delay_unload_1 = 1; /* should normally be set */
rlevel_ctl.s.delay_unload_2 = 1; /* should normally be set */
rlevel_ctl.s.delay_unload_3 = 1; /* should normally be set */
rlevel_ctl.s.or_dis = 1; // default to get best bitmasks
if ((s = lookup_env_parameter("ddr_rlevel_or_dis")) != NULL) {
rlevel_ctl.s.or_dis = !!strtoul(s, NULL, 0);
}
rlevel_ctl.s.bitmask = 0xff; // should work in 32b mode also
if ((s = lookup_env_parameter("ddr_rlevel_ctl_bitmask")) != NULL) {
rlevel_ctl.s.bitmask = strtoul(s, NULL, 0);
}
debug_print("N%d.LMC%d: RLEVEL_CTL: or_dis=%d, bitmask=0x%02x\n",
node, ddr_interface_num,
rlevel_ctl.s.or_dis, rlevel_ctl.s.bitmask);
rlevel_comp_offset = spd_rdimm
? custom_lmc_config->rlevel_comp_offset_rdimm
: custom_lmc_config->rlevel_comp_offset_udimm;
if ((s = lookup_env_parameter("ddr_rlevel_offset")) != NULL) {
rlevel_ctl.s.offset = strtoul(s, NULL, 0);
}
if ((s = lookup_env_parameter("ddr_rlevel_offset_en")) != NULL) {
rlevel_ctl.s.offset_en = strtoul(s, NULL, 0);
}
if ((s = lookup_env_parameter("ddr_rlevel_ctl")) != NULL) {
rlevel_ctl.u = strtoul(s, NULL, 0);
}
DRAM_CSR_WRITE(node, BDK_LMCX_RLEVEL_CTL(ddr_interface_num), rlevel_ctl.u);
if ((s = lookup_env_parameter("ddr%d_rlevel_debug_loops", ddr_interface_num)) != NULL) {
rlevel_debug_loops = strtoul(s, NULL, 0);
}
if ((s = lookup_env_parameter("ddr_rtt_nom_auto")) != NULL) {
ddr_rtt_nom_auto = !!strtoul(s, NULL, 0);
}
if ((s = lookup_env_parameter("ddr_rlevel_average")) != NULL) {
rlevel_avg_loops = strtoul(s, NULL, 0);
}
if ((s = lookup_env_parameter("ddr_rlevel_compute")) != NULL) {
ddr_rlevel_compute = strtoul(s, NULL, 0);
}
ddr_print("RLEVEL_CTL : 0x%016llx\n", rlevel_ctl.u);
ddr_print("RLEVEL_OFFSET : %6d\n", rlevel_ctl.s.offset);
ddr_print("RLEVEL_OFFSET_EN : %6d\n", rlevel_ctl.s.offset_en);
/* The purpose for the indexed table is to sort the settings
** by the ohm value to simplify the testing when incrementing
** through the settings. (index => ohms) 1=120, 2=60, 3=40,
** 4=30, 5=20 */
min_rtt_nom_idx = (custom_lmc_config->min_rtt_nom_idx == 0) ? 1 : custom_lmc_config->min_rtt_nom_idx;
max_rtt_nom_idx = (custom_lmc_config->max_rtt_nom_idx == 0) ? 5 : custom_lmc_config->max_rtt_nom_idx;
min_rodt_ctl = (custom_lmc_config->min_rodt_ctl == 0) ? 1 : custom_lmc_config->min_rodt_ctl;
max_rodt_ctl = (custom_lmc_config->max_rodt_ctl == 0) ? 5 : custom_lmc_config->max_rodt_ctl;
if ((s = lookup_env_parameter("ddr_min_rodt_ctl")) != NULL) {
min_rodt_ctl = strtoul(s, NULL, 0);
}
if ((s = lookup_env_parameter("ddr_max_rodt_ctl")) != NULL) {
max_rodt_ctl = strtoul(s, NULL, 0);
}
if ((s = lookup_env_parameter("ddr_min_rtt_nom_idx")) != NULL) {
min_rtt_nom_idx = strtoul(s, NULL, 0);
}
if ((s = lookup_env_parameter("ddr_max_rtt_nom_idx")) != NULL) {
max_rtt_nom_idx = strtoul(s, NULL, 0);
}
#ifdef ENABLE_CUSTOM_RLEVEL_TABLE
if (custom_lmc_config->rlevel_table != NULL) {
char part_number[21];
/* Check for hard-coded read-leveling settings */
get_dimm_part_number(part_number, node, &dimm_config_table[0], 0, ddr_type);
for (rankx = 0; rankx < dimm_count * 4;rankx++) {
if (!(rank_mask & (1 << rankx)))
continue;
lmc_rlevel_rank.u = BDK_CSR_READ(node, BDK_LMCX_RLEVEL_RANKX(ddr_interface_num, rankx));
i = 0;
while (custom_lmc_config->rlevel_table[i].part != NULL) {
debug_print("DIMM part number:\"%s\", SPD: \"%s\"\n", custom_lmc_config->rlevel_table[i].part, part_number);
if ((strcmp(part_number, custom_lmc_config->rlevel_table[i].part) == 0)
&& (_abs(custom_lmc_config->rlevel_table[i].speed - 2*ddr_hertz/(1000*1000)) < 10 ))
{
ddr_print("Using hard-coded read leveling for DIMM part number: \"%s\"\n", part_number);
lmc_rlevel_rank.u = custom_lmc_config->rlevel_table[i].rlevel_rank[ddr_interface_num][rankx];
DRAM_CSR_WRITE(node, BDK_LMCX_RLEVEL_RANKX(ddr_interface_num, rankx), lmc_rlevel_rank.u);
lmc_rlevel_rank.u = BDK_CSR_READ(node, BDK_LMCX_RLEVEL_RANKX(ddr_interface_num, rankx));
display_RL(node, ddr_interface_num, lmc_rlevel_rank, rankx);
rlevel_debug_loops = 0; /* Disable h/w read-leveling */
break;
}
++i;
}
}
}
#endif /* ENABLE_CUSTOM_RLEVEL_TABLE */
while(rlevel_debug_loops--) {
/* Initialize the error scoreboard */
memset(rlevel_scoreboard, 0, sizeof(rlevel_scoreboard));
if ((s = lookup_env_parameter("ddr_rlevel_comp_offset")) != NULL) {
rlevel_comp_offset = strtoul(s, NULL, 0);
}
disable_sequential_delay_check = custom_lmc_config->disable_sequential_delay_check;
if ((s = lookup_env_parameter("ddr_disable_sequential_delay_check")) != NULL) {
disable_sequential_delay_check = strtoul(s, NULL, 0);
}
maximum_adjacent_rlevel_delay_increment = custom_lmc_config->maximum_adjacent_rlevel_delay_increment;
if ((s = lookup_env_parameter("ddr_maximum_adjacent_rlevel_delay_increment")) != NULL) {
maximum_adjacent_rlevel_delay_increment = strtoul(s, NULL, 0);
}
lmc_comp_ctl2.u = BDK_CSR_READ(node, BDK_LMCX_COMP_CTL2(ddr_interface_num));
saved_ddr__ptune = lmc_comp_ctl2.s.ddr__ptune;
saved_ddr__ntune = lmc_comp_ctl2.s.ddr__ntune;
/* Disable dynamic compensation settings */
if (rlevel_comp_offset != 0) {
lmc_comp_ctl2.s.ptune = saved_ddr__ptune;
lmc_comp_ctl2.s.ntune = saved_ddr__ntune;
/* Round up the ptune calculation to bias the odd cases toward ptune */
lmc_comp_ctl2.s.ptune += divide_roundup(rlevel_comp_offset, 2);
lmc_comp_ctl2.s.ntune -= rlevel_comp_offset/2;
lmc_control.u = BDK_CSR_READ(node, BDK_LMCX_CONTROL(ddr_interface_num));
saved_int_zqcs_dis = lmc_control.s.int_zqcs_dis;
lmc_control.s.int_zqcs_dis = 1; /* Disable ZQCS while in bypass. */
DRAM_CSR_WRITE(node, BDK_LMCX_CONTROL(ddr_interface_num), lmc_control.u);
lmc_comp_ctl2.s.byp = 1; /* Enable bypass mode */
DRAM_CSR_WRITE(node, BDK_LMCX_COMP_CTL2(ddr_interface_num), lmc_comp_ctl2.u);
BDK_CSR_READ(node, BDK_LMCX_COMP_CTL2(ddr_interface_num));
lmc_comp_ctl2.u = BDK_CSR_READ(node, BDK_LMCX_COMP_CTL2(ddr_interface_num)); /* Read again */
ddr_print("DDR__PTUNE/DDR__NTUNE : %d/%d\n",
lmc_comp_ctl2.s.ddr__ptune, lmc_comp_ctl2.s.ddr__ntune);
}
lmc_modereg_params1.u = BDK_CSR_READ(node, BDK_LMCX_MODEREG_PARAMS1(ddr_interface_num));
for (rtt_idx = min_rtt_nom_idx; rtt_idx <= max_rtt_nom_idx; ++rtt_idx) {
rtt_nom = imp_values->rtt_nom_table[rtt_idx];
/* When the read ODT mask is zero the dyn_rtt_nom_mask is
zero than RTT_NOM will not be changing during
read-leveling. Since the value is fixed we only need
to test it once. */
if (dyn_rtt_nom_mask == 0) {
print_nom_ohms = -1; // flag not to print NOM ohms
if (rtt_idx != min_rtt_nom_idx)
continue;
} else {
if (dyn_rtt_nom_mask & 1) lmc_modereg_params1.s.rtt_nom_00 = rtt_nom;
if (dyn_rtt_nom_mask & 2) lmc_modereg_params1.s.rtt_nom_01 = rtt_nom;
if (dyn_rtt_nom_mask & 4) lmc_modereg_params1.s.rtt_nom_10 = rtt_nom;
if (dyn_rtt_nom_mask & 8) lmc_modereg_params1.s.rtt_nom_11 = rtt_nom;
// FIXME? rank 0 ohms always for the printout?
print_nom_ohms = imp_values->rtt_nom_ohms[lmc_modereg_params1.s.rtt_nom_00];
}
DRAM_CSR_WRITE(node, BDK_LMCX_MODEREG_PARAMS1(ddr_interface_num), lmc_modereg_params1.u);
VB_PRT(VBL_TME, "\n");
VB_PRT(VBL_TME, "RTT_NOM %3d, %3d, %3d, %3d ohms : %x,%x,%x,%x\n",
imp_values->rtt_nom_ohms[lmc_modereg_params1.s.rtt_nom_11],
imp_values->rtt_nom_ohms[lmc_modereg_params1.s.rtt_nom_10],
imp_values->rtt_nom_ohms[lmc_modereg_params1.s.rtt_nom_01],
imp_values->rtt_nom_ohms[lmc_modereg_params1.s.rtt_nom_00],
lmc_modereg_params1.s.rtt_nom_11,
lmc_modereg_params1.s.rtt_nom_10,
lmc_modereg_params1.s.rtt_nom_01,
lmc_modereg_params1.s.rtt_nom_00);
perform_ddr_init_sequence(node, rank_mask, ddr_interface_num);
// Try RANK outside RODT to rearrange the output...
for (rankx = 0; rankx < dimm_count * 4; rankx++) {
int byte_idx;
rlevel_byte_data_t rlevel_byte[9];
int average_loops;
int rlevel_rank_errors, rlevel_bitmask_errors, rlevel_nonseq_errors;
rlevel_bitmask_t rlevel_bitmask[9];
#if PICK_BEST_RANK_SCORE_NOT_AVG
int rlevel_best_rank_score;
#endif
if (!(rank_mask & (1 << rankx)))
continue;
for (rodt_ctl = max_rodt_ctl; rodt_ctl >= min_rodt_ctl; --rodt_ctl) {
#if PICK_BEST_RANK_SCORE_NOT_AVG
rlevel_best_rank_score = DEFAULT_BEST_RANK_SCORE;
#endif
lmc_comp_ctl2.u = BDK_CSR_READ(node, BDK_LMCX_COMP_CTL2(ddr_interface_num));
lmc_comp_ctl2.s.rodt_ctl = rodt_ctl;
DRAM_CSR_WRITE(node, BDK_LMCX_COMP_CTL2(ddr_interface_num), lmc_comp_ctl2.u);
lmc_comp_ctl2.u = BDK_CSR_READ(node, BDK_LMCX_COMP_CTL2(ddr_interface_num));
bdk_wait_usec(1); /* Give it a little time to take affect */
VB_PRT(VBL_DEV, "Read ODT_CTL : 0x%x (%d ohms)\n",
lmc_comp_ctl2.s.rodt_ctl, imp_values->rodt_ohms[lmc_comp_ctl2.s.rodt_ctl]);
memset(rlevel_byte, 0, sizeof(rlevel_byte));
for (average_loops = 0; average_loops < rlevel_avg_loops; average_loops++) {
rlevel_bitmask_errors = 0;
if (! (rlevel_separate_ab && spd_rdimm && (ddr_type == DDR4_DRAM))) {
/* Clear read-level delays */
DRAM_CSR_WRITE(node, BDK_LMCX_RLEVEL_RANKX(ddr_interface_num, rankx), 0);
/* read-leveling */
perform_octeon3_ddr3_sequence(node, 1 << rankx, ddr_interface_num, 1);
if (BDK_CSR_WAIT_FOR_FIELD(node, BDK_LMCX_RLEVEL_RANKX(ddr_interface_num, rankx),
status, ==, 3, 1000000))
{
error_print("ERROR: Timeout waiting for RLEVEL\n");
}
}
lmc_rlevel_rank.u = BDK_CSR_READ(node, BDK_LMCX_RLEVEL_RANKX(ddr_interface_num, rankx));
{ // start bitmask interpretation block
int redoing_nonseq_errs = 0;
memset(rlevel_bitmask, 0, sizeof(rlevel_bitmask));
if (rlevel_separate_ab && spd_rdimm && (ddr_type == DDR4_DRAM)) {
bdk_lmcx_rlevel_rankx_t lmc_rlevel_rank_aside;
bdk_lmcx_modereg_params0_t lmc_modereg_params0;
/* A-side */
lmc_modereg_params0.u = BDK_CSR_READ(node, BDK_LMCX_MODEREG_PARAMS0(ddr_interface_num));
lmc_modereg_params0.s.mprloc = 0; /* MPR Page 0 Location 0 */
DRAM_CSR_WRITE(node, BDK_LMCX_MODEREG_PARAMS0(ddr_interface_num), lmc_modereg_params0.u);
/* Clear read-level delays */
DRAM_CSR_WRITE(node, BDK_LMCX_RLEVEL_RANKX(ddr_interface_num, rankx), 0);
perform_octeon3_ddr3_sequence(node, 1 << rankx, ddr_interface_num, 1); /* read-leveling */
if (BDK_CSR_WAIT_FOR_FIELD(node, BDK_LMCX_RLEVEL_RANKX(ddr_interface_num, rankx),
status, ==, 3, 1000000))
{
error_print("ERROR: Timeout waiting for RLEVEL\n");
}
lmc_rlevel_rank.u = BDK_CSR_READ(node, BDK_LMCX_RLEVEL_RANKX(ddr_interface_num, rankx));
lmc_rlevel_rank_aside.u = lmc_rlevel_rank.u;
rlevel_bitmask[0].bm = octeon_read_lmcx_ddr3_rlevel_dbg(node, ddr_interface_num, 0);
rlevel_bitmask[1].bm = octeon_read_lmcx_ddr3_rlevel_dbg(node, ddr_interface_num, 1);
rlevel_bitmask[2].bm = octeon_read_lmcx_ddr3_rlevel_dbg(node, ddr_interface_num, 2);
rlevel_bitmask[3].bm = octeon_read_lmcx_ddr3_rlevel_dbg(node, ddr_interface_num, 3);
rlevel_bitmask[8].bm = octeon_read_lmcx_ddr3_rlevel_dbg(node, ddr_interface_num, 8);
/* A-side complete */
/* B-side */
lmc_modereg_params0.u = BDK_CSR_READ(node, BDK_LMCX_MODEREG_PARAMS0(ddr_interface_num));
lmc_modereg_params0.s.mprloc = 3; /* MPR Page 0 Location 3 */
DRAM_CSR_WRITE(node, BDK_LMCX_MODEREG_PARAMS0(ddr_interface_num), lmc_modereg_params0.u);
/* Clear read-level delays */
DRAM_CSR_WRITE(node, BDK_LMCX_RLEVEL_RANKX(ddr_interface_num, rankx), 0);
perform_octeon3_ddr3_sequence(node, 1 << rankx, ddr_interface_num, 1); /* read-leveling */
if (BDK_CSR_WAIT_FOR_FIELD(node, BDK_LMCX_RLEVEL_RANKX(ddr_interface_num, rankx),
status, ==, 3, 1000000))
{
error_print("ERROR: Timeout waiting for RLEVEL\n");
}
lmc_rlevel_rank.u = BDK_CSR_READ(node, BDK_LMCX_RLEVEL_RANKX(ddr_interface_num, rankx));
rlevel_bitmask[4].bm = octeon_read_lmcx_ddr3_rlevel_dbg(node, ddr_interface_num, 4);
rlevel_bitmask[5].bm = octeon_read_lmcx_ddr3_rlevel_dbg(node, ddr_interface_num, 5);
rlevel_bitmask[6].bm = octeon_read_lmcx_ddr3_rlevel_dbg(node, ddr_interface_num, 6);
rlevel_bitmask[7].bm = octeon_read_lmcx_ddr3_rlevel_dbg(node, ddr_interface_num, 7);
/* B-side complete */
update_rlevel_rank_struct(&lmc_rlevel_rank, 0, lmc_rlevel_rank_aside.cn83xx.byte0);
update_rlevel_rank_struct(&lmc_rlevel_rank, 1, lmc_rlevel_rank_aside.cn83xx.byte1);
update_rlevel_rank_struct(&lmc_rlevel_rank, 2, lmc_rlevel_rank_aside.cn83xx.byte2);
update_rlevel_rank_struct(&lmc_rlevel_rank, 3, lmc_rlevel_rank_aside.cn83xx.byte3);
update_rlevel_rank_struct(&lmc_rlevel_rank, 8, lmc_rlevel_rank_aside.cn83xx.byte8); /* ECC A-side */
lmc_modereg_params0.u = BDK_CSR_READ(node, BDK_LMCX_MODEREG_PARAMS0(ddr_interface_num));
lmc_modereg_params0.s.mprloc = 0; /* MPR Page 0 Location 0 */
DRAM_CSR_WRITE(node, BDK_LMCX_MODEREG_PARAMS0(ddr_interface_num), lmc_modereg_params0.u);
} /* if (rlevel_separate_ab && spd_rdimm && (ddr_type == DDR4_DRAM)) */
/*
* Evaluate the quality of the read-leveling delays from the bitmasks.
