summaryrefslogtreecommitdiff
path: root/src/vendorcode/cavium/bdk/libbdk-dram/bdk-dram-test.c
blob: 0d6bd8643e64d8be242f7fec51af86c7f7590bca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
/***********************license start***********************************
* Copyright (c) 2003-2017  Cavium Inc. (support@cavium.com). All rights
* reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
*   * Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*
*   * Redistributions in binary form must reproduce the above
*     copyright notice, this list of conditions and the following
*     disclaimer in the documentation and/or other materials provided
*     with the distribution.
*
*   * Neither the name of Cavium Inc. nor the names of
*     its contributors may be used to endorse or promote products
*     derived from this software without specific prior written
*     permission.
*
* This Software, including technical data, may be subject to U.S. export
* control laws, including the U.S. Export Administration Act and its
* associated regulations, and may be subject to export or import
* regulations in other countries.
*
* TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
* AND WITH ALL FAULTS AND CAVIUM INC. MAKES NO PROMISES, REPRESENTATIONS OR
* WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT
* TO THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY
* REPRESENTATION OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT
* DEFECTS, AND CAVIUM SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES
* OF TITLE, MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR
* PURPOSE, LACK OF VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT,
* QUIET POSSESSION OR CORRESPONDENCE TO DESCRIPTION. THE ENTIRE  RISK
* ARISING OUT OF USE OR PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
***********************license end**************************************/
#include <bdk.h>
#include <string.h>
#include "libbdk-arch/bdk-csrs-gti.h"
#include "libbdk-arch/bdk-csrs-ocx.h"

#include <bdk-minimal.h>        /* for printf --> printk */
#include <libbdk-dram/bdk-dram-test.h>
#include <libbdk-hal/bdk-atomic.h>
#include <libbdk-hal/bdk-clock.h>
#include <libbdk-hal/bdk-utils.h>
#include <libbdk-os/bdk-init.h>
#include <libbdk-os/bdk-thread.h>
#include <stdio.h>

/* This code is an optional part of the BDK. It is only linked in
    if BDK_REQUIRE() needs it */
BDK_REQUIRE_DEFINE(DRAM_TEST);

#define MAX_ERRORS_TO_REPORT 50
#define RETRY_LIMIT 1000

typedef struct
{
    const char *        name;       /* Friendly name for the test */
    __bdk_dram_test_t   test_func;  /* Function to call */
    int                 bursts;     /* Bursts parameter to pass to the test */
    int                 max_cores;  /* Maximum number of cores the test should be run on in parallel. Zero means all */
} dram_test_info_t;

static const dram_test_info_t TEST_INFO[] = {
    /* Name,                    Test function,                      Bursts, Max Cores */
    { "Data Bus",               __bdk_dram_test_mem_data_bus,       8,      1},
    { "Address Bus",            __bdk_dram_test_mem_address_bus,    0,      1},
    { "Marching Rows",          __bdk_dram_test_mem_rows,           16,     0},
    { "Random Data",            __bdk_dram_test_mem_random,         32,     0},
    { "Random XOR (32 Burst)",  __bdk_dram_test_mem_xor,            32,     0},
    { "Self Address",           __bdk_dram_test_mem_self_addr,      1,      0},
    { "March C- Solid Bits",    __bdk_dram_test_mem_solid,          1,      0},
    { "March C- Checkerboard",  __bdk_dram_test_mem_checkerboard,   1,      0},
    { "Walking Ones Left",      __bdk_dram_test_mem_leftwalk1,      1,      0},
    { "Walking Ones Right",     __bdk_dram_test_mem_rightwalk1,     1,      0},
    { "Walking Zeros Left",     __bdk_dram_test_mem_leftwalk0,      1,      0},
    { "Walking Zeros Right",    __bdk_dram_test_mem_rightwalk0,     1,      0},
    { "Random XOR (224 Burst)", __bdk_dram_test_mem_xor,            224,    0},
    { "Fast Scan",              __bdk_dram_test_fast_scan,          0,      0},
    { NULL,                     NULL,                               0,      0}
};