* Also save off a software computed read-leveling mask that may be
* used later to qualify the delay results from Octeon.
*/
for (byte_idx = 0; byte_idx < (8+ecc_ena); ++byte_idx) {
int bmerr;
if (!(ddr_interface_bytemask&(1<<byte_idx)))
continue;
if (! (rlevel_separate_ab && spd_rdimm && (ddr_type == DDR4_DRAM))) {
rlevel_bitmask[byte_idx].bm =
octeon_read_lmcx_ddr3_rlevel_dbg(node, ddr_interface_num, byte_idx);
}
bmerr = validate_ddr3_rlevel_bitmask(&rlevel_bitmask[byte_idx], ddr_type);
rlevel_bitmask[byte_idx].errs = bmerr;
rlevel_bitmask_errors += bmerr;
#if PERFECT_BITMASK_COUNTING
if ((ddr_type == DDR4_DRAM) && !bmerr) { // count only the "perfect" bitmasks
// FIXME: could optimize this a bit?
int delay = get_rlevel_rank_struct(&lmc_rlevel_rank, byte_idx);
rank_perfect_counts[rankx].count[byte_idx][delay] += 1;
rank_perfect_counts[rankx].total[byte_idx] += 1;
}
#endif /* PERFECT_BITMASK_COUNTING */
}
/* Set delays for unused bytes to match byte 0. */
for (byte_idx = 0; byte_idx < 9; ++byte_idx) {
if (ddr_interface_bytemask & (1 << byte_idx))
continue;
update_rlevel_rank_struct(&lmc_rlevel_rank, byte_idx, lmc_rlevel_rank.cn83xx.byte0);
}
/* Save a copy of the byte delays in physical
order for sequential evaluation. */
unpack_rlevel_settings(ddr_interface_bytemask, ecc_ena, rlevel_byte, lmc_rlevel_rank);
redo_nonseq_errs:
rlevel_nonseq_errors = 0;
if (! disable_sequential_delay_check) {
if ((ddr_interface_bytemask & 0xff) == 0xff) {
/* Evaluate delay sequence across the whole range of bytes for standard dimms. */
if ((spd_dimm_type == 1) || (spd_dimm_type == 5)) { /* 1=RDIMM, 5=Mini-RDIMM */
int register_adjacent_delay = _abs(rlevel_byte[4].delay - rlevel_byte[5].delay);
/* Registered dimm topology routes from the center. */
rlevel_nonseq_errors += nonsequential_delays(rlevel_byte, 0, 3+ecc_ena,
maximum_adjacent_rlevel_delay_increment);
rlevel_nonseq_errors += nonsequential_delays(rlevel_byte, 5, 7+ecc_ena,
maximum_adjacent_rlevel_delay_increment);
// byte 5 sqerrs never gets cleared for RDIMMs
rlevel_byte[5].sqerrs = 0;
if (register_adjacent_delay > 1) {
/* Assess proximity of bytes on opposite sides of register */
rlevel_nonseq_errors += (register_adjacent_delay-1) * RLEVEL_ADJACENT_DELAY_ERROR;
// update byte 5 error
rlevel_byte[5].sqerrs += (register_adjacent_delay-1) * RLEVEL_ADJACENT_DELAY_ERROR;
}
}
if ((spd_dimm_type == 2) || (spd_dimm_type == 6)) { /* 2=UDIMM, 6=Mini-UDIMM */
/* Unbuffered dimm topology routes from end to end. */
rlevel_nonseq_errors += nonsequential_delays(rlevel_byte, 0, 7+ecc_ena,
maximum_adjacent_rlevel_delay_increment);
}
} else {
rlevel_nonseq_errors += nonsequential_delays(rlevel_byte, 0, 3+ecc_ena,
maximum_adjacent_rlevel_delay_increment);
}
} /* if (! disable_sequential_delay_check) */
#if 0
// FIXME FIXME: disabled for now, it was too much...
// Calculate total errors for the rank:
// we do NOT add nonsequential errors if mini-[RU]DIMM or x16;
// mini-DIMMs and x16 devices have unusual sequence geometries.
// Make the final scores for them depend only on the bitmasks...
rlevel_rank_errors = rlevel_bitmask_errors;
if ((spd_dimm_type != 5) &&
(spd_dimm_type != 6) &&
(dram_width != 16))
{
rlevel_rank_errors += rlevel_nonseq_errors;
}
#else
rlevel_rank_errors = rlevel_bitmask_errors + rlevel_nonseq_errors;
#endif
// print original sample here only if we are not really averaging or picking best
// also do not print if we were redoing the NONSEQ score for using COMPUTED
if (!redoing_nonseq_errs && ((rlevel_avg_loops < 2) || dram_is_verbose(VBL_DEV2))) {
display_RL_BM(node, ddr_interface_num, rankx, rlevel_bitmask, ecc_ena);
display_RL_BM_scores(node, ddr_interface_num, rankx, rlevel_bitmask, ecc_ena);
display_RL_SEQ_scores(node, ddr_interface_num, rankx, rlevel_byte, ecc_ena);
display_RL_with_score(node, ddr_interface_num, lmc_rlevel_rank, rankx, rlevel_rank_errors);
}
if (ddr_rlevel_compute) {
if (!redoing_nonseq_errs) {
/* Recompute the delays based on the bitmask */
for (byte_idx = 0; byte_idx < (8+ecc_ena); ++byte_idx) {
if (!(ddr_interface_bytemask & (1 << byte_idx)))
continue;
update_rlevel_rank_struct(&lmc_rlevel_rank, byte_idx,
compute_ddr3_rlevel_delay(rlevel_bitmask[byte_idx].mstart,
rlevel_bitmask[byte_idx].width,
rlevel_ctl));
}
/* Override the copy of byte delays with the computed results. */
unpack_rlevel_settings(ddr_interface_bytemask, ecc_ena, rlevel_byte, lmc_rlevel_rank);
redoing_nonseq_errs = 1;
goto redo_nonseq_errs;
} else {
/* now print this if already printed the original sample */
if ((rlevel_avg_loops < 2) || dram_is_verbose(VBL_DEV2)) {
display_RL_with_computed(node, ddr_interface_num,
lmc_rlevel_rank, rankx,
rlevel_rank_errors);
}
}
} /* if (ddr_rlevel_compute) */
} // end bitmask interpretation block
#if PICK_BEST_RANK_SCORE_NOT_AVG
// if it is a better (lower) score, then keep it
if (rlevel_rank_errors < rlevel_best_rank_score) {
rlevel_best_rank_score = rlevel_rank_errors;
// save the new best delays and best errors
for (byte_idx = 0; byte_idx < 9; ++byte_idx) {
rlevel_byte[byte_idx].best = rlevel_byte[byte_idx].delay;
rlevel_byte[byte_idx].bestsq = rlevel_byte[byte_idx].sqerrs;
// save bitmasks and their scores as well
// xlate UNPACKED index to PACKED index to get from rlevel_bitmask
rlevel_byte[byte_idx].bm = rlevel_bitmask[XUP(byte_idx, !!ecc_ena)].bm;
rlevel_byte[byte_idx].bmerrs = rlevel_bitmask[XUP(byte_idx, !!ecc_ena)].errs;
}
}
#else /* PICK_BEST_RANK_SCORE_NOT_AVG */
/* Accumulate the total score across averaging loops for this setting */
debug_print("rlevel_scoreboard[rtt_nom=%d][rodt_ctl=%d][rankx=%d].score: %d [%d]\n",
rtt_nom, rodt_ctl, rankx, rlevel_rank_errors, average_loops);
rlevel_scoreboard[rtt_nom][rodt_ctl][rankx].score += rlevel_rank_errors;
/* Accumulate the delay totals and loop counts
necessary to compute average delay results */
for (byte_idx = 0; byte_idx < 9; ++byte_idx) {
if (rlevel_byte[byte_idx].delay != 0) { /* Don't include delay=0 in the average */
++rlevel_byte[byte_idx].loop_count;
rlevel_byte[byte_idx].loop_total += rlevel_byte[byte_idx].delay;
}
} /* for (byte_idx = 0; byte_idx < 9; ++byte_idx) */
#endif /* PICK_BEST_RANK_SCORE_NOT_AVG */
} /* for (average_loops = 0; average_loops < rlevel_avg_loops; average_loops++) */
#if PICK_BEST_RANK_SCORE_NOT_AVG
/* We recorded the best score across the averaging loops */
rlevel_scoreboard[rtt_nom][rodt_ctl][rankx].score = rlevel_best_rank_score;
/* Restore the delays from the best fields that go with the best score */
for (byte_idx = 0; byte_idx < 9; ++byte_idx) {
rlevel_byte[byte_idx].delay = rlevel_byte[byte_idx].best;
rlevel_byte[byte_idx].sqerrs = rlevel_byte[byte_idx].bestsq;
}
#else /* PICK_BEST_RANK_SCORE_NOT_AVG */
/* Compute the average score across averaging loops */
rlevel_scoreboard[rtt_nom][rodt_ctl][rankx].score =
divide_nint(rlevel_scoreboard[rtt_nom][rodt_ctl][rankx].score, rlevel_avg_loops);
/* Compute the average delay results */
for (byte_idx=0; byte_idx < 9; ++byte_idx) {
if (rlevel_byte[byte_idx].loop_count == 0)
rlevel_byte[byte_idx].loop_count = 1;
rlevel_byte[byte_idx].delay = divide_nint(rlevel_byte[byte_idx].loop_total,
rlevel_byte[byte_idx].loop_count);
}
#endif /* PICK_BEST_RANK_SCORE_NOT_AVG */
lmc_rlevel_rank.u = BDK_CSR_READ(node, BDK_LMCX_RLEVEL_RANKX(ddr_interface_num, rankx));
pack_rlevel_settings(ddr_interface_bytemask, ecc_ena, rlevel_byte, &lmc_rlevel_rank);
if (rlevel_avg_loops > 1) {
#if PICK_BEST_RANK_SCORE_NOT_AVG
// restore the "best" bitmasks and their scores for printing
for (byte_idx = 0; byte_idx < 9; ++byte_idx) {
if ((ddr_interface_bytemask & (1 << byte_idx)) == 0)
continue;
// xlate PACKED index to UNPACKED index to get from rlevel_byte
rlevel_bitmask[byte_idx].bm = rlevel_byte[XPU(byte_idx, !!ecc_ena)].bm;
rlevel_bitmask[byte_idx].errs = rlevel_byte[XPU(byte_idx, !!ecc_ena)].bmerrs;
}
// print bitmasks/scores here only for DEV // FIXME? lower VBL?
if (dram_is_verbose(VBL_DEV)) {
display_RL_BM(node, ddr_interface_num, rankx, rlevel_bitmask, ecc_ena);
display_RL_BM_scores(node, ddr_interface_num, rankx, rlevel_bitmask, ecc_ena);
display_RL_SEQ_scores(node, ddr_interface_num, rankx, rlevel_byte, ecc_ena);
}
display_RL_with_RODT(node, ddr_interface_num, lmc_rlevel_rank, rankx,
rlevel_scoreboard[rtt_nom][rodt_ctl][rankx].score,
print_nom_ohms, imp_values->rodt_ohms[rodt_ctl],
WITH_RODT_BESTSCORE);
#else /* PICK_BEST_RANK_SCORE_NOT_AVG */
display_RL_with_average(node, ddr_interface_num, lmc_rlevel_rank, rankx,
rlevel_scoreboard[rtt_nom][rodt_ctl][rankx].score);
#endif /* PICK_BEST_RANK_SCORE_NOT_AVG */
} /* if (rlevel_avg_loops > 1) */
rlevel_scoreboard[rtt_nom][rodt_ctl][rankx].setting = lmc_rlevel_rank.u;
} /* for (rodt_ctl = max_rodt_ctl; rodt_ctl >= min_rodt_ctl; --rodt_ctl) */
} /* for (rankx = 0; rankx < dimm_count*4; rankx++) */
} /* for (rtt_idx=min_rtt_nom_idx; rtt_idx<max_rtt_nom_idx; ++rtt_idx) */
/* Re-enable dynamic compensation settings. */
if (rlevel_comp_offset != 0) {
lmc_comp_ctl2.u = BDK_CSR_READ(node, BDK_LMCX_COMP_CTL2(ddr_interface_num));
lmc_comp_ctl2.s.ptune = 0;
lmc_comp_ctl2.s.ntune = 0;
lmc_comp_ctl2.s.byp = 0; /* Disable bypass mode */
DRAM_CSR_WRITE(node, BDK_LMCX_COMP_CTL2(ddr_interface_num), lmc_comp_ctl2.u);
BDK_CSR_READ(node, BDK_LMCX_COMP_CTL2(ddr_interface_num)); /* Read once */
lmc_comp_ctl2.u = BDK_CSR_READ(node, BDK_LMCX_COMP_CTL2(ddr_interface_num)); /* Read again */
ddr_print("DDR__PTUNE/DDR__NTUNE : %d/%d\n",
lmc_comp_ctl2.s.ddr__ptune, lmc_comp_ctl2.s.ddr__ntune);
lmc_control.u = BDK_CSR_READ(node, BDK_LMCX_CONTROL(ddr_interface_num));
lmc_control.s.int_zqcs_dis = saved_int_zqcs_dis; /* Restore original setting */
DRAM_CSR_WRITE(node, BDK_LMCX_CONTROL(ddr_interface_num), lmc_control.u);
}
{
int override_compensation = 0;
if ((s = lookup_env_parameter("ddr__ptune")) != NULL) {
saved_ddr__ptune = strtoul(s, NULL, 0);
override_compensation = 1;
}
if ((s = lookup_env_parameter("ddr__ntune")) != NULL) {
saved_ddr__ntune = strtoul(s, NULL, 0);
override_compensation = 1;
}
if (override_compensation) {
lmc_comp_ctl2.s.ptune = saved_ddr__ptune;
lmc_comp_ctl2.s.ntune = saved_ddr__ntune;
lmc_control.u = BDK_CSR_READ(node, BDK_LMCX_CONTROL(ddr_interface_num));
saved_int_zqcs_dis = lmc_control.s.int_zqcs_dis;
lmc_control.s.int_zqcs_dis = 1; /* Disable ZQCS while in bypass. */
DRAM_CSR_WRITE(node, BDK_LMCX_CONTROL(ddr_interface_num), lmc_control.u);
lmc_comp_ctl2.s.byp = 1; /* Enable bypass mode */
DRAM_CSR_WRITE(node, BDK_LMCX_COMP_CTL2(ddr_interface_num), lmc_comp_ctl2.u);
lmc_comp_ctl2.u = BDK_CSR_READ(node, BDK_LMCX_COMP_CTL2(ddr_interface_num)); /* Read again */
ddr_print("DDR__PTUNE/DDR__NTUNE : %d/%d\n",
lmc_comp_ctl2.s.ptune, lmc_comp_ctl2.s.ntune);
}
}
{ /* Evaluation block */
int best_rodt_score = DEFAULT_BEST_RANK_SCORE; /* Start with an arbitrarily high score */
int auto_rodt_ctl = 0;
int auto_rtt_nom = 0;
int rodt_score;
int rodt_row_skip_mask = 0;
// just add specific RODT rows to the skip mask for DDR4 at this time...
if (ddr_type == DDR4_DRAM) {
rodt_row_skip_mask |= (1 << ddr4_rodt_ctl_34_ohm); // skip RODT row 34 ohms for all DDR4 types
rodt_row_skip_mask |= (1 << ddr4_rodt_ctl_40_ohm); // skip RODT row 40 ohms for all DDR4 types
#if ADD_48_OHM_SKIP
rodt_row_skip_mask |= (1 << ddr4_rodt_ctl_48_ohm); // skip RODT row 48 ohms for all DDR4 types
#endif /* ADD_48OHM_SKIP */
#if NOSKIP_40_48_OHM
// For now, do not skip RODT row 40 or 48 ohm when ddr_hertz is above 1075 MHz
if (ddr_hertz > 1075000000) {
rodt_row_skip_mask &= ~(1 << ddr4_rodt_ctl_40_ohm); // noskip RODT row 40 ohms
rodt_row_skip_mask &= ~(1 << ddr4_rodt_ctl_48_ohm); // noskip RODT row 48 ohms
}
#endif /* NOSKIP_40_48_OHM */
#if NOSKIP_48_STACKED
// For now, do not skip RODT row 48 ohm for 2Rx4 stacked die DIMMs
if ((is_stacked_die) && (num_ranks == 2) && (dram_width == 4)) {
rodt_row_skip_mask &= ~(1 << ddr4_rodt_ctl_48_ohm); // noskip RODT row 48 ohms
}
#endif /* NOSKIP_48_STACKED */
#if NOSKIP_FOR_MINI
// for now, leave all rows eligible when we have mini-DIMMs...
if ((spd_dimm_type == 5) || (spd_dimm_type == 6)) {
rodt_row_skip_mask = 0;
}
#endif /* NOSKIP_FOR_MINI */
#if NOSKIP_FOR_2S_1R
// for now, leave all rows eligible when we have a 2-slot 1-rank config
if ((dimm_count == 2) && (num_ranks == 1)) {
rodt_row_skip_mask = 0;
}
#endif /* NOSKIP_FOR_2S_1R */
}
VB_PRT(VBL_DEV, "Evaluating Read-Leveling Scoreboard for AUTO settings.\n");
for (rtt_idx=min_rtt_nom_idx; rtt_idx<=max_rtt_nom_idx; ++rtt_idx) {
rtt_nom = imp_values->rtt_nom_table[rtt_idx];
/* When the read ODT mask is zero the dyn_rtt_nom_mask is
zero than RTT_NOM will not be changing during
read-leveling. Since the value is fixed we only need
to test it once. */
if ((dyn_rtt_nom_mask == 0) && (rtt_idx != min_rtt_nom_idx))
continue;
for (rodt_ctl=max_rodt_ctl; rodt_ctl>=min_rodt_ctl; --rodt_ctl) {
rodt_score = 0;
for (rankx = 0; rankx < dimm_count * 4;rankx++) {
if (!(rank_mask & (1 << rankx)))
continue;
debug_print("rlevel_scoreboard[rtt_nom=%d][rodt_ctl=%d][rankx=%d].score:%d\n",
rtt_nom, rodt_ctl, rankx, rlevel_scoreboard[rtt_nom][rodt_ctl][rankx].score);
rodt_score += rlevel_scoreboard[rtt_nom][rodt_ctl][rankx].score;
}
// FIXME: do we need to skip RODT rows here, like we do below in the by-RANK settings?
/* When using automatic ODT settings use the ODT
settings associated with the best score for
all of the tested ODT combinations. */
if ((rodt_score < best_rodt_score) || // always take lower score, OR
((rodt_score == best_rodt_score) && // take same score if RODT ohms are higher
(imp_values->rodt_ohms[rodt_ctl] > imp_values->rodt_ohms[auto_rodt_ctl])))
{
debug_print("AUTO: new best score for rodt:%d (%3d), new score:%d, previous score:%d\n",
rodt_ctl, imp_values->rodt_ohms[rodt_ctl], rodt_score, best_rodt_score);
best_rodt_score = rodt_score;
auto_rodt_ctl = rodt_ctl;
auto_rtt_nom = rtt_nom;
}
} /* for (rodt_ctl=max_rodt_ctl; rodt_ctl>=min_rodt_ctl; --rodt_ctl) */
} /* for (rtt_idx=min_rtt_nom_idx; rtt_idx<=max_rtt_nom_idx; ++rtt_idx) */
lmc_modereg_params1.u = BDK_CSR_READ(node, BDK_LMCX_MODEREG_PARAMS1(ddr_interface_num));
if (ddr_rtt_nom_auto) {
/* Store the automatically set RTT_NOM value */
if (dyn_rtt_nom_mask & 1) lmc_modereg_params1.s.rtt_nom_00 = auto_rtt_nom;
if (dyn_rtt_nom_mask & 2) lmc_modereg_params1.s.rtt_nom_01 = auto_rtt_nom;
if (dyn_rtt_nom_mask & 4) lmc_modereg_params1.s.rtt_nom_10 = auto_rtt_nom;
if (dyn_rtt_nom_mask & 8) lmc_modereg_params1.s.rtt_nom_11 = auto_rtt_nom;
} else {
/* restore the manual settings to the register */
lmc_modereg_params1.s.rtt_nom_00 = default_rtt_nom[0];
lmc_modereg_params1.s.rtt_nom_01 = default_rtt_nom[1];
lmc_modereg_params1.s.rtt_nom_10 = default_rtt_nom[2];
lmc_modereg_params1.s.rtt_nom_11 = default_rtt_nom[3];
}
DRAM_CSR_WRITE(node, BDK_LMCX_MODEREG_PARAMS1(ddr_interface_num), lmc_modereg_params1.u);
VB_PRT(VBL_DEV, "RTT_NOM %3d, %3d, %3d, %3d ohms : %x,%x,%x,%x\n",
imp_values->rtt_nom_ohms[lmc_modereg_params1.s.rtt_nom_11],
imp_values->rtt_nom_ohms[lmc_modereg_params1.s.rtt_nom_10],
imp_values->rtt_nom_ohms[lmc_modereg_params1.s.rtt_nom_01],
imp_values->rtt_nom_ohms[lmc_modereg_params1.s.rtt_nom_00],
lmc_modereg_params1.s.rtt_nom_11,
lmc_modereg_params1.s.rtt_nom_10,
lmc_modereg_params1.s.rtt_nom_01,
lmc_modereg_params1.s.rtt_nom_00);
VB_PRT(VBL_DEV, "RTT_WR %3d, %3d, %3d, %3d ohms : %x,%x,%x,%x\n",
imp_values->rtt_wr_ohms[EXTR_WR(lmc_modereg_params1.u, 3)],
imp_values->rtt_wr_ohms[EXTR_WR(lmc_modereg_params1.u, 2)],
imp_values->rtt_wr_ohms[EXTR_WR(lmc_modereg_params1.u, 1)],
imp_values->rtt_wr_ohms[EXTR_WR(lmc_modereg_params1.u, 0)],
EXTR_WR(lmc_modereg_params1.u, 3),
EXTR_WR(lmc_modereg_params1.u, 2),
EXTR_WR(lmc_modereg_params1.u, 1),
EXTR_WR(lmc_modereg_params1.u, 0));
VB_PRT(VBL_DEV, "DIC %3d, %3d, %3d, %3d ohms : %x,%x,%x,%x\n",
imp_values->dic_ohms[lmc_modereg_params1.s.dic_11],
imp_values->dic_ohms[lmc_modereg_params1.s.dic_10],
imp_values->dic_ohms[lmc_modereg_params1.s.dic_01],
imp_values->dic_ohms[lmc_modereg_params1.s.dic_00],
lmc_modereg_params1.s.dic_11,
lmc_modereg_params1.s.dic_10,
lmc_modereg_params1.s.dic_01,
lmc_modereg_params1.s.dic_00);
if (ddr_type == DDR4_DRAM) {
bdk_lmcx_modereg_params2_t lmc_modereg_params2;
/*
* We must read the CSR, and not depend on odt_config[odt_idx].odt_mask2,
* since we could have overridden values with envvars.
* NOTE: this corrects the printout, since the CSR is not written with the old values...
*/
lmc_modereg_params2.u = BDK_CSR_READ(node, BDK_LMCX_MODEREG_PARAMS2(ddr_interface_num));
VB_PRT(VBL_DEV, "RTT_PARK %3d, %3d, %3d, %3d ohms : %x,%x,%x,%x\n",
imp_values->rtt_nom_ohms[lmc_modereg_params2.s.rtt_park_11],
imp_values->rtt_nom_ohms[lmc_modereg_params2.s.rtt_park_10],
imp_values->rtt_nom_ohms[lmc_modereg_params2.s.rtt_park_01],
imp_values->rtt_nom_ohms[lmc_modereg_params2.s.rtt_park_00],
lmc_modereg_params2.s.rtt_park_11,
lmc_modereg_params2.s.rtt_park_10,
lmc_modereg_params2.s.rtt_park_01,
lmc_modereg_params2.s.rtt_park_00);
VB_PRT(VBL_DEV, "%-45s : 0x%x,0x%x,0x%x,0x%x\n", "VREF_RANGE",
lmc_modereg_params2.s.vref_range_11,
lmc_modereg_params2.s.vref_range_10,
lmc_modereg_params2.s.vref_range_01,
lmc_modereg_params2.s.vref_range_00);
VB_PRT(VBL_DEV, "%-45s : 0x%x,0x%x,0x%x,0x%x\n", "VREF_VALUE",
lmc_modereg_params2.s.vref_value_11,
lmc_modereg_params2.s.vref_value_10,
lmc_modereg_params2.s.vref_value_01,
lmc_modereg_params2.s.vref_value_00);
}
lmc_comp_ctl2.u = BDK_CSR_READ(node, BDK_LMCX_COMP_CTL2(ddr_interface_num));
if (ddr_rodt_ctl_auto)
lmc_comp_ctl2.s.rodt_ctl = auto_rodt_ctl;
else
lmc_comp_ctl2.s.rodt_ctl = default_rodt_ctl; // back to the original setting
DRAM_CSR_WRITE(node, BDK_LMCX_COMP_CTL2(ddr_interface_num), lmc_comp_ctl2.u);
lmc_comp_ctl2.u = BDK_CSR_READ(node, BDK_LMCX_COMP_CTL2(ddr_interface_num));
VB_PRT(VBL_DEV, "Read ODT_CTL : 0x%x (%d ohms)\n",
lmc_comp_ctl2.s.rodt_ctl, imp_values->rodt_ohms[lmc_comp_ctl2.s.rodt_ctl]);
////////////////// this is the start of the RANK MAJOR LOOP
for (rankx = 0; rankx < dimm_count * 4; rankx++) {
int best_rank_score = DEFAULT_BEST_RANK_SCORE; /* Start with an arbitrarily high score */
int best_rank_rtt_nom = 0;
//int best_rank_nom_ohms = 0;
int best_rank_ctl = 0;
int best_rank_ohms = 0;
int best_rankx = 0;
if (!(rank_mask & (1 << rankx)))
continue;
/* Use the delays associated with the best score for each individual rank */
VB_PRT(VBL_TME, "Evaluating Read-Leveling Scoreboard for Rank %d settings.\n", rankx);
// some of the rank-related loops below need to operate only on the ranks of a single DIMM,
// so create a mask for their use here
int dimm_rank_mask;
if (num_ranks == 4)
dimm_rank_mask = rank_mask; // should be 1111
else {
dimm_rank_mask = rank_mask & 3; // should be 01 or 11
if (rankx >= 2)
dimm_rank_mask <<= 2; // doing a rank on the second DIMM, should be 0100 or 1100
}
debug_print("DIMM rank mask: 0x%x, rank mask: 0x%x, rankx: %d\n", dimm_rank_mask, rank_mask, rankx);
////////////////// this is the start of the BEST ROW SCORE LOOP
for (rtt_idx = min_rtt_nom_idx; rtt_idx <= max_rtt_nom_idx; ++rtt_idx) {
//int rtt_nom_ohms;
rtt_nom = imp_values->rtt_nom_table[rtt_idx];
//rtt_nom_ohms = imp_values->rtt_nom_ohms[rtt_nom];
/* When the read ODT mask is zero the dyn_rtt_nom_mask is
zero than RTT_NOM will not be changing during
read-leveling. Since the value is fixed we only need
to test it once. */
if ((dyn_rtt_nom_mask == 0) && (rtt_idx != min_rtt_nom_idx))
continue;
debug_print("N%d.LMC%d.R%d: starting RTT_NOM %d (%d)\n",
node, ddr_interface_num, rankx, rtt_nom, rtt_nom_ohms);
for (rodt_ctl = max_rodt_ctl; rodt_ctl >= min_rodt_ctl; --rodt_ctl) {
int next_ohms = imp_values->rodt_ohms[rodt_ctl];
// skip RODT rows in mask, but *NOT* rows with too high a score;
// we will not use the skipped ones for printing or evaluating, but
// we need to allow all the non-skipped ones to be candidates for "best"
if (((1 << rodt_ctl) & rodt_row_skip_mask) != 0) {
debug_print("N%d.LMC%d.R%d: SKIPPING rodt:%d (%d) with rank_score:%d\n",
node, ddr_interface_num, rankx, rodt_ctl, next_ohms, next_score);
continue;
}
for (int orankx = 0; orankx < dimm_count * 4; orankx++) { // this is ROFFIX-0528
if (!(dimm_rank_mask & (1 << orankx))) // stay on the same DIMM
continue;
int next_score = rlevel_scoreboard[rtt_nom][rodt_ctl][orankx].score;
if (next_score > best_rank_score) // always skip a higher score
continue;
if (next_score == best_rank_score) { // if scores are equal
if (next_ohms < best_rank_ohms) // always skip lower ohms
continue;
if (next_ohms == best_rank_ohms) { // if same ohms
if (orankx != rankx) // always skip the other rank(s)
continue;
}
// else next_ohms are greater, always choose it
}
// else next_score is less than current best, so always choose it
VB_PRT(VBL_DEV2, "N%d.LMC%d.R%d: new best score: rank %d, rodt %d(%3d), new best %d, previous best %d(%d)\n",
node, ddr_interface_num, rankx, orankx, rodt_ctl, next_ohms, next_score,
best_rank_score, best_rank_ohms);
best_rank_score = next_score;
best_rank_rtt_nom = rtt_nom;
//best_rank_nom_ohms = rtt_nom_ohms;
best_rank_ctl = rodt_ctl;
best_rank_ohms = next_ohms;
best_rankx = orankx;
lmc_rlevel_rank.u = rlevel_scoreboard[rtt_nom][rodt_ctl][orankx].setting;
} /* for (int orankx = 0; orankx < dimm_count * 4; orankx++) */
} /* for (rodt_ctl = max_rodt_ctl; rodt_ctl >= min_rodt_ctl; --rodt_ctl) */
} /* for (rtt_idx = min_rtt_nom_idx; rtt_idx <= max_rtt_nom_idx; ++rtt_idx) */
////////////////// this is the end of the BEST ROW SCORE LOOP
// DANGER, Will Robinson!! Abort now if we did not find a best score at all...
if (best_rank_score == DEFAULT_BEST_RANK_SCORE) {
error_print("WARNING: no best rank score found for N%d.LMC%d.R%d - resetting node...\n",
node, ddr_interface_num, rankx);
bdk_wait_usec(500000);
bdk_reset_chip(node);
}
// FIXME: relative now, but still arbitrary...