/* These variables count the number of ECC errors. They should only be accessed atomically */
int64_t __bdk_dram_ecc_single_bit_errors[BDK_MAX_MEM_CHANS];
int64_t __bdk_dram_ecc_double_bit_errors[BDK_MAX_MEM_CHANS];

static int64_t dram_test_thread_done;
static int64_t dram_test_thread_errors;
static uint64_t dram_test_thread_start;
static uint64_t dram_test_thread_end;
static uint64_t dram_test_thread_size;

/**
 * Force the memory at the pointer location to be written to memory and evicted
 * from L2. L1 will be unaffected.
 *
 * @param address Physical memory location
 */
void __bdk_dram_flush_to_mem(uint64_t address)
{
    BDK_MB;
    char *ptr = bdk_phys_to_ptr(address);
    BDK_CACHE_WBI_L2(ptr);
}

/**
 * Force a memory region to be written to DRAM and evicted from L2
 *
 * @param area   Start of the region
 * @param max_address
 *               End of the region (exclusive)
 */
void __bdk_dram_flush_to_mem_range(uint64_t area, uint64_t max_address)
{
    char *ptr = bdk_phys_to_ptr(area);
    char *end = bdk_phys_to_ptr(max_address);
    BDK_MB;
    while (ptr < end)
    {
        BDK_CACHE_WBI_L2(ptr);
        ptr += 128;
    }
}

/**
 * Convert a test enumeration into a string
 *
 * @param test   Test to convert
 *
 * @return String for display
 */
const char *bdk_dram_get_test_name(int test)
{
    if (test < (int) ARRAY_SIZE(TEST_INFO))
        return TEST_INFO[test].name;
    else
        return NULL;
}

static bdk_dram_test_flags_t dram_test_flags; // FIXME: Don't use global
/**
 * This function is run as a thread to perform memory tests over multiple cores.
 * Each thread gets a section of memory to work on, which is controlled by global
 * variables at the beginning of this file.
 *
 * @param arg    Number of the region we should check
 * @param arg1   Pointer to the test_info structure
 */
static void dram_test_thread(int arg, void *arg1)
{
    const dram_test_info_t *test_info = arg1;
    const int bursts = test_info->bursts;
    const int range_number = arg;

    /* Figure out our work memory range.
     *
     * Note start_address and end_address just provide the physical offset
     * portion of the address and do not have the node bits set. This is
     * to simplify address checks and calculations. Later, when about to run
     * the memory test, the routines adds in the node bits to form the final
     * addresses.
     */
    uint64_t start_address = dram_test_thread_start + dram_test_thread_size * range_number;
    uint64_t end_address = start_address + dram_test_thread_size;
    if (end_address > dram_test_thread_end)
        end_address = dram_test_thread_end;

    bdk_node_t test_node = bdk_numa_local();
    if (dram_test_flags & BDK_DRAM_TEST_USE_CCPI)
        test_node ^= 1;
    /* Insert the node part of the address */
    start_address = bdk_numa_get_address(test_node, start_address);
    end_address = bdk_numa_get_address(test_node, end_address);
    /* Test the region */
    BDK_TRACE(DRAM_TEST, "  Node %d, core %d, Testing [0x%011llx:0x%011llx]\n",
        bdk_numa_local(), bdk_get_core_num() & 127, start_address, end_address - 1);
    test_info->test_func(start_address, end_address, bursts);

    /* Report that we're done */
    BDK_TRACE(DRAM_TEST, "Thread %d on node %d done with memory test\n", range_number, bdk_numa_local());
    bdk_atomic_add64_nosync(&dram_test_thread_done, 1);
}