// halve the range if 2 DIMMs unless they are single rank...
int MAX_RANK_SCORE = best_rank_score;
MAX_RANK_SCORE += (MAX_RANK_SCORE_LIMIT / ((num_ranks > 1) ? dimm_count : 1));
if (!ecc_ena){
lmc_rlevel_rank.cn83xx.byte8 = lmc_rlevel_rank.cn83xx.byte0; /* ECC is not used */
}
// at the end, write the best row settings to the current rank
DRAM_CSR_WRITE(node, BDK_LMCX_RLEVEL_RANKX(ddr_interface_num, rankx), lmc_rlevel_rank.u);
lmc_rlevel_rank.u = BDK_CSR_READ(node, BDK_LMCX_RLEVEL_RANKX(ddr_interface_num, rankx));
bdk_lmcx_rlevel_rankx_t saved_rlevel_rank;
saved_rlevel_rank.u = lmc_rlevel_rank.u;
////////////////// this is the start of the PRINT LOOP
// for pass==0, print current rank, pass==1 print other rank(s)
// this is done because we want to show each ranks RODT values together, not interlaced
#if COUNT_RL_CANDIDATES
// keep separates for ranks - pass=0 target rank, pass=1 other rank on DIMM
int mask_skipped[2] = {0,0};
int score_skipped[2] = {0,0};
int selected_rows[2] = {0,0};
int zero_scores[2] = {0,0};
#endif /* COUNT_RL_CANDIDATES */
for (int pass = 0; pass < 2; pass++ ) {
for (int orankx = 0; orankx < dimm_count * 4; orankx++) {
if (!(dimm_rank_mask & (1 << orankx))) // stay on the same DIMM
continue;
if (((pass == 0) && (orankx != rankx)) || ((pass != 0) && (orankx == rankx)))
continue;
for (rtt_idx = min_rtt_nom_idx; rtt_idx <= max_rtt_nom_idx; ++rtt_idx) {
rtt_nom = imp_values->rtt_nom_table[rtt_idx];
if (dyn_rtt_nom_mask == 0) {
print_nom_ohms = -1;
if (rtt_idx != min_rtt_nom_idx)
continue;
} else {
print_nom_ohms = imp_values->rtt_nom_ohms[rtt_nom];
}
// cycle through all the RODT values...
for (rodt_ctl = max_rodt_ctl; rodt_ctl >= min_rodt_ctl; --rodt_ctl) {
bdk_lmcx_rlevel_rankx_t temp_rlevel_rank;
int temp_score = rlevel_scoreboard[rtt_nom][rodt_ctl][orankx].score;
temp_rlevel_rank.u = rlevel_scoreboard[rtt_nom][rodt_ctl][orankx].setting;
// skip RODT rows in mask, or rows with too high a score;
// we will not use them for printing or evaluating...
#if COUNT_RL_CANDIDATES
int skip_row;
if ((1 << rodt_ctl) & rodt_row_skip_mask) {
skip_row = WITH_RODT_SKIPPING;
++mask_skipped[pass];
} else if (temp_score > MAX_RANK_SCORE) {
skip_row = WITH_RODT_SKIPPING;
++score_skipped[pass];
} else {
skip_row = WITH_RODT_BLANK;
++selected_rows[pass];
if (temp_score == 0)
++zero_scores[pass];
}
#else /* COUNT_RL_CANDIDATES */
int skip_row = (((1 << rodt_ctl) & rodt_row_skip_mask) || (temp_score > MAX_RANK_SCORE))
? WITH_RODT_SKIPPING: WITH_RODT_BLANK;
#endif /* COUNT_RL_CANDIDATES */
// identify and print the BEST ROW when it comes up
if ((skip_row == WITH_RODT_BLANK) &&
(best_rankx == orankx) &&
(best_rank_rtt_nom == rtt_nom) &&
(best_rank_ctl == rodt_ctl))
{
skip_row = WITH_RODT_BESTROW;
}
display_RL_with_RODT(node, ddr_interface_num,
temp_rlevel_rank, orankx, temp_score,
print_nom_ohms,
imp_values->rodt_ohms[rodt_ctl],
skip_row);
} /* for (rodt_ctl = max_rodt_ctl; rodt_ctl >= min_rodt_ctl; --rodt_ctl) */
} /* for (rtt_idx=min_rtt_nom_idx; rtt_idx<=max_rtt_nom_idx; ++rtt_idx) */
} /* for (int orankx = 0; orankx < dimm_count * 4; orankx++) { */
} /* for (int pass = 0; pass < 2; pass++ ) */
#if COUNT_RL_CANDIDATES
VB_PRT(VBL_TME, "N%d.LMC%d.R%d: RLROWS: selected %d+%d, zero_scores %d+%d, mask_skipped %d+%d, score_skipped %d+%d\n",
node, ddr_interface_num, rankx,
selected_rows[0], selected_rows[1],
zero_scores[0], zero_scores[1],
mask_skipped[0], mask_skipped[1],
score_skipped[0], score_skipped[1]);
#endif /* COUNT_RL_CANDIDATES */
////////////////// this is the end of the PRINT LOOP
// now evaluate which bytes need adjusting
uint64_t byte_msk = 0x3f; // 6-bit fields
uint64_t best_byte, new_byte, temp_byte, orig_best_byte;
uint64_t rank_best_bytes[9]; // collect the new byte values; first init with current best for neighbor use
for (int byte_idx = 0, byte_sh = 0; byte_idx < 8+ecc_ena; byte_idx++, byte_sh += 6) {
rank_best_bytes[byte_idx] = (lmc_rlevel_rank.u >> byte_sh) & byte_msk;
}
////////////////// this is the start of the BEST BYTE LOOP
for (int byte_idx = 0, byte_sh = 0; byte_idx < 8+ecc_ena; byte_idx++, byte_sh += 6) {
best_byte = orig_best_byte = rank_best_bytes[byte_idx];
////////////////// this is the start of the BEST BYTE AVERAGING LOOP
// validate the initial "best" byte by looking at the average of the unskipped byte-column entries
// we want to do this before we go further, so we can try to start with a better initial value
// this is the so-called "BESTBUY" patch set
int sum = 0, count = 0;
for (rtt_idx = min_rtt_nom_idx; rtt_idx <= max_rtt_nom_idx; ++rtt_idx) {
rtt_nom = imp_values->rtt_nom_table[rtt_idx];
if ((dyn_rtt_nom_mask == 0) && (rtt_idx != min_rtt_nom_idx))
continue;
for (rodt_ctl = max_rodt_ctl; rodt_ctl >= min_rodt_ctl; --rodt_ctl) {
bdk_lmcx_rlevel_rankx_t temp_rlevel_rank;
int temp_score;
for (int orankx = 0; orankx < dimm_count * 4; orankx++) { // average over all the ranks
if (!(dimm_rank_mask & (1 << orankx))) // stay on the same DIMM
continue;
temp_score = rlevel_scoreboard[rtt_nom][rodt_ctl][orankx].score;
// skip RODT rows in mask, or rows with too high a score;
// we will not use them for printing or evaluating...
if (!((1 << rodt_ctl) & rodt_row_skip_mask) &&
(temp_score <= MAX_RANK_SCORE))
{
temp_rlevel_rank.u = rlevel_scoreboard[rtt_nom][rodt_ctl][orankx].setting;
temp_byte = (temp_rlevel_rank.u >> byte_sh) & byte_msk;
sum += temp_byte;
count++;
}
} /* for (int orankx = 0; orankx < dimm_count * 4; orankx++) */
} /* for (rodt_ctl = max_rodt_ctl; rodt_ctl >= min_rodt_ctl; --rodt_ctl) */
} /* for (rtt_idx=min_rtt_nom_idx; rtt_idx<=max_rtt_nom_idx; ++rtt_idx) */
////////////////// this is the end of the BEST BYTE AVERAGING LOOP
uint64_t avg_byte = divide_nint(sum, count); // FIXME: validate count and sum??
int avg_diff = (int)best_byte - (int)avg_byte;
new_byte = best_byte;
if (avg_diff != 0) {
// bump best up/dn by 1, not necessarily all the way to avg
new_byte = best_byte + ((avg_diff > 0) ? -1: 1);
}
VB_PRT(VBL_DEV, "N%d.LMC%d.R%d: START: Byte %d: best %d is different by %d from average %d, using %d.\n",
node, ddr_interface_num, rankx,
byte_idx, (int)best_byte, avg_diff, (int)avg_byte, (int)new_byte);
best_byte = new_byte;
// At this point best_byte is either:
// 1. the original byte-column value from the best scoring RODT row, OR
// 2. that value bumped toward the average of all the byte-column values
//
// best_byte will not change from here on...
////////////////// this is the start of the BEST BYTE COUNTING LOOP
// NOTE: we do this next loop separately from above, because we count relative to "best_byte"
// which may have been modified by the above averaging operation...
//
// Also, the above only moves toward the average by +- 1, so that we will always have a count
// of at least 1 for the original best byte, even if all the others are further away and not counted;
// this ensures we will go back to the original if no others are counted...
// FIXME: this could cause issue if the range of values for a byte-lane are too disparate...
int count_less = 0, count_same = 0, count_more = 0;
#if FAILSAFE_CHECK
uint64_t count_byte = new_byte; // save the value we will count around
#endif /* FAILSAFE_CHECK */
#if RANK_MAJORITY
int rank_less = 0, rank_same = 0, rank_more = 0;
#endif /* RANK_MAJORITY */
for (rtt_idx = min_rtt_nom_idx; rtt_idx <= max_rtt_nom_idx; ++rtt_idx) {
rtt_nom = imp_values->rtt_nom_table[rtt_idx];
if ((dyn_rtt_nom_mask == 0) && (rtt_idx != min_rtt_nom_idx))
continue;
for (rodt_ctl = max_rodt_ctl; rodt_ctl >= min_rodt_ctl; --rodt_ctl) {
bdk_lmcx_rlevel_rankx_t temp_rlevel_rank;
int temp_score;
for (int orankx = 0; orankx < dimm_count * 4; orankx++) { // count over all the ranks
if (!(dimm_rank_mask & (1 << orankx))) // stay on the same DIMM
continue;
temp_score = rlevel_scoreboard[rtt_nom][rodt_ctl][orankx].score;
// skip RODT rows in mask, or rows with too high a score;
// we will not use them for printing or evaluating...
if (((1 << rodt_ctl) & rodt_row_skip_mask) ||
(temp_score > MAX_RANK_SCORE))
{
continue;
}
temp_rlevel_rank.u = rlevel_scoreboard[rtt_nom][rodt_ctl][orankx].setting;
temp_byte = (temp_rlevel_rank.u >> byte_sh) & byte_msk;
if (temp_byte == 0) // do not count it if illegal
continue;
else if (temp_byte == best_byte)
count_same++;
else if (temp_byte == best_byte - 1)
count_less++;
else if (temp_byte == best_byte + 1)
count_more++;
// else do not count anything more than 1 away from the best
#if RANK_MAJORITY
// FIXME? count is relative to best_byte; should it be rank-based?
if (orankx != rankx) // rank counts only on main rank
continue;
else if (temp_byte == best_byte)
rank_same++;
else if (temp_byte == best_byte - 1)
rank_less++;
else if (temp_byte == best_byte + 1)
rank_more++;
#endif /* RANK_MAJORITY */
} /* for (int orankx = 0; orankx < dimm_count * 4; orankx++) */
} /* for (rodt_ctl = max_rodt_ctl; rodt_ctl >= min_rodt_ctl; --rodt_ctl) */
} /* for (rtt_idx=min_rtt_nom_idx; rtt_idx<=max_rtt_nom_idx; ++rtt_idx) */
#if RANK_MAJORITY
VB_PRT(VBL_DEV, "N%d.LMC%d.R%d: COUNT: Byte %d: orig %d now %d, more %d same %d less %d (%d/%d/%d)\n",
node, ddr_interface_num, rankx,
byte_idx, (int)orig_best_byte, (int)best_byte,
count_more, count_same, count_less,
rank_more, rank_same, rank_less);
#else /* RANK_MAJORITY */
VB_PRT(VBL_DEV, "N%d.LMC%d.R%d: COUNT: Byte %d: orig %d now %d, more %d same %d less %d\n",
node, ddr_interface_num, rankx,
byte_idx, (int)orig_best_byte, (int)best_byte,
count_more, count_same, count_less);
#endif /* RANK_MAJORITY */
////////////////// this is the end of the BEST BYTE COUNTING LOOP
// choose the new byte value
// we need to check that there is no gap greater than 2 between adjacent bytes
// (adjacency depends on DIMM type)
// use the neighbor value to help decide
// initially, the rank_best_bytes[] will contain values from the chosen lowest score rank
new_byte = 0;
// neighbor is index-1 unless we are index 0 or index 8 (ECC)
int neighbor = (byte_idx == 8) ? 3 : ((byte_idx == 0) ? 1 : byte_idx - 1);
uint64_t neigh_byte = rank_best_bytes[neighbor];
// can go up or down or stay the same, so look at a numeric average to help
new_byte = divide_nint(((count_more * (best_byte + 1)) +
(count_same * (best_byte + 0)) +
(count_less * (best_byte - 1))),
max(1, (count_more + count_same + count_less)));
// use neighbor to help choose with average
if ((byte_idx > 0) && (_abs(neigh_byte - new_byte) > 2)) // but not for byte 0
{
uint64_t avg_pick = new_byte;
if ((new_byte - best_byte) != 0)
new_byte = best_byte; // back to best, average did not get better
else // avg was the same, still too far, now move it towards the neighbor
new_byte += (neigh_byte > new_byte) ? 1 : -1;
VB_PRT(VBL_DEV, "N%d.LMC%d.R%d: AVERAGE: Byte %d: neighbor %d too different %d from average %d, picking %d.\n",
node, ddr_interface_num, rankx,
byte_idx, neighbor, (int)neigh_byte, (int)avg_pick, (int)new_byte);
}
#if MAJORITY_OVER_AVG
// NOTE:
// For now, we let the neighbor processing above trump the new simple majority processing here.
// This is mostly because we have seen no smoking gun for a neighbor bad choice (yet?).
// Also note that we will ALWAYS be using byte 0 majority, because of the if clause above.
else {
// majority is dependent on the counts, which are relative to best_byte, so start there
uint64_t maj_byte = best_byte;
if ((count_more > count_same) && (count_more > count_less)) {
maj_byte++;
} else if ((count_less > count_same) && (count_less > count_more)) {
maj_byte--;
}
if (maj_byte != new_byte) {
// print only when majority choice is different from average
VB_PRT(VBL_DEV, "N%d.LMC%d.R%d: MAJORTY: Byte %d: picking majority of %d over average %d.\n",
node, ddr_interface_num, rankx,
byte_idx, (int)maj_byte, (int)new_byte);
new_byte = maj_byte;
} else {
VB_PRT(VBL_DEV, "N%d.LMC%d.R%d: AVERAGE: Byte %d: picking average of %d.\n",
node, ddr_interface_num, rankx,
byte_idx, (int)new_byte);
}
#if RANK_MAJORITY
// rank majority is dependent on the rank counts, which are relative to best_byte,
// so start there, and adjust according to the rank counts majority
uint64_t rank_maj = best_byte;
if ((rank_more > rank_same) && (rank_more > rank_less)) {
rank_maj++;
} else if ((rank_less > rank_same) && (rank_less > rank_more)) {
rank_maj--;
}
int rank_sum = rank_more + rank_same + rank_less;
// now, let rank majority possibly rule over the current new_byte however we got it
if (rank_maj != new_byte) { // only if different
// Here is where we decide whether to completely apply RANK_MAJORITY or not
// FIXME: For the moment, we do it ONLY when running 2-slot configs
// FIXME? or when rank_sum is big enough?
if ((dimm_count > 1) || (rank_sum > 2)) {
// print only when rank majority choice is selected
VB_PRT(VBL_DEV, "N%d.LMC%d.R%d: RANKMAJ: Byte %d: picking %d over %d.\n",
node, ddr_interface_num, rankx,
byte_idx, (int)rank_maj, (int)new_byte);
new_byte = rank_maj;
} else { // FIXME: print some info when we could have chosen RANKMAJ but did not
VB_PRT(VBL_DEV, "N%d.LMC%d.R%d: RANKMAJ: Byte %d: NOT using %d over %d (best=%d,sum=%d).\n",
node, ddr_interface_num, rankx,
byte_idx, (int)rank_maj, (int)new_byte,
(int)best_byte, rank_sum);
}
}
#endif /* RANK_MAJORITY */
}
#else
else {
VB_PRT(VBL_DEV, "N%d.LMC%d.R%d: AVERAGE: Byte %d: picking average of %d.\n",
node, ddr_interface_num, rankx,
byte_idx, (int)new_byte);
}
#endif
#if FAILSAFE_CHECK
// one last check:
// if new_byte is still count_byte, BUT there was no count for that value, DO SOMETHING!!!
// FIXME: go back to original best byte from the best row
if ((new_byte == count_byte) && (count_same == 0)) {
new_byte = orig_best_byte;
VB_PRT(VBL_DEV, "N%d.LMC%d.R%d: FAILSAF: Byte %d: going back to original %d.\n",
node, ddr_interface_num, rankx,
byte_idx, (int)new_byte);
}
#endif /* FAILSAFE_CHECK */
#if PERFECT_BITMASK_COUNTING
// Look at counts for "perfect" bitmasks if we had any for this byte-lane.
// Remember, we only counted for DDR4, so zero means none or DDR3, and we bypass this...
if (rank_perfect_counts[rankx].total[byte_idx] > 0) {
// FIXME: should be more error checking, look for ties, etc...
/* FIXME(dhendrix): i shadows another local variable, changed to _i in this block */
// int i, delay_count, delay_value, delay_max;
int _i, delay_count, delay_value, delay_max;
uint32_t ties;
delay_value = -1;
delay_max = 0;
ties = 0;
for (_i = 0; _i < 32; _i++) {
delay_count = rank_perfect_counts[rankx].count[byte_idx][_i];
if (delay_count > 0) { // only look closer if there are any,,,
if (delay_count > delay_max) {
delay_max = delay_count;
delay_value = _i;
ties = 0; // reset ties to none
} else if (delay_count == delay_max) {
if (ties == 0)
ties = 1UL << delay_value; // put in original value
ties |= 1UL << _i; // add new value
}
}
} /* for (_i = 0; _i < 32; _i++) */
if (delay_value >= 0) {
if (ties != 0) {
if (ties & (1UL << (int)new_byte)) {
// leave choice as new_byte if any tied one is the same...
delay_value = (int)new_byte;
VB_PRT(VBL_DEV, "N%d.LMC%d.R%d: PERFECT: Byte %d: TIES (0x%x) INCLUDED %d (%d)\n",
node, ddr_interface_num, rankx, byte_idx, ties, (int)new_byte, delay_max);
} else {
// FIXME: should choose a perfect one!!!
// FIXME: for now, leave the choice as new_byte
delay_value = (int)new_byte;
VB_PRT(VBL_DEV, "N%d.LMC%d.R%d: PERFECT: Byte %d: TIES (0x%x) OMITTED %d (%d)\n",
node, ddr_interface_num, rankx, byte_idx, ties, (int)new_byte, delay_max);
}
} /* if (ties != 0) */
if (delay_value != (int)new_byte) {
delay_count = rank_perfect_counts[rankx].count[byte_idx][(int)new_byte];
VB_PRT(VBL_DEV, "N%d.LMC%d.R%d: PERFECT: Byte %d: DIFF from %d (%d), USING %d (%d)\n",
node, ddr_interface_num, rankx, byte_idx, (int)new_byte,
delay_count, delay_value, delay_max);
new_byte = (uint64_t)delay_value; // FIXME: make this optional via envvar?
} else {
debug_print("N%d.LMC%d.R%d: PERFECT: Byte %d: SAME as %d (%d)\n",
node, ddr_interface_num, rankx, byte_idx, new_byte, delay_max);
}
}
} /* if (rank_perfect_counts[rankx].total[byte_idx] > 0) */
else {
if (ddr_type == DDR4_DRAM) { // only report when DDR4
// FIXME: remove or increase VBL for this output...
VB_PRT(VBL_DEV, "N%d.LMC%d.R%d: PERFECT: Byte %d: ZERO perfect bitmasks\n",
node, ddr_interface_num, rankx, byte_idx);
}
} /* if (rank_perfect_counts[rankx].total[byte_idx] > 0) */
#endif /* PERFECT_BITMASK_COUNTING */
VB_PRT(VBL_DEV, "N%d.LMC%d.R%d: SUMMARY: Byte %d: %s: orig %d now %d, more %d same %d less %d, using %d\n",
node, ddr_interface_num, rankx,
byte_idx, "AVG", (int)orig_best_byte,
(int)best_byte, count_more, count_same, count_less, (int)new_byte);
// update the byte with the new value (NOTE: orig value in the CSR may not be current "best")
lmc_rlevel_rank.u &= ~(byte_msk << byte_sh);
lmc_rlevel_rank.u |= (new_byte << byte_sh);
rank_best_bytes[byte_idx] = new_byte; // save new best for neighbor use
} /* for (byte_idx = 0; byte_idx < 8+ecc_ena; byte_idx++) */
////////////////// this is the end of the BEST BYTE LOOP
if (saved_rlevel_rank.u != lmc_rlevel_rank.u) {
DRAM_CSR_WRITE(node, BDK_LMCX_RLEVEL_RANKX(ddr_interface_num, rankx), lmc_rlevel_rank.u);
lmc_rlevel_rank.u = BDK_CSR_READ(node, BDK_LMCX_RLEVEL_RANKX(ddr_interface_num, rankx));
debug_print("Adjusting Read-Leveling per-RANK settings.\n");
} else {
debug_print("Not Adjusting Read-Leveling per-RANK settings.\n");
}
display_RL_with_final(node, ddr_interface_num, lmc_rlevel_rank, rankx);
#if RLEXTRAS_PATCH
#define RLEVEL_RANKX_EXTRAS_INCR 4
if ((rank_mask & 0x0F) != 0x0F) { // if there are unused entries to be filled
bdk_lmcx_rlevel_rankx_t temp_rlevel_rank = lmc_rlevel_rank; // copy the current rank
int byte, delay;
if (rankx < 3) {
debug_print("N%d.LMC%d.R%d: checking for RLEVEL_RANK unused entries.\n",
node, ddr_interface_num, rankx);
for (byte = 0; byte < 9; byte++) { // modify the copy in prep for writing to empty slot(s)
delay = get_rlevel_rank_struct(&temp_rlevel_rank, byte) + RLEVEL_RANKX_EXTRAS_INCR;
if (delay > (int)RLEVEL_BYTE_MSK) delay = RLEVEL_BYTE_MSK;
update_rlevel_rank_struct(&temp_rlevel_rank, byte, delay);
}
if (rankx == 0) { // if rank 0, write rank 1 and rank 2 here if empty
if (!(rank_mask & (1<<1))) { // check that rank 1 is empty
VB_PRT(VBL_DEV, "N%d.LMC%d.R%d: writing RLEVEL_RANK unused entry R%d.\n",
node, ddr_interface_num, rankx, 1);
DRAM_CSR_WRITE(node, BDK_LMCX_RLEVEL_RANKX(ddr_interface_num, 1), temp_rlevel_rank.u);
}
if (!(rank_mask & (1<<2))) { // check that rank 2 is empty
VB_PRT(VBL_DEV, "N%d.LMC%d.R%d: writing RLEVEL_RANK unused entry R%d.\n",
node, ddr_interface_num, rankx, 2);
DRAM_CSR_WRITE(node, BDK_LMCX_RLEVEL_RANKX(ddr_interface_num, 2), temp_rlevel_rank.u);
}
}
// if ranks 0, 1 or 2, write rank 3 here if empty
if (!(rank_mask & (1<<3))) { // check that rank 3 is empty
VB_PRT(VBL_DEV, "N%d.LMC%d.R%d: writing RLEVEL_RANK unused entry R%d.\n",
node, ddr_interface_num, rankx, 3);
DRAM_CSR_WRITE(node, BDK_LMCX_RLEVEL_RANKX(ddr_interface_num, 3), temp_rlevel_rank.u);
}
}
}
#endif /* RLEXTRAS_PATCH */
} /* for (rankx = 0; rankx < dimm_count * 4; rankx++) */
////////////////// this is the end of the RANK MAJOR LOOP
} /* Evaluation block */
} /* while(rlevel_debug_loops--) */
lmc_control.s.ddr2t = save_ddr2t;
DRAM_CSR_WRITE(node, BDK_LMCX_CONTROL(ddr_interface_num), lmc_control.u);
lmc_control.u = BDK_CSR_READ(node, BDK_LMCX_CONTROL(ddr_interface_num));
ddr_print("%-45s : %6d\n", "DDR2T", lmc_control.s.ddr2t); /* Display final 2T value */
perform_ddr_init_sequence(node, rank_mask, ddr_interface_num);
for (rankx = 0; rankx < dimm_count * 4;rankx++) {
uint64_t value;
int parameter_set = 0;
if (!(rank_mask & (1 << rankx)))
continue;
lmc_rlevel_rank.u = BDK_CSR_READ(node, BDK_LMCX_RLEVEL_RANKX(ddr_interface_num, rankx));
for (i=0; i<9; ++i) {
if ((s = lookup_env_parameter("ddr%d_rlevel_rank%d_byte%d", ddr_interface_num, rankx, i)) != NULL) {
parameter_set |= 1;
value = strtoul(s, NULL, 0);
update_rlevel_rank_struct(&lmc_rlevel_rank, i, value);
}
}
if ((s = lookup_env_parameter_ull("ddr%d_rlevel_rank%d", ddr_interface_num, rankx)) != NULL) {
parameter_set |= 1;
value = strtoull(s, NULL, 0);
lmc_rlevel_rank.u = value;
}
if (parameter_set) {
DRAM_CSR_WRITE(node, BDK_LMCX_RLEVEL_RANKX(ddr_interface_num, rankx), lmc_rlevel_rank.u);
display_RL(node, ddr_interface_num, lmc_rlevel_rank, rankx);
}
}
}
/* Workaround Trcd overflow by using Additive latency. */
if (CAVIUM_IS_MODEL(CAVIUM_CN88XX_PASS1_X))
{
bdk_lmcx_modereg_params0_t lmc_modereg_params0;
bdk_lmcx_timing_params1_t lmc_timing_params1;
bdk_lmcx_control_t lmc_control;
int rankx;
lmc_timing_params1.u = BDK_CSR_READ(node, BDK_LMCX_TIMING_PARAMS1(ddr_interface_num));
lmc_modereg_params0.u = BDK_CSR_READ(node, BDK_LMCX_MODEREG_PARAMS0(ddr_interface_num));
lmc_control.u = BDK_CSR_READ(node, BDK_LMCX_CONTROL(ddr_interface_num));
if (lmc_timing_params1.s.trcd == 0) {
ddr_print("Workaround Trcd overflow by using Additive latency.\n");
lmc_timing_params1.s.trcd = 12; /* Hard code this to 12 and enable additive latency */
lmc_modereg_params0.s.al = 2; /* CL-2 */
lmc_control.s.pocas = 1;
ddr_print("MODEREG_PARAMS0 : 0x%016llx\n", lmc_modereg_params0.u);
DRAM_CSR_WRITE(node, BDK_LMCX_MODEREG_PARAMS0(ddr_interface_num), lmc_modereg_params0.u);
ddr_print("TIMING_PARAMS1 : 0x%016llx\n", lmc_timing_params1.u);
DRAM_CSR_WRITE(node, BDK_LMCX_TIMING_PARAMS1(ddr_interface_num), lmc_timing_params1.u);
ddr_print("LMC_CONTROL : 0x%016llx\n", lmc_control.u);
DRAM_CSR_WRITE(node, BDK_LMCX_CONTROL(ddr_interface_num), lmc_control.u);
for (rankx = 0; rankx < dimm_count * 4; rankx++) {
if (!(rank_mask & (1 << rankx)))
continue;
ddr4_mrw(node, ddr_interface_num, rankx, -1, 1, 0); /* MR1 */
}
}
}
// this is here just for output, to allow check of the Deskew settings one last time...
if (! disable_deskew_training) {
deskew_counts_t dsk_counts;
VB_PRT(VBL_TME, "N%d.LMC%d: Check Deskew Settings before software Write-Leveling.\n",
node, ddr_interface_num);
Validate_Read_Deskew_Training(node, rank_mask, ddr_interface_num, &dsk_counts, VBL_TME); // TME for FINAL
}
/* Workaround Errata 26304 (T88@2.0)
When the CSRs LMCX_DLL_CTL3[WR_DESKEW_ENA] = 1 AND
LMCX_PHY_CTL2[DQS[0..8]_DSK_ADJ] > 4, set
LMCX_EXT_CONFIG[DRIVE_ENA_BPRCH] = 1.