/**
 * Run the memory test.
 *
 * @param test_info
 * @param start_address
 *                  Physical address to start at
 * @param length    Length of memory block
 * @param flags     Flags to control memory test options. Zero defaults to testing all
 *                  node with statistics and progress output.
 *
 * @return Number of errors found. Zero is success. Negative means the test
 *         did not run due to some other failure.
 */
static int __bdk_dram_run_test(const dram_test_info_t *test_info, uint64_t start_address,
                               uint64_t length, bdk_dram_test_flags_t flags)
{
    /* Figure out the addess of the byte one off the top of memory */
    uint64_t max_address = bdk_dram_get_size_mbytes(bdk_numa_local());
    BDK_TRACE(DRAM_TEST, "DRAM available per node: %llu MB\n", max_address);
    max_address <<= 20;

    /* Make sure we have enough */
    if (max_address < (16<<20))
    {
        bdk_error("DRAM size is too small\n");
        return -1;
    }

    /* Make sure the amount is sane */
    if (CAVIUM_IS_MODEL(CAVIUM_CN8XXX))
    {
        if (max_address > (1ull << 40)) /* 40 bits in CN8XXX */
            max_address = 1ull << 40;
    }
    else
    {
        if (max_address > (1ull << 43)) /* 43 bits in CN9XXX */
            max_address = 1ull << 43;
    }
    BDK_TRACE(DRAM_TEST, "DRAM max address: 0x%011llx\n", max_address-1);

    /* Make sure the start address is lower than the top of memory */
    if (start_address >= max_address)
    {
        bdk_error("Start address is larger than the amount of memory: 0x%011llx versus 0x%011llx\n",
                  start_address, max_address);
        return -1;
    }
    if (length == (uint64_t)-1)
        length = max_address - start_address;

    /* Final range checks */
    uint64_t end_address = start_address + length;
    if (end_address > max_address)
    {
        end_address = max_address;
        length = end_address - start_address;
    }
    if (length == 0)
        return 0;

    /* Ready to run the test. Figure out how many cores we need */
    int max_cores = test_info->max_cores;
    int total_cores_all_nodes = max_cores;

    /* Figure out the number of cores available in the system */
    if (max_cores == 0)
    {
        max_cores += bdk_get_num_running_cores(bdk_numa_local());
        /* Calculate the total number of cores being used. The per node number
           is confusing to people */
        for (bdk_node_t node = BDK_NODE_0; node < BDK_NUMA_MAX_NODES; node++)
            if (flags & (1 << node))
            {
                if (flags & BDK_DRAM_TEST_USE_CCPI)
                    total_cores_all_nodes += bdk_get_num_running_cores(node ^ 1);
                else
                    total_cores_all_nodes += bdk_get_num_running_cores(node);
            }
    }
    if (!(flags & BDK_DRAM_TEST_NO_BANNERS))
        printf("Starting Test \"%s\" for [0x%011llx:0x%011llx] using %d core(s)\n",
           test_info->name, start_address, end_address - 1, total_cores_all_nodes);