*/
if (CAVIUM_IS_MODEL(CAVIUM_CN88XX_PASS2_X)) { // only for 88XX pass 2, not 81xx or 83xx
bdk_lmcx_dll_ctl3_t dll_ctl3;
bdk_lmcx_phy_ctl2_t phy_ctl2;
bdk_lmcx_ext_config_t ext_config;
int increased_dsk_adj = 0;
int byte;
phy_ctl2.u = BDK_CSR_READ(node, BDK_LMCX_PHY_CTL2(ddr_interface_num));
ext_config.u = BDK_CSR_READ(node, BDK_LMCX_EXT_CONFIG(ddr_interface_num));
dll_ctl3.u = BDK_CSR_READ(node, BDK_LMCX_DLL_CTL3(ddr_interface_num));
for (byte = 0; byte < 8; ++byte) {
if (!(ddr_interface_bytemask&(1<<byte)))
continue;
increased_dsk_adj |= (((phy_ctl2.u >> (byte*3)) & 0x7) > 4);
}
if ((dll_ctl3.s.wr_deskew_ena == 1) && increased_dsk_adj) {
ext_config.s.drive_ena_bprch = 1;
DRAM_CSR_WRITE(node, BDK_LMCX_EXT_CONFIG(ddr_interface_num),
ext_config.u);
}
}
/*
* 6.9.13 DRAM Vref Training for DDR4
*
* This includes software write-leveling
*/
{ // Software Write-Leveling block
/* Try to determine/optimize write-level delays experimentally. */
#pragma pack(push,1)
bdk_lmcx_wlevel_rankx_t lmc_wlevel_rank;
bdk_lmcx_wlevel_rankx_t lmc_wlevel_rank_hw_results;
int byte;
int delay;
int rankx = 0;
int active_rank;
#if !DISABLE_SW_WL_PASS_2
bdk_lmcx_rlevel_rankx_t lmc_rlevel_rank;
int sw_wlevel_offset = 1;
#endif
int sw_wlevel_enable = 1; /* FIX... Should be customizable. */
int interfaces;
int measured_vref_flag;
typedef enum {
WL_ESTIMATED = 0, /* HW/SW wleveling failed. Results
estimated. */
WL_HARDWARE = 1, /* H/W wleveling succeeded */
WL_SOFTWARE = 2, /* S/W wleveling passed 2 contiguous
settings. */
WL_SOFTWARE1 = 3, /* S/W wleveling passed 1 marginal
setting. */
} sw_wl_status_t;
static const char *wl_status_strings[] = {
"(e)",
" ",
" ",
"(1)"
};
int sw_wlevel_hw_default = 1; // FIXME: make H/W assist the default now
#pragma pack(pop)
if ((s = lookup_env_parameter("ddr_sw_wlevel_hw")) != NULL) {
sw_wlevel_hw_default = !!strtoul(s, NULL, 0);
}
// cannot use hw-assist when doing 32-bit
if (! ddr_interface_64b) {
sw_wlevel_hw_default = 0;
}
if ((s = lookup_env_parameter("ddr_software_wlevel")) != NULL) {
sw_wlevel_enable = strtoul(s, NULL, 0);
}
#if SWL_WITH_HW_ALTS_CHOOSE_SW
// Choose the SW algo for SWL if any HWL alternates were found
// NOTE: we have to do this here, and for all, since HW-assist including ECC requires ECC enable
for (rankx = 0; rankx < dimm_count * 4; rankx++) {
if (!sw_wlevel_enable)
break;
if (!(rank_mask & (1 << rankx)))
continue;
// if we are doing HW-assist, and there are alternates, switch to SW-algorithm for all
if (sw_wlevel_hw && hwl_alts[rankx].hwl_alt_mask) {
ddr_print("N%d.LMC%d.R%d: Using SW algorithm for write-leveling this rank\n",
node, ddr_interface_num, rankx);
sw_wlevel_hw_default = 0;
break;
}
} /* for (rankx = 0; rankx < dimm_count * 4; rankx++) */
#endif
/* Get the measured_vref setting from the config, check for an override... */
/* NOTE: measured_vref=1 (ON) means force use of MEASURED Vref... */
// NOTE: measured VREF can only be done for DDR4
if (ddr_type == DDR4_DRAM) {
measured_vref_flag = custom_lmc_config->measured_vref;
if ((s = lookup_env_parameter("ddr_measured_vref")) != NULL) {
measured_vref_flag = !!strtoul(s, NULL, 0);
}
} else {
measured_vref_flag = 0; // OFF for DDR3
}
/* Ensure disabled ECC for DRAM tests using the SW algo, else leave it untouched */
if (!sw_wlevel_hw_default) {
lmc_config.u = BDK_CSR_READ(node, BDK_LMCX_CONFIG(ddr_interface_num));
lmc_config.s.ecc_ena = 0;
DRAM_CSR_WRITE(node, BDK_LMCX_CONFIG(ddr_interface_num), lmc_config.u);
}
#if USE_L2_WAYS_LIMIT
limit_l2_ways(node, 0, 0); /* Disable l2 sets for DRAM testing */
#endif
/* We need to track absolute rank number, as well as how many
** active ranks we have. Two single rank DIMMs show up as
** ranks 0 and 2, but only 2 ranks are active. */
active_rank = 0;
interfaces = bdk_pop(ddr_interface_mask);
#define VREF_RANGE1_LIMIT 0x33 // range1 is valid for 0x00 - 0x32
#define VREF_RANGE2_LIMIT 0x18 // range2 is valid for 0x00 - 0x17
// full window is valid for 0x00 to 0x4A
// let 0x00 - 0x17 be range2, 0x18 - 0x4a be range 1
#define VREF_LIMIT (VREF_RANGE1_LIMIT + VREF_RANGE2_LIMIT)
#define VREF_FINAL (VREF_LIMIT - 1)
for (rankx = 0; rankx < dimm_count * 4; rankx++) {
uint64_t rank_addr;
int vref_value, final_vref_value, final_vref_range = 0;
int start_vref_value = 0, computed_final_vref_value = -1;
char best_vref_values_count, vref_values_count;
char best_vref_values_start, vref_values_start;
int bytes_failed;
sw_wl_status_t byte_test_status[9];
sw_wl_status_t sw_wl_rank_status = WL_HARDWARE;
int sw_wl_failed = 0;
int sw_wlevel_hw = sw_wlevel_hw_default;
if (!sw_wlevel_enable)
break;
if (!(rank_mask & (1 << rankx)))
continue;
ddr_print("N%d.LMC%d.R%d: Performing Software Write-Leveling %s\n",
node, ddr_interface_num, rankx,
(sw_wlevel_hw) ? "with H/W assist" : "with S/W algorithm");
if ((ddr_type == DDR4_DRAM) && (num_ranks != 4)) {
// always compute when we can...
computed_final_vref_value = compute_vref_value(node, ddr_interface_num, rankx,
dimm_count, num_ranks, imp_values,
is_stacked_die);
if (!measured_vref_flag) // but only use it if allowed
start_vref_value = VREF_FINAL; // skip all the measured Vref processing, just the final setting
}
/* Save off the h/w wl results */
lmc_wlevel_rank_hw_results.u = BDK_CSR_READ(node, BDK_LMCX_WLEVEL_RANKX(ddr_interface_num, rankx));
vref_values_count = 0;
vref_values_start = 0;
best_vref_values_count = 0;
best_vref_values_start = 0;
/* Loop one extra time using the Final Vref value. */
for (vref_value = start_vref_value; vref_value < VREF_LIMIT; ++vref_value) {
if (ddr_type == DDR4_DRAM) {
if (vref_value < VREF_FINAL) {
int vrange, vvalue;
if (vref_value < VREF_RANGE2_LIMIT) {
vrange = 1; vvalue = vref_value;
} else {
vrange = 0; vvalue = vref_value - VREF_RANGE2_LIMIT;
}
set_vref(node, ddr_interface_num, rankx,
vrange, vvalue);
} else { /* if (vref_value < VREF_FINAL) */
/* Print the final Vref value first. */
/* Always print the computed first if its valid */
if (computed_final_vref_value >= 0) {
ddr_print("N%d.LMC%d.R%d: Vref Computed Summary :"
" %2d (0x%02x)\n",
node, ddr_interface_num,
rankx, computed_final_vref_value,
computed_final_vref_value);
}
if (!measured_vref_flag) { // setup to use the computed
best_vref_values_count = 1;
final_vref_value = computed_final_vref_value;
} else { // setup to use the measured
if (best_vref_values_count > 0) {
best_vref_values_count = max(best_vref_values_count, 2);
#if 0
// NOTE: this already adjusts VREF via calculating 40% rather than 50%
final_vref_value = best_vref_values_start + divide_roundup((best_vref_values_count-1)*4,10);
ddr_print("N%d.LMC%d.R%d: Vref Training Summary :"
" %2d <----- %2d (0x%02x) -----> %2d range: %2d\n",
node, ddr_interface_num, rankx, best_vref_values_start,
final_vref_value, final_vref_value,
best_vref_values_start+best_vref_values_count-1,
best_vref_values_count-1);
#else
final_vref_value = best_vref_values_start + divide_nint(best_vref_values_count - 1, 2);
if (final_vref_value < VREF_RANGE2_LIMIT) {
final_vref_range = 1;
} else {
final_vref_range = 0; final_vref_value -= VREF_RANGE2_LIMIT;
}
{
int vvlo = best_vref_values_start;
int vrlo;
if (vvlo < VREF_RANGE2_LIMIT) {
vrlo = 2;
} else {
vrlo = 1; vvlo -= VREF_RANGE2_LIMIT;
}
int vvhi = best_vref_values_start + best_vref_values_count - 1;
int vrhi;
if (vvhi < VREF_RANGE2_LIMIT) {
vrhi = 2;
} else {
vrhi = 1; vvhi -= VREF_RANGE2_LIMIT;
}
ddr_print("N%d.LMC%d.R%d: Vref Training Summary :"
" 0x%02x/%1d <----- 0x%02x/%1d -----> 0x%02x/%1d, range: %2d\n",
node, ddr_interface_num, rankx,
vvlo, vrlo,
final_vref_value, final_vref_range + 1,
vvhi, vrhi,
best_vref_values_count-1);
}
#endif
} else {
/* If nothing passed use the default Vref value for this rank */
bdk_lmcx_modereg_params2_t lmc_modereg_params2;
lmc_modereg_params2.u = BDK_CSR_READ(node, BDK_LMCX_MODEREG_PARAMS2(ddr_interface_num));
final_vref_value = (lmc_modereg_params2.u >> (rankx * 10 + 3)) & 0x3f;
final_vref_range = (lmc_modereg_params2.u >> (rankx * 10 + 9)) & 0x01;
ddr_print("N%d.LMC%d.R%d: Vref Using Default :"
" %2d <----- %2d (0x%02x) -----> %2d, range%1d\n",
node, ddr_interface_num, rankx,
final_vref_value, final_vref_value,
final_vref_value, final_vref_value, final_vref_range+1);
}
}
// allow override
if ((s = lookup_env_parameter("ddr%d_vref_value_%1d%1d",
ddr_interface_num, !!(rankx&2), !!(rankx&1))) != NULL) {
final_vref_value = strtoul(s, NULL, 0);
}
set_vref(node, ddr_interface_num, rankx, final_vref_range, final_vref_value);
} /* if (vref_value < VREF_FINAL) */
} /* if (ddr_type == DDR4_DRAM) */
lmc_wlevel_rank.u = lmc_wlevel_rank_hw_results.u; /* Restore the saved value */
for (byte = 0; byte < 9; ++byte)
byte_test_status[byte] = WL_ESTIMATED;
if (wlevel_bitmask_errors == 0) {
/* Determine address of DRAM to test for pass 1 of software write leveling. */
rank_addr = active_rank * (1ull << (pbank_lsb - bunk_enable + (interfaces/2)));
// FIXME: these now put in by test_dram_byte()
//rank_addr |= (ddr_interface_num<<7); /* Map address into proper interface */
//rank_addr = bdk_numa_get_address(node, rank_addr);
VB_PRT(VBL_DEV, "N%d.LMC%d.R%d: Active Rank %d Address: 0x%llx\n",
node, ddr_interface_num, rankx, active_rank, rank_addr);
{ // start parallel write-leveling block for delay high-order bits
int errors = 0;
int byte_delay[9];
uint64_t bytemask;
int bytes_todo;
if (ddr_interface_64b) {
bytes_todo = (sw_wlevel_hw) ? ddr_interface_bytemask : 0xFF;
bytemask = ~0ULL;
} else { // 32-bit, must be using SW algo, only data bytes
bytes_todo = 0x0f;
bytemask = 0x00000000ffffffffULL;
}
for (byte = 0; byte < 9; ++byte) {
if (!(bytes_todo & (1 << byte))) {
byte_delay[byte] = 0;
} else {
byte_delay[byte] = get_wlevel_rank_struct(&lmc_wlevel_rank, byte);
}
} /* for (byte = 0; byte < 9; ++byte) */
#define WL_MIN_NO_ERRORS_COUNT 3 // FIXME? three passes without errors
int no_errors_count = 0;
// Change verbosity if using measured vs computed VREF or DDR3
// measured goes many times through SWL, computed and DDR3 only once
// so we want the EXHAUSTED messages at NORM for computed and DDR3,
// and at DEV2 for measured, just for completeness
int vbl_local = (measured_vref_flag) ? VBL_DEV2 : VBL_NORM;
uint64_t bad_bits[2];
#if ENABLE_SW_WLEVEL_UTILIZATION
uint64_t sum_dram_dclk = 0, sum_dram_ops = 0;
uint64_t start_dram_dclk, stop_dram_dclk;
uint64_t start_dram_ops, stop_dram_ops;
#endif
do {
// write the current set of WL delays
DRAM_CSR_WRITE(node, BDK_LMCX_WLEVEL_RANKX(ddr_interface_num, rankx), lmc_wlevel_rank.u);
lmc_wlevel_rank.u = BDK_CSR_READ(node, BDK_LMCX_WLEVEL_RANKX(ddr_interface_num, rankx));
bdk_watchdog_poke();
// do the test
if (sw_wlevel_hw) {
errors = run_best_hw_patterns(node, ddr_interface_num, rank_addr,
DBTRAIN_TEST, bad_bits);
errors &= bytes_todo; // keep only the ones we are still doing
} else {
#if ENABLE_SW_WLEVEL_UTILIZATION
start_dram_dclk = BDK_CSR_READ(node, BDK_LMCX_DCLK_CNT(ddr_interface_num));
start_dram_ops = BDK_CSR_READ(node, BDK_LMCX_OPS_CNT(ddr_interface_num));
#endif
#if USE_ORIG_TEST_DRAM_BYTE
errors = test_dram_byte(node, ddr_interface_num, rank_addr, bytemask, bad_bits);
#else
errors = dram_tuning_mem_xor(node, ddr_interface_num, rank_addr, bytemask, bad_bits);
#endif
#if ENABLE_SW_WLEVEL_UTILIZATION
stop_dram_dclk = BDK_CSR_READ(node, BDK_LMCX_DCLK_CNT(ddr_interface_num));
stop_dram_ops = BDK_CSR_READ(node, BDK_LMCX_OPS_CNT(ddr_interface_num));
sum_dram_dclk += stop_dram_dclk - start_dram_dclk;
sum_dram_ops += stop_dram_ops - start_dram_ops;
#endif
}
VB_PRT(VBL_DEV2, "N%d.LMC%d.R%d: S/W write-leveling TEST: returned 0x%x\n",
node, ddr_interface_num, rankx, errors);
// remember, errors will not be returned for byte-lanes that have maxxed out...
if (errors == 0) {
no_errors_count++; // bump
if (no_errors_count > 1) // bypass check/update completely
continue; // to end of do-while
} else
no_errors_count = 0; // reset
// check errors by byte
for (byte = 0; byte < 9; ++byte) {
if (!(bytes_todo & (1 << byte)))
continue;
delay = byte_delay[byte];
if (errors & (1 << byte)) { // yes, an error in this byte lane
debug_print(" byte %d delay %2d Errors\n", byte, delay);
// since this byte had an error, we move to the next delay value, unless maxxed out
delay += 8; // incr by 8 to do only delay high-order bits
if (delay < 32) {
update_wlevel_rank_struct(&lmc_wlevel_rank, byte, delay);
debug_print(" byte %d delay %2d New\n", byte, delay);
byte_delay[byte] = delay;
} else { // reached max delay, maybe really done with this byte
#if SWL_TRY_HWL_ALT
if (!measured_vref_flag && // consider an alt only for computed VREF and
(hwl_alts[rankx].hwl_alt_mask & (1 << byte))) // if an alt exists...
{
int bad_delay = delay & 0x6; // just orig low-3 bits
delay = hwl_alts[rankx].hwl_alt_delay[byte]; // yes, use it
hwl_alts[rankx].hwl_alt_mask &= ~(1 << byte); // clear that flag
update_wlevel_rank_struct(&lmc_wlevel_rank, byte, delay);
byte_delay[byte] = delay;
debug_print(" byte %d delay %2d ALTERNATE\n", byte, delay);
VB_PRT(VBL_DEV, "N%d.LMC%d.R%d: SWL: Byte %d: %d FAIL, trying ALTERNATE %d\n",
node, ddr_interface_num, rankx, byte, bad_delay, delay);
} else
#endif /* SWL_TRY_HWL_ALT */
{
unsigned bits_bad;
if (byte < 8) {
bytemask &= ~(0xffULL << (8*byte)); // test no longer, remove from byte mask
bits_bad = (unsigned)((bad_bits[0] >> (8 * byte)) & 0xffUL);
} else {
bits_bad = (unsigned)(bad_bits[1] & 0xffUL);
}
bytes_todo &= ~(1 << byte); // remove from bytes to do
byte_test_status[byte] = WL_ESTIMATED; // make sure this is set for this case
debug_print(" byte %d delay %2d Exhausted\n", byte, delay);
VB_PRT(vbl_local, "N%d.LMC%d.R%d: SWL: Byte %d (0x%02x): delay %d EXHAUSTED \n",
node, ddr_interface_num, rankx, byte, bits_bad, delay);
}
}
} else { // no error, stay with current delay, but keep testing it...
debug_print(" byte %d delay %2d Passed\n", byte, delay);
byte_test_status[byte] = WL_HARDWARE; // change status
}
} /* for (byte = 0; byte < 9; ++byte) */
} while (no_errors_count < WL_MIN_NO_ERRORS_COUNT);
#if ENABLE_SW_WLEVEL_UTILIZATION
if (! sw_wlevel_hw) {
uint64_t percent_x10;
if (sum_dram_dclk == 0)
sum_dram_dclk = 1;
percent_x10 = sum_dram_ops * 1000 / sum_dram_dclk;
ddr_print("N%d.LMC%d.R%d: ops %lu, cycles %lu, used %lu.%lu%%\n",
node, ddr_interface_num, rankx, sum_dram_ops, sum_dram_dclk,
percent_x10 / 10, percent_x10 % 10);
}
#endif
if (errors) {
debug_print("End WLEV_64 while loop: vref_value %d(0x%x), errors 0x%02x\n",
vref_value, vref_value, errors);
}
} // end parallel write-leveling block for delay high-order bits
if (sw_wlevel_hw) { // if we used HW-assist, we did the ECC byte when approp.