    /* Remember the LMC perf counters for stats after the test */
    uint64_t start_dram_dclk[BDK_NUMA_MAX_NODES][4];
    uint64_t start_dram_ops[BDK_NUMA_MAX_NODES][4];
    uint64_t stop_dram_dclk[BDK_NUMA_MAX_NODES][4];
    uint64_t stop_dram_ops[BDK_NUMA_MAX_NODES][4];
    for (bdk_node_t node = BDK_NODE_0; node < BDK_NUMA_MAX_NODES; node++)
    {
        if (flags & (1 << node))
        {
            const int num_dram_controllers = __bdk_dram_get_num_lmc(node);
            for (int i = 0; i < num_dram_controllers; i++)
            {
                start_dram_dclk[node][i] = BDK_CSR_READ(node, BDK_LMCX_DCLK_CNT(i));
                start_dram_ops[node][i] = BDK_CSR_READ(node, BDK_LMCX_OPS_CNT(i));
            }
        }
    }
    /* Remember the CCPI link counters for stats after the test */
    uint64_t start_ccpi_data[BDK_NUMA_MAX_NODES][3];
    uint64_t start_ccpi_idle[BDK_NUMA_MAX_NODES][3];
    uint64_t start_ccpi_err[BDK_NUMA_MAX_NODES][3];
    uint64_t stop_ccpi_data[BDK_NUMA_MAX_NODES][3];
    uint64_t stop_ccpi_idle[BDK_NUMA_MAX_NODES][3];
    uint64_t stop_ccpi_err[BDK_NUMA_MAX_NODES][3];
    if (!bdk_numa_is_only_one())
    {
        for (bdk_node_t node = BDK_NODE_0; node < BDK_NUMA_MAX_NODES; node++)
        {
            if (flags & (1 << node))
            {
                for (int link = 0; link < 3; link++)
                {
                    start_ccpi_data[node][link] = BDK_CSR_READ(node, BDK_OCX_TLKX_STAT_DATA_CNT(link));
                    start_ccpi_idle[node][link] = BDK_CSR_READ(node, BDK_OCX_TLKX_STAT_IDLE_CNT(link));
                    start_ccpi_err[node][link] = BDK_CSR_READ(node, BDK_OCX_TLKX_STAT_ERR_CNT(link));
                }
            }
        }
    }

    /* WARNING: This code assumes the same memory range is being tested on
       all nodes. The same number of cores are used on each node to test
       its local memory */
    uint64_t work_address = start_address;
    dram_test_flags = flags;
    bdk_atomic_set64(&dram_test_thread_errors, 0);
    while ((work_address < end_address) && ((dram_test_thread_errors == 0) || (flags & BDK_DRAM_TEST_NO_STOP_ERROR)))
    {
        /* Check at most MAX_CHUNK_SIZE across each iteration. We only report
           progress between chunks, so keep them reasonably small */
        const uint64_t MAX_CHUNK_SIZE = 1ull << 28; /* 256MB */
        uint64_t size = end_address - work_address;
        if (size > MAX_CHUNK_SIZE)
            size = MAX_CHUNK_SIZE;

        /* Divide memory evenly between the cores. Round the size up so that
           all memory is covered. The last core may have slightly less memory to
           test */
        uint64_t thread_size = (size + (max_cores - 1)) / max_cores;
        thread_size += 127;
        thread_size &= -128;
        dram_test_thread_start = work_address;
        dram_test_thread_end = work_address + size;
        dram_test_thread_size = thread_size;
        BDK_WMB;

        /* Poke the watchdog */
        BDK_CSR_WRITE(bdk_numa_local(), BDK_GTI_CWD_POKEX(0), 0);

        /* disable progress output when batch mode is ON  */
        if (!(flags & BDK_DRAM_TEST_NO_PROGRESS)) {

            /* Report progress percentage */
            int percent_x10 = (work_address - start_address) * 1000 / (end_address - start_address);
            printf("  %3d.%d%% complete, testing [0x%011llx:0x%011llx]\r",
                   percent_x10 / 10, percent_x10 % 10,  work_address, work_address + size - 1);
            fflush(stdout);
        }

        work_address += size;

        /* Start threads for all the cores */
        int total_count = 0;
        bdk_atomic_set64(&dram_test_thread_done, 0);
        for (bdk_node_t node = BDK_NODE_0; node < BDK_NUMA_MAX_NODES; node++)
        {
            if (flags & (1 << node))
            {
                const int num_cores = bdk_get_num_cores(node);
                int per_node = 0;
                for (int core = 0; core < num_cores; core++)
                {
                    if (per_node >= max_cores)
                        break;
                    BDK_TRACE(DRAM_TEST, "Starting thread %d on node %d for memory test\n", per_node, node);
                    dram_test_thread(per_node, (void *)test_info);
                }
            }
        }