VB_PRT(VBL_DEV, "N%d.LMC%d.R%d: HW-assist SWL - no ECC estimate!!!\n",
node, ddr_interface_num, rankx);
goto no_ecc_estimate;
}
if ((ddr_interface_bytemask & 0xff) == 0xff) {
if (use_ecc) {
int save_byte8 = lmc_wlevel_rank.s.byte8; // save original HW delay
byte_test_status[8] = WL_HARDWARE; /* say it is H/W delay value */
if ((save_byte8 != lmc_wlevel_rank.s.byte3) &&
(save_byte8 != lmc_wlevel_rank.s.byte4))
{
// try to calculate a workable delay using SW bytes 3 and 4 and HW byte 8
int test_byte8 = save_byte8;
int test_byte8_error;
int byte8_error = 0x1f;
int adder;
int avg_bytes = divide_nint(lmc_wlevel_rank.s.byte3+lmc_wlevel_rank.s.byte4, 2);
for (adder = 0; adder<= 32; adder+=8) {
test_byte8_error = _abs((adder+save_byte8) - avg_bytes);
if (test_byte8_error < byte8_error) {
byte8_error = test_byte8_error;
test_byte8 = save_byte8 + adder;
}
}
#if SW_WL_CHECK_PATCH
// only do the check if we are not using measured VREF
if (!measured_vref_flag) {
test_byte8 &= ~1; /* Use only even settings, rounding down... */
// do validity check on the calculated ECC delay value
// this depends on the DIMM type
if (spd_rdimm) { // RDIMM
if (spd_dimm_type != 5) { // but not mini-RDIMM
// it can be > byte4, but should never be > byte3
if (test_byte8 > lmc_wlevel_rank.s.byte3) {
byte_test_status[8] = WL_ESTIMATED; /* say it is still estimated */
}
}
} else { // UDIMM
if ((test_byte8 < lmc_wlevel_rank.s.byte3) ||
(test_byte8 > lmc_wlevel_rank.s.byte4))
{ // should never be outside the byte 3-4 range
byte_test_status[8] = WL_ESTIMATED; /* say it is still estimated */
}
}
/*
* Report whenever the calculation appears bad.
* This happens if some of the original values were off, or unexpected geometry
* from DIMM type, or custom circuitry (NIC225E, I am looking at you!).
* We will trust the calculated value, and depend on later testing to catch
* any instances when that value is truly bad.
*/
if (byte_test_status[8] == WL_ESTIMATED) { // ESTIMATED means there may be an issue
ddr_print("N%d.LMC%d.R%d: SWL: (%cDIMM): calculated ECC delay unexpected (%d/%d/%d)\n",
node, ddr_interface_num, rankx, (spd_rdimm?'R':'U'),
lmc_wlevel_rank.s.byte4, test_byte8, lmc_wlevel_rank.s.byte3);
byte_test_status[8] = WL_HARDWARE;
}
}
#endif /* SW_WL_CHECK_PATCH */
lmc_wlevel_rank.s.byte8 = test_byte8 & ~1; /* Use only even settings */
}
if (lmc_wlevel_rank.s.byte8 != save_byte8) {
/* Change the status if s/w adjusted the delay */
byte_test_status[8] = WL_SOFTWARE; /* Estimated delay */
}
} else {
byte_test_status[8] = WL_HARDWARE; /* H/W delay value */
lmc_wlevel_rank.s.byte8 = lmc_wlevel_rank.s.byte0; /* ECC is not used */
}
} else { /* if ((ddr_interface_bytemask & 0xff) == 0xff) */
if (use_ecc) {
/* Estimate the ECC byte delay */
lmc_wlevel_rank.s.byte4 |= (lmc_wlevel_rank.s.byte3 & 0x38); // add hi-order to b4
if ((lmc_wlevel_rank.s.byte4 & 0x06) < (lmc_wlevel_rank.s.byte3 & 0x06)) // orig b4 < orig b3
lmc_wlevel_rank.s.byte4 += 8; // must be next clock
} else {
lmc_wlevel_rank.s.byte4 = lmc_wlevel_rank.s.byte0; /* ECC is not used */
}
/* Change the status if s/w adjusted the delay */
byte_test_status[4] = WL_SOFTWARE; /* Estimated delay */
} /* if ((ddr_interface_bytemask & 0xff) == 0xff) */
} /* if (wlevel_bitmask_errors == 0) */
no_ecc_estimate:
bytes_failed = 0;
for (byte = 0; byte < 9; ++byte) {
/* Don't accumulate errors for untested bytes. */
if (!(ddr_interface_bytemask & (1 << byte)))
continue;
bytes_failed += (byte_test_status[byte] == WL_ESTIMATED);
}
/* Vref training loop is only used for DDR4 */
if (ddr_type != DDR4_DRAM)
break;
if (bytes_failed == 0) {
if (vref_values_count == 0) {
vref_values_start = vref_value;
}
++vref_values_count;
if (vref_values_count > best_vref_values_count) {
best_vref_values_count = vref_values_count;
best_vref_values_start = vref_values_start;
debug_print("N%d.LMC%d.R%d: Vref Training (%2d) : 0x%02x <----- ???? -----> 0x%02x\n",
node, ddr_interface_num,
rankx, vref_value, best_vref_values_start,
best_vref_values_start+best_vref_values_count-1);
}
} else {
vref_values_count = 0;
debug_print("N%d.LMC%d.R%d: Vref Training (%2d) : failed\n",
node, ddr_interface_num,
rankx, vref_value);
}
} /* for (vref_value=0; vref_value<VREF_LIMIT; ++vref_value) */
/* Determine address of DRAM to test for pass 2 and final test of software write leveling. */
rank_addr = active_rank * (1ull << (pbank_lsb - bunk_enable + (interfaces/2)));
rank_addr |= (ddr_interface_num<<7); /* Map address into proper interface */
rank_addr = bdk_numa_get_address(node, rank_addr);
debug_print("N%d.LMC%d.R%d: Active Rank %d Address: 0x%lx\n",
node, ddr_interface_num, rankx, active_rank, rank_addr);
int errors;
if (bytes_failed) {
#if !DISABLE_SW_WL_PASS_2
ddr_print("N%d.LMC%d.R%d: Starting SW Write-leveling pass 2\n",
node, ddr_interface_num, rankx);
sw_wl_rank_status = WL_SOFTWARE;
/* If previous s/w fixups failed then retry using s/w write-leveling. */
if (wlevel_bitmask_errors == 0) {
/* h/w succeeded but previous s/w fixups failed. So retry s/w. */
debug_print("N%d.LMC%d.R%d: Retrying software Write-Leveling.\n",
node, ddr_interface_num, rankx);
}
{ // start parallel write-leveling block for delay low-order bits
int byte_delay[8];
int byte_passed[8];
uint64_t bytemask;
uint64_t bitmask;
int wl_offset;
int bytes_todo;
for (byte = 0; byte < 8; ++byte) {
byte_passed[byte] = 0;
}
bytes_todo = ddr_interface_bytemask;
for (wl_offset = sw_wlevel_offset; wl_offset >= 0; --wl_offset) {
debug_print("Starting wl_offset for-loop: %d\n", wl_offset);
bytemask = 0;
for (byte = 0; byte < 8; ++byte) {
byte_delay[byte] = 0;
if (!(bytes_todo & (1 << byte))) // this does not contain fully passed bytes
continue;
byte_passed[byte] = 0; // reset across passes if not fully passed
update_wlevel_rank_struct(&lmc_wlevel_rank, byte, 0); // all delays start at 0
bitmask = ((!ddr_interface_64b) && (byte == 4)) ? 0x0f: 0xff;
bytemask |= bitmask << (8*byte); // set the bytes bits in the bytemask
} /* for (byte = 0; byte < 8; ++byte) */
while (bytemask != 0) { // start a pass if there is any byte lane to test
debug_print("Starting bytemask while-loop: 0x%lx\n", bytemask);
// write this set of WL delays
DRAM_CSR_WRITE(node, BDK_LMCX_WLEVEL_RANKX(ddr_interface_num, rankx), lmc_wlevel_rank.u);
lmc_wlevel_rank.u = BDK_CSR_READ(node, BDK_LMCX_WLEVEL_RANKX(ddr_interface_num, rankx));
bdk_watchdog_poke();
// do the test
if (sw_wlevel_hw)
errors = run_best_hw_patterns(node, ddr_interface_num, rank_addr,
DBTRAIN_TEST, NULL);
else
errors = test_dram_byte(node, ddr_interface_num, rank_addr, bytemask, NULL);
debug_print("SWL pass 2: test_dram_byte returned 0x%x\n", errors);
// check errors by byte
for (byte = 0; byte < 8; ++byte) {
if (!(bytes_todo & (1 << byte)))
continue;
delay = byte_delay[byte];
if (errors & (1 << byte)) { // yes, an error
debug_print(" byte %d delay %2d Errors\n", byte, delay);
byte_passed[byte] = 0;
} else { // no error
byte_passed[byte] += 1;
if (byte_passed[byte] == (1 + wl_offset)) { /* Look for consecutive working settings */
debug_print(" byte %d delay %2d FULLY Passed\n", byte, delay);
if (wl_offset == 1) {
byte_test_status[byte] = WL_SOFTWARE;
} else if (wl_offset == 0) {
byte_test_status[byte] = WL_SOFTWARE1;
}
bytemask &= ~(0xffULL << (8*byte)); // test no longer, remove from byte mask this pass
bytes_todo &= ~(1 << byte); // remove completely from concern
continue; // on to the next byte, bypass delay updating!!
} else {
debug_print(" byte %d delay %2d Passed\n", byte, delay);
}
}
// error or no, here we move to the next delay value for this byte, unless done all delays
// only a byte that has "fully passed" will bypass around this,
delay += 2;
if (delay < 32) {
update_wlevel_rank_struct(&lmc_wlevel_rank, byte, delay);
debug_print(" byte %d delay %2d New\n", byte, delay);
byte_delay[byte] = delay;
} else {
// reached max delay, done with this byte
debug_print(" byte %d delay %2d Exhausted\n", byte, delay);
bytemask &= ~(0xffULL << (8*byte)); // test no longer, remove from byte mask this pass
}
} /* for (byte = 0; byte < 8; ++byte) */
debug_print("End of for-loop: bytemask 0x%lx\n", bytemask);
} /* while (bytemask != 0) */
} /* for (wl_offset = sw_wlevel_offset; wl_offset >= 0; --wl_offset) */
for (byte = 0; byte < 8; ++byte) {
// any bytes left in bytes_todo did not pass
if (bytes_todo & (1 << byte)) {
/* Last resort. Use Rlevel settings to estimate
Wlevel if software write-leveling fails */
debug_print("Using RLEVEL as WLEVEL estimate for byte %d\n", byte);
lmc_rlevel_rank.u = BDK_CSR_READ(node, BDK_LMCX_RLEVEL_RANKX(ddr_interface_num, rankx));
rlevel_to_wlevel(&lmc_rlevel_rank, &lmc_wlevel_rank, byte);
}
} /* for (byte = 0; byte < 8; ++byte) */
sw_wl_failed = (bytes_todo != 0);
} // end parallel write-leveling block for delay low-order bits
if (use_ecc) {
/* ECC byte has to be estimated. Take the average of the two surrounding bytes. */
int test_byte8 = divide_nint(lmc_wlevel_rank.s.byte3
+ lmc_wlevel_rank.s.byte4
+ 2 /* round-up*/ , 2);
lmc_wlevel_rank.s.byte8 = test_byte8 & ~1; /* Use only even settings */
byte_test_status[8] = WL_ESTIMATED; /* Estimated delay */
} else {
byte_test_status[8] = WL_HARDWARE; /* H/W delay value */
lmc_wlevel_rank.s.byte8 = lmc_wlevel_rank.s.byte0; /* ECC is not used */
}
/* Set delays for unused bytes to match byte 0. */
for (byte=0; byte<8; ++byte) {
if ((ddr_interface_bytemask & (1 << byte)))
continue;
update_wlevel_rank_struct(&lmc_wlevel_rank, byte,
lmc_wlevel_rank.s.byte0);
byte_test_status[byte] = WL_SOFTWARE;
}
#else /* !DISABLE_SW_WL_PASS_2 */
// FIXME? the big hammer, did not even try SW WL pass2, assume only chip reset will help
ddr_print("N%d.LMC%d.R%d: S/W write-leveling pass 1 failed\n",
node, ddr_interface_num, rankx);
sw_wl_failed = 1;
#endif /* !DISABLE_SW_WL_PASS_2 */
} else { /* if (bytes_failed) */
// SW WL pass 1 was OK, write the settings
DRAM_CSR_WRITE(node, BDK_LMCX_WLEVEL_RANKX(ddr_interface_num, rankx), lmc_wlevel_rank.u);
lmc_wlevel_rank.u = BDK_CSR_READ(node, BDK_LMCX_WLEVEL_RANKX(ddr_interface_num, rankx));
#if SW_WL_CHECK_PATCH
// do validity check on the delay values by running the test 1 more time...
// FIXME: we really need to check the ECC byte setting here as well,
// so we need to enable ECC for this test!!!
// if there are any errors, claim SW WL failure
{
uint64_t datamask = (ddr_interface_64b) ? 0xffffffffffffffffULL : 0x00000000ffffffffULL;
// do the test
if (sw_wlevel_hw) {
errors = run_best_hw_patterns(node, ddr_interface_num, rank_addr,
DBTRAIN_TEST, NULL) & 0x0ff;
} else {
#if USE_ORIG_TEST_DRAM_BYTE
errors = test_dram_byte(node, ddr_interface_num, rank_addr, datamask, NULL);
#else
errors = dram_tuning_mem_xor(node, ddr_interface_num, rank_addr, datamask, NULL);
#endif
}
if (errors) {
ddr_print("N%d.LMC%d.R%d: Wlevel Rank Final Test errors 0x%x\n",
node, ddr_interface_num, rankx, errors);
sw_wl_failed = 1;
}
}
#endif /* SW_WL_CHECK_PATCH */
} /* if (bytes_failed) */
// FIXME? dump the WL settings, so we get more of a clue as to what happened where
ddr_print("N%d.LMC%d.R%d: Wlevel Rank %#4x, 0x%016llX : %2d%3s %2d%3s %2d%3s %2d%3s %2d%3s %2d%3s %2d%3s %2d%3s %2d%3s %s\n",
node, ddr_interface_num, rankx,
lmc_wlevel_rank.s.status,
lmc_wlevel_rank.u,
lmc_wlevel_rank.s.byte8, wl_status_strings[byte_test_status[8]],
lmc_wlevel_rank.s.byte7, wl_status_strings[byte_test_status[7]],
lmc_wlevel_rank.s.byte6, wl_status_strings[byte_test_status[6]],
lmc_wlevel_rank.s.byte5, wl_status_strings[byte_test_status[5]],
lmc_wlevel_rank.s.byte4, wl_status_strings[byte_test_status[4]],
lmc_wlevel_rank.s.byte3, wl_status_strings[byte_test_status[3]],
lmc_wlevel_rank.s.byte2, wl_status_strings[byte_test_status[2]],
lmc_wlevel_rank.s.byte1, wl_status_strings[byte_test_status[1]],
lmc_wlevel_rank.s.byte0, wl_status_strings[byte_test_status[0]],
(sw_wl_rank_status == WL_HARDWARE) ? "" : "(s)"
);
// finally, check for fatal conditions: either chip reset right here, or return error flag
if (((ddr_type == DDR4_DRAM) && (best_vref_values_count == 0)) || sw_wl_failed) {
if (!ddr_disable_chip_reset) { // do chip RESET
error_print("INFO: Short memory test indicates a retry is needed on N%d.LMC%d.R%d. Resetting node...\n",
node, ddr_interface_num, rankx);
bdk_wait_usec(500000);
bdk_reset_chip(node);
} else { // return error flag so LMC init can be retried...
ddr_print("INFO: Short memory test indicates a retry is needed on N%d.LMC%d.R%d. Restarting LMC init...\n",
node, ddr_interface_num, rankx);
return 0; // 0 indicates restart possible...
}
}
active_rank++;
} /* for (rankx = 0; rankx < dimm_count * 4; rankx++) */
// Finalize the write-leveling settings
for (rankx = 0; rankx < dimm_count * 4;rankx++) {
uint64_t value;
int parameter_set = 0;
if (!(rank_mask & (1 << rankx)))
continue;
lmc_wlevel_rank.u = BDK_CSR_READ(node, BDK_LMCX_WLEVEL_RANKX(ddr_interface_num, rankx));
for (i=0; i<9; ++i) {
if ((s = lookup_env_parameter("ddr%d_wlevel_rank%d_byte%d", ddr_interface_num, rankx, i)) != NULL) {
parameter_set |= 1;
value = strtoul(s, NULL, 0);
update_wlevel_rank_struct(&lmc_wlevel_rank, i, value);
}
}
if ((s = lookup_env_parameter_ull("ddr%d_wlevel_rank%d", ddr_interface_num, rankx)) != NULL) {
parameter_set |= 1;
value = strtoull(s, NULL, 0);
lmc_wlevel_rank.u = value;
}
if (parameter_set) {
DRAM_CSR_WRITE(node, BDK_LMCX_WLEVEL_RANKX(ddr_interface_num, rankx), lmc_wlevel_rank.u);
lmc_wlevel_rank.u = BDK_CSR_READ(node, BDK_LMCX_WLEVEL_RANKX(ddr_interface_num, rankx));
display_WL(node, ddr_interface_num, lmc_wlevel_rank, rankx);
}
#if WLEXTRAS_PATCH
if ((rank_mask & 0x0F) != 0x0F) { // if there are unused entries to be filled
if (rankx < 3) {
debug_print("N%d.LMC%d.R%d: checking for WLEVEL_RANK unused entries.\n",
node, ddr_interface_num, rankx);
if (rankx == 0) { // if rank 0, write ranks 1 and 2 here if empty
if (!(rank_mask & (1<<1))) { // check that rank 1 is empty
DRAM_CSR_WRITE(node, BDK_LMCX_WLEVEL_RANKX(ddr_interface_num, 1), lmc_wlevel_rank.u);
VB_PRT(VBL_DEV, "N%d.LMC%d.R%d: writing WLEVEL_RANK unused entry R%d.\n",
node, ddr_interface_num, rankx, 1);
}
if (!(rank_mask & (1<<2))) { // check that rank 2 is empty
VB_PRT(VBL_DEV, "N%d.LMC%d.R%d: writing WLEVEL_RANK unused entry R%d.\n",
node, ddr_interface_num, rankx, 2);
DRAM_CSR_WRITE(node, BDK_LMCX_WLEVEL_RANKX(ddr_interface_num, 2), lmc_wlevel_rank.u);
}
}
// if rank 0, 1 or 2, write rank 3 here if empty
if (!(rank_mask & (1<<3))) { // check that rank 3 is empty
VB_PRT(VBL_DEV, "N%d.LMC%d.R%d: writing WLEVEL_RANK unused entry R%d.\n",
node, ddr_interface_num, rankx, 3);
DRAM_CSR_WRITE(node, BDK_LMCX_WLEVEL_RANKX(ddr_interface_num, 3), lmc_wlevel_rank.u);
}
}
}
#endif /* WLEXTRAS_PATCH */
} /* for (rankx = 0; rankx < dimm_count * 4;rankx++) */
/* Restore the ECC configuration */
if (!sw_wlevel_hw_default) {
lmc_config.s.ecc_ena = use_ecc;
DRAM_CSR_WRITE(node, BDK_LMCX_CONFIG(ddr_interface_num), lmc_config.u);
}
#if USE_L2_WAYS_LIMIT
/* Restore the l2 set configuration */
if ((s = lookup_env_parameter("limit_l2_ways")) != NULL) {
int ways = strtoul(s, NULL, 10);
limit_l2_ways(node, ways, 1);
} else {
limit_l2_ways(node, bdk_l2c_get_num_assoc(node), 0);
}
#endif
} // End Software Write-Leveling block
#if ENABLE_DISPLAY_MPR_PAGE
if (ddr_type == DDR4_DRAM) {
Display_MPR_Page(node, rank_mask, ddr_interface_num, dimm_count, 2);
Display_MPR_Page(node, rank_mask, ddr_interface_num, dimm_count, 0);
}
#endif
#ifdef CAVIUM_ONLY
{
int _i;
int setting[9];
bdk_lmcx_dll_ctl3_t ddr_dll_ctl3;
ddr_dll_ctl3.u = BDK_CSR_READ(node, BDK_LMCX_DLL_CTL3(ddr_interface_num));
for (_i=0; _i<9; ++_i) {
SET_DDR_DLL_CTL3(dll90_byte_sel, ENCODE_DLL90_BYTE_SEL(_i));
DRAM_CSR_WRITE(node, BDK_LMCX_DLL_CTL3(ddr_interface_num), ddr_dll_ctl3.u);
BDK_CSR_READ(node, BDK_LMCX_DLL_CTL3(ddr_interface_num));
ddr_dll_ctl3.u = BDK_CSR_READ(node, BDK_LMCX_DLL_CTL3(ddr_interface_num));
setting[_i] = GET_DDR_DLL_CTL3(dll90_setting);
debug_print("%d. LMC%d_DLL_CTL3[%d] = %016lx %d\n", _i, ddr_interface_num,
GET_DDR_DLL_CTL3(dll90_byte_sel), ddr_dll_ctl3.u, setting[_i]);
}
VB_PRT(VBL_DEV, "N%d.LMC%d: %-36s : %5d %5d %5d %5d %5d %5d %5d %5d %5d\n",
node, ddr_interface_num, "DLL90 Setting 8:0",
setting[8], setting[7], setting[6], setting[5], setting[4],
setting[3], setting[2], setting[1], setting[0]);
//BDK_CSR_WRITE(node, BDK_LMCX_DLL_CTL3(ddr_interface_num), save_ddr_dll_ctl3.u);
}
#endif /* CAVIUM_ONLY */
// any custom DLL read or write offsets, install them
// FIXME: no need to do these if we are going to auto-tune... ???
process_custom_dll_offsets(node, ddr_interface_num, "ddr_dll_write_offset",
custom_lmc_config->dll_write_offset, "ddr%d_dll_write_offset_byte%d", 1);
process_custom_dll_offsets(node, ddr_interface_num, "ddr_dll_read_offset",
custom_lmc_config->dll_read_offset, "ddr%d_dll_read_offset_byte%d", 2);
// we want to train write bit-deskew here...
if (! disable_deskew_training) {
if (enable_write_deskew) {
ddr_print("N%d.LMC%d: WRITE BIT-DESKEW feature training begins.\n",
node, ddr_interface_num);
Perform_Write_Deskew_Training(node, ddr_interface_num);
} /* if (enable_write_deskew) */
} /* if (! disable_deskew_training) */
/*
* 6.9.14 Final LMC Initialization
*
* Early LMC initialization, LMC write-leveling, and LMC read-leveling
* must be completed prior to starting this final LMC initialization.
*
* LMC hardware updates the LMC(0)_SLOT_CTL0, LMC(0)_SLOT_CTL1,
* LMC(0)_SLOT_CTL2 CSRs with minimum values based on the selected
* readleveling and write-leveling settings. Software should not write
* the final LMC(0)_SLOT_CTL0, LMC(0)_SLOT_CTL1, and LMC(0)_SLOT_CTL2
* values until after the final read-leveling and write-leveling settings
* are written.
*
* Software must ensure the LMC(0)_SLOT_CTL0, LMC(0)_SLOT_CTL1, and
* LMC(0)_SLOT_CTL2 CSR values are appropriate for this step. These CSRs
* select the minimum gaps between read operations and write operations
* of various types.
*
* Software must not reduce the values in these CSR fields below the
* values previously selected by the LMC hardware (during write-leveling
* and read-leveling steps above).
*
* All sections in this chapter may be used to derive proper settings for
* these registers.
*
* For minimal read latency, L2C_CTL[EF_ENA,EF_CNT] should be programmed
* properly. This should be done prior to the first read.
*/
#if ENABLE_SLOT_CTL_ACCESS
{
bdk_lmcx_slot_ctl0_t lmc_slot_ctl0;
bdk_lmcx_slot_ctl1_t lmc_slot_ctl1;
bdk_lmcx_slot_ctl2_t lmc_slot_ctl2;
bdk_lmcx_slot_ctl3_t lmc_slot_ctl3;
lmc_slot_ctl0.u = BDK_CSR_READ(node, BDK_LMCX_SLOT_CTL0(ddr_interface_num));
lmc_slot_ctl1.u = BDK_CSR_READ(node, BDK_LMCX_SLOT_CTL1(ddr_interface_num));
lmc_slot_ctl2.u = BDK_CSR_READ(node, BDK_LMCX_SLOT_CTL2(ddr_interface_num));
lmc_slot_ctl3.u = BDK_CSR_READ(node, BDK_LMCX_SLOT_CTL3(ddr_interface_num));
ddr_print("%-45s : 0x%016lx\n", "LMC_SLOT_CTL0", lmc_slot_ctl0.u);
ddr_print("%-45s : 0x%016lx\n", "LMC_SLOT_CTL1", lmc_slot_ctl1.u);
ddr_print("%-45s : 0x%016lx\n", "LMC_SLOT_CTL2", lmc_slot_ctl2.u);
ddr_print("%-45s : 0x%016lx\n", "LMC_SLOT_CTL3", lmc_slot_ctl3.u);
// for now, look only for SLOT_CTL1 envvar for override of contents
if ((s = lookup_env_parameter("ddr%d_slot_ctl1", ddr_interface_num)) != NULL) {
int slot_ctl1_incr = strtoul(s, NULL, 0);
// validate the value
if ((slot_ctl1_incr < 0) || (slot_ctl1_incr > 3)) { // allow 0 for printing only
error_print("ddr%d_slot_ctl1 illegal value (%d); must be 0-3\n",
ddr_interface_num, slot_ctl1_incr);
} else {
#define INCR(csr, chip, field, incr) \
csr.chip.field = (csr.chip.field < (64 - incr)) ? (csr.chip.field + incr) : 63
// only print original when we are changing it!
if (slot_ctl1_incr)
ddr_print("%-45s : 0x%016lx\n", "LMC_SLOT_CTL1", lmc_slot_ctl1.u);
// modify all the SLOT_CTL1 fields by the increment, for now...
// but make sure the value will not overflow!!!
INCR(lmc_slot_ctl1, s, r2r_xrank_init, slot_ctl1_incr);
INCR(lmc_slot_ctl1, s, r2w_xrank_init, slot_ctl1_incr);
INCR(lmc_slot_ctl1, s, w2r_xrank_init, slot_ctl1_incr);
INCR(lmc_slot_ctl1, s, w2w_xrank_init, slot_ctl1_incr);
DRAM_CSR_WRITE(node, BDK_LMCX_SLOT_CTL1(ddr_interface_num), lmc_slot_ctl1.u);
lmc_slot_ctl1.u = BDK_CSR_READ(node, BDK_LMCX_SLOT_CTL1(ddr_interface_num));
// always print when we are changing it!
printf("%-45s : 0x%016lx\n", "LMC_SLOT_CTL1", lmc_slot_ctl1.u);
}
}
}
#endif /* ENABLE_SLOT_CTL_ACCESS */
{
/* Clear any residual ECC errors */
int num_tads = 1;
int tad;
DRAM_CSR_WRITE(node, BDK_LMCX_INT(ddr_interface_num), -1ULL);
BDK_CSR_READ(node, BDK_LMCX_INT(ddr_interface_num));
for (tad=0; tad<num_tads; tad++)
DRAM_CSR_WRITE(node, BDK_L2C_TADX_INT_W1C(tad), BDK_CSR_READ(node, BDK_L2C_TADX_INT_W1C(tad)));
ddr_print("%-45s : 0x%08llx\n", "LMC_INT",
BDK_CSR_READ(node, BDK_LMCX_INT(ddr_interface_num)));
}
// Now we can enable scrambling if desired...
{
bdk_lmcx_control_t lmc_control;
bdk_lmcx_scramble_cfg0_t lmc_scramble_cfg0;
bdk_lmcx_scramble_cfg1_t lmc_scramble_cfg1;
bdk_lmcx_scramble_cfg2_t lmc_scramble_cfg2;
bdk_lmcx_ns_ctl_t lmc_ns_ctl;
lmc_control.u = BDK_CSR_READ(node, BDK_LMCX_CONTROL(ddr_interface_num));
lmc_scramble_cfg0.u = BDK_CSR_READ(node, BDK_LMCX_SCRAMBLE_CFG0(ddr_interface_num));
lmc_scramble_cfg1.u = BDK_CSR_READ(node, BDK_LMCX_SCRAMBLE_CFG1(ddr_interface_num));
lmc_scramble_cfg2.u = BDK_CSR_READ(node, BDK_LMCX_SCRAMBLE_CFG2(ddr_interface_num));
lmc_ns_ctl.u = BDK_CSR_READ(node, BDK_LMCX_NS_CTL(ddr_interface_num));
/* Read the scramble setting from the config and see if we
need scrambling */
int use_scramble = bdk_config_get_int(BDK_CONFIG_DRAM_SCRAMBLE);
if (use_scramble == 2)
{
if (bdk_trust_get_level() >= BDK_TRUST_LEVEL_SIGNED)
use_scramble = 1;
else
use_scramble = 0;
}
/* Generate random values if scrambling is needed */
if (use_scramble)
{
lmc_scramble_cfg0.u = bdk_rng_get_random64();
lmc_scramble_cfg1.u = bdk_rng_get_random64();
lmc_scramble_cfg2.u = bdk_rng_get_random64();
lmc_ns_ctl.s.ns_scramble_dis = 0;
lmc_ns_ctl.s.adr_offset = 0;
lmc_control.s.scramble_ena = 1;
}
if ((s = lookup_env_parameter_ull("ddr_scramble_cfg0")) != NULL) {
lmc_scramble_cfg0.u = strtoull(s, NULL, 0);
lmc_control.s.scramble_ena = 1;
}
ddr_print("%-45s : 0x%016llx\n", "LMC_SCRAMBLE_CFG0", lmc_scramble_cfg0.u);
DRAM_CSR_WRITE(node, BDK_LMCX_SCRAMBLE_CFG0(ddr_interface_num), lmc_scramble_cfg0.u);
if ((s = lookup_env_parameter_ull("ddr_scramble_cfg1")) != NULL) {
lmc_scramble_cfg1.u = strtoull(s, NULL, 0);
lmc_control.s.scramble_ena = 1;
}
ddr_print("%-45s : 0x%016llx\n", "LMC_SCRAMBLE_CFG1", lmc_scramble_cfg1.u);
DRAM_CSR_WRITE(node, BDK_LMCX_SCRAMBLE_CFG1(ddr_interface_num), lmc_scramble_cfg1.u);
if ((s = lookup_env_parameter_ull("ddr_scramble_cfg2")) != NULL) {
lmc_scramble_cfg2.u = strtoull(s, NULL, 0);
lmc_control.s.scramble_ena = 1;
}
ddr_print("%-45s : 0x%016llx\n", "LMC_SCRAMBLE_CFG2", lmc_scramble_cfg2.u);
DRAM_CSR_WRITE(node, BDK_LMCX_SCRAMBLE_CFG2(ddr_interface_num), lmc_scramble_cfg2.u);
if ((s = lookup_env_parameter_ull("ddr_ns_ctl")) != NULL) {
lmc_ns_ctl.u = strtoull(s, NULL, 0);
}
ddr_print("%-45s : 0x%016llx\n", "LMC_NS_CTL", lmc_ns_ctl.u);
DRAM_CSR_WRITE(node, BDK_LMCX_NS_CTL(ddr_interface_num), lmc_ns_ctl.u);
DRAM_CSR_WRITE(node, BDK_LMCX_CONTROL(ddr_interface_num), lmc_control.u);
}
return(mem_size_mbytes);
}
|