#if 0
        /* Wait for threads to finish */
        while (bdk_atomic_get64(&dram_test_thread_done) < total_count)
            bdk_thread_yield();
#else
#define TIMEOUT_SECS 30  // FIXME: long enough so multicore RXOR 224 should not print out
        /* Wait for threads to finish, with progress */
        int cur_count;
        uint64_t cur_time;
        uint64_t period = bdk_clock_get_rate(bdk_numa_local(), BDK_CLOCK_TIME) * TIMEOUT_SECS; // FIXME?
        uint64_t timeout = bdk_clock_get_count(BDK_CLOCK_TIME) + period;
        do {
            cur_count = bdk_atomic_get64(&dram_test_thread_done);
            cur_time = bdk_clock_get_count(BDK_CLOCK_TIME);
            if (cur_time >= timeout) {
                BDK_TRACE(DRAM_TEST, "N%d: Waiting for %d cores\n",
                          bdk_numa_local(), total_count - cur_count);
                timeout = cur_time + period;
            }
        } while (cur_count < total_count);
#endif
    }

    /* Get the DRAM perf counters */
    for (bdk_node_t node = BDK_NODE_0; node < BDK_NUMA_MAX_NODES; node++)
    {
        if (flags & (1 << node))
        {
            const int num_dram_controllers = __bdk_dram_get_num_lmc(node);
            for (int i = 0; i < num_dram_controllers; i++)
            {
                stop_dram_dclk[node][i] = BDK_CSR_READ(node, BDK_LMCX_DCLK_CNT(i));
                stop_dram_ops[node][i] = BDK_CSR_READ(node, BDK_LMCX_OPS_CNT(i));
            }
        }
    }
    /* Get the CCPI link counters */
    if (!bdk_numa_is_only_one())
    {
        for (bdk_node_t node = BDK_NODE_0; node < BDK_NUMA_MAX_NODES; node++)
        {
            if (flags & (1 << node))
            {
                for (int link = 0; link < 3; link++)
                {
                    stop_ccpi_data[node][link] = BDK_CSR_READ(node, BDK_OCX_TLKX_STAT_DATA_CNT(link));
                    stop_ccpi_idle[node][link] = BDK_CSR_READ(node, BDK_OCX_TLKX_STAT_IDLE_CNT(link));
                    stop_ccpi_err[node][link] = BDK_CSR_READ(node, BDK_OCX_TLKX_STAT_ERR_CNT(link));
                }
            }
        }
    }

    /* disable progress output when batch mode is ON  */
    if (!(flags & BDK_DRAM_TEST_NO_PROGRESS)) {

        /* Report progress percentage as complete */
        printf("  %3d.%d%% complete, testing [0x%011llx:0x%011llx]\n",
               100, 0,  start_address, end_address - 1);
        fflush(stdout);
    }

    if (!(flags & BDK_DRAM_TEST_NO_STATS))
    {
        /* Display LMC load */
        for (bdk_node_t node = BDK_NODE_0; node < BDK_NUMA_MAX_NODES; node++)
        {
            if (flags & (1 << node))
            {
                const int num_dram_controllers = __bdk_dram_get_num_lmc(node);
                for (int i = 0; i < num_dram_controllers; i++)
                {
                    uint64_t ops = stop_dram_ops[node][i] - start_dram_ops[node][i];
                    uint64_t dclk = stop_dram_dclk[node][i] - start_dram_dclk[node][i];
                    if (dclk == 0)
                        dclk = 1;
                    uint64_t percent_x10 = ops * 1000 / dclk;
                    printf("  Node %d, LMC%d: ops %llu, cycles %llu, used %llu.%llu%%\n",
                        node, i, ops, dclk, percent_x10 / 10, percent_x10 % 10);
                }
            }
        }
        if (flags & BDK_DRAM_TEST_USE_CCPI)
        {
            /* Display CCPI load */
            for (bdk_node_t node = BDK_NODE_0; node < BDK_NUMA_MAX_NODES; node++)
            {
                if (flags & (1 << node))
                {
                    for (int link = 0; link < 3; link++)
                    {
                        uint64_t busy = stop_ccpi_data[node][link] - start_ccpi_data[node][link];
                        busy += stop_ccpi_err[node][link] - start_ccpi_err[node][link];
                        uint64_t total = stop_ccpi_idle[node][link] - start_ccpi_idle[node][link];
                        total += busy;
                        if (total == 0)
                            continue;
                        uint64_t percent_x10 = busy * 1000 / total;
                        printf("  Node %d, CCPI%d: busy %llu, total %llu, used %llu.%llu%%\n",
                            node, link, busy, total, percent_x10 / 10, percent_x10 % 10);
                    }
                }
            }
        }
    }
    return dram_test_thread_errors;
}

/**
 * Perform a memory test.
 *
 * @param test   Test type to run
 * @param start_address
 *               Physical address to start at
 * @param length Length of memory block
 * @param flags  Flags to control memory test options. Zero defaults to testing all
 *               node with statistics and progress output.
 *
 * @return Number of errors found. Zero is success. Negative means the test
 *         did not run due to some other failure.
 */
int bdk_dram_test(int test, uint64_t start_address, uint64_t length, bdk_dram_test_flags_t flags)
{
    /* These limits are arbitrary. They just make sure we aren't doing something
       silly, like test a non cache line aligned memory region */
    if (start_address & 0xffff)
    {
        bdk_error("DRAM test start address must be aligned on a 64KB boundary\n");
        return -1;
    }
    if (length & 0xffff)
    {
        bdk_error("DRAM test length must be a multiple of 64KB\n");
        return -1;
    }

    const char *name = bdk_dram_get_test_name(test);
    if (name == NULL)
    {
        bdk_error("Invalid DRAM test number %d\n", test);
        return -1;
    }

    /* If no nodes are selected assume the user meant all nodes */
    if ((flags & (BDK_DRAM_TEST_NODE0 | BDK_DRAM_TEST_NODE1 | BDK_DRAM_TEST_NODE2 | BDK_DRAM_TEST_NODE3)) == 0)
        flags |= BDK_DRAM_TEST_NODE0 | BDK_DRAM_TEST_NODE1 | BDK_DRAM_TEST_NODE2 | BDK_DRAM_TEST_NODE3;

    /* Remove nodes from the flags that don't exist */
    for (bdk_node_t node = BDK_NODE_0; node < BDK_NUMA_MAX_NODES; node++)
    {
        if (flags & BDK_DRAM_TEST_USE_CCPI)
        {
            if (!bdk_numa_exists(node ^ 1))
                flags &= ~(1 << node);
        }
        else
        {
            if (!bdk_numa_exists(node))
                flags &= ~(1 << node);
        }
    }


    /* Make sure the start address is higher that the BDK's active range */
    uint64_t top_of_bdk = bdk_dram_get_top_of_bdk();
    if (start_address < top_of_bdk)
        start_address = top_of_bdk;

    /* Clear ECC error counters before starting the test */
    for (int chan = 0; chan < BDK_MAX_MEM_CHANS; chan++) {
        bdk_atomic_set64(&__bdk_dram_ecc_single_bit_errors[chan], 0);
        bdk_atomic_set64(&__bdk_dram_ecc_double_bit_errors[chan], 0);
    }

    /* Make sure at least one core from each node is running */
    /* FIXME(dhendrix): we only care about core0 on node0 for now */
#if 0
    for (bdk_node_t node = BDK_NODE_0; node < BDK_NUMA_MAX_NODES; node++)
    {
        if (flags & (1<<node))
        {
            int use_node = (flags & BDK_DRAM_TEST_USE_CCPI) ? node ^ 1 : node;
            if (bdk_get_running_coremask(use_node) == 0)
                bdk_init_cores(use_node, 1);
        }
    }
#endif

    /* This returns any data compare errors found */
    int errors = __bdk_dram_run_test(&TEST_INFO[test], start_address, length, flags);

    /* Check ECC error counters after the test */
    int64_t ecc_single = 0;
    int64_t ecc_double = 0;
    int64_t ecc_single_errs[BDK_MAX_MEM_CHANS];
    int64_t ecc_double_errs[BDK_MAX_MEM_CHANS];

    for (int chan = 0; chan < BDK_MAX_MEM_CHANS; chan++) {
        ecc_single += (ecc_single_errs[chan] = bdk_atomic_get64(&__bdk_dram_ecc_single_bit_errors[chan]));
        ecc_double += (ecc_double_errs[chan] = bdk_atomic_get64(&__bdk_dram_ecc_double_bit_errors[chan]));
    }

    /* Always print any ECC errors */
    if (ecc_single || ecc_double)
    {
        printf("Test \"%s\": ECC errors, %lld/%lld/%lld/%lld corrected, %lld/%lld/%lld/%lld uncorrected\n",
               name,
               ecc_single_errs[0], ecc_single_errs[1], ecc_single_errs[2], ecc_single_errs[3],
               ecc_double_errs[0], ecc_double_errs[1], ecc_double_errs[2], ecc_double_errs[3]);
    }
    if (errors || ecc_double || ecc_single) {
        printf("Test \"%s\": FAIL: %lld single, %lld double, %d compare errors\n",
               name, ecc_single, ecc_double, errors);
    }
    else
        BDK_TRACE(DRAM_TEST, "Test \"%s\": PASS\n", name);

    return (errors + ecc_double + ecc_single);
}

/**
 * Report a DRAM address in decoded format.
 *
 * @param address Physical address the error occurred at
 *
 */
static void __bdk_dram_report_address_decode(uint64_t address, char *buffer, int len)
{
    int node, lmc, dimm, prank, lrank, bank, row, col;

    bdk_dram_address_extract_info(address, &node, &lmc, &dimm, &prank, &lrank, &bank, &row, &col);

    snprintf(buffer, len, "[0x%011lx] (N%d,LMC%d,DIMM%d,Rank%d/%d,Bank%02d,Row 0x%05x,Col 0x%04x)",
             address, node, lmc, dimm, prank, lrank, bank, row, col);
}

/**
 * Report a DRAM address in a new decoded format.
 *
 * @param address Physical address the error occurred at
 * @param xor     XOR of data read vs expected data
 *
 */
static void __bdk_dram_report_address_decode_new(uint64_t address, uint64_t orig_xor, char *buffer, int len)
{
    int node, lmc, dimm, prank, lrank, bank, row, col;

    int byte = 8; // means no byte-lanes in error, should not happen
    uint64_t bits, print_bits = 0;
    uint64_t xor = orig_xor;

    // find the byte-lane(s) with errors
    for (int i = 0; i < 8; i++) {
        bits = xor & 0xffULL;
        xor >>= 8;
        if (bits) {
            if (byte != 8) {
                byte = 9; // means more than 1 byte-lane was present
                print_bits = orig_xor; // print the full original
                break; // quit now
            } else {
                byte = i; // keep checking
                print_bits = bits;
            }
        }
    }

    bdk_dram_address_extract_info(address, &node, &lmc, &dimm, &prank, &lrank, &bank, &row, &col);

    snprintf(buffer, len, "N%d.LMC%d: CMP byte %d xor 0x%02lx (DIMM%d,Rank%d/%d,Bank%02d,Row 0x%05x,Col 0x%04x)[0x%011lx]",
             node, lmc, byte, print_bits, dimm, prank, lrank, bank, row, col, address);
}

/**
 * Report a DRAM error. Errors are not shown after MAX_ERRORS_TO_REPORT is
 * exceeded. Used when a single address is involved in the failure.
 *
 * @param address Physical address the error occurred at
 * @param data    Data read from memory
 * @param correct Correct data
 * @param burst   Which burst this is from, informational only
 * @param fails   -1 for no retries done, >= 0 number of failures during retries
 *
 * @return Zero if a message was logged, non-zero if the error limit has been reached
 */
void __bdk_dram_report_error(uint64_t address, uint64_t data, uint64_t correct, int burst, int fails)
{
    char buffer[128];
    char failbuf[32];
    int64_t errors = bdk_atomic_fetch_and_add64(&dram_test_thread_errors, 1);
    uint64_t xor = data ^ correct;

    if (errors < MAX_ERRORS_TO_REPORT)
    {
        if (fails < 0) {
            snprintf(failbuf, sizeof(failbuf), " ");
        } else {
            int percent_x10 = fails * 1000 / RETRY_LIMIT;
            snprintf(failbuf, sizeof(failbuf), ", retries failed %3d.%d%%",
                     percent_x10 / 10, percent_x10 % 10);
        }

        __bdk_dram_report_address_decode_new(address, xor, buffer, sizeof(buffer));
        bdk_error("%s%s\n", buffer, failbuf);

        if (errors == MAX_ERRORS_TO_REPORT-1)
            bdk_error("No further DRAM errors will be reported\n");
    }
    return;
}

/**
 * Report a DRAM error. Errors are not shown after MAX_ERRORS_TO_REPORT is
 * exceeded. Used when two addresses might be involved in the failure.
 *
 * @param address1 First address involved in the failure
 * @param data1    Data from the first address
 * @param address2 Second address involved in the failure
 * @param data2    Data from second address
 * @param burst    Which burst this is from, informational only
 * @param fails    -1 for no retries done, >= 0 number of failures during retries
 *
 * @return Zero if a message was logged, non-zero if the error limit has been reached
 */
void __bdk_dram_report_error2(uint64_t address1, uint64_t data1, uint64_t address2, uint64_t data2,
                              int burst, int fails)
{
    int64_t errors = bdk_atomic_fetch_and_add64(&dram_test_thread_errors, 1);
    if (errors < MAX_ERRORS_TO_REPORT)
    {
        char buffer1[80], buffer2[80];
        char failbuf[32];

        if (fails < 0) {
            snprintf(failbuf, sizeof(failbuf), " ");
        } else {
            snprintf(failbuf, sizeof(failbuf), ", retried %d failed %d", RETRY_LIMIT, fails);
        }
        __bdk_dram_report_address_decode(address1, buffer1, sizeof(buffer1));
        __bdk_dram_report_address_decode(address2, buffer2, sizeof(buffer2));

        bdk_error("compare: data1: 0x%016llx, xor: 0x%016llx%s\n"
                  "       %s\n       %s\n",
                  data1, data1 ^ data2, failbuf,
                  buffer1, buffer2);

        if (errors == MAX_ERRORS_TO_REPORT-1)
            bdk_error("No further DRAM errors will be reported\n");
    }
    return;
}

/* Report the circumstances of a failure and try re-reading the memory
 * location to see if the error is transient or permanent.
 *
 * Note: re-reading requires using evicting addresses
 */
int __bdk_dram_retry_failure(int burst, uint64_t address, uint64_t data, uint64_t expected)
{
    int refail = 0;

    // bypass the retries if we are already over the limit...
    if (bdk_atomic_get64(&dram_test_thread_errors) < MAX_ERRORS_TO_REPORT) {

        /* Try re-reading the memory location. A transient error may fail
         * on one read and work on another. Keep on retrying even when a
         * read succeeds.
         */
        for (int i = 0; i < RETRY_LIMIT; i++) {

            __bdk_dram_flush_to_mem(address);
            BDK_DCACHE_INVALIDATE;

            uint64_t new = __bdk_dram_read64(address);

            if (new != expected) {
                refail++;
            }
        }
    } else
        refail = -1;

    // this will increment the errors always, but maybe not print...
    __bdk_dram_report_error(address, data, expected, burst, refail);

    return 1;
}

/**
 * retry_failure2
 *
 * @param burst
 * @param address1
 * @param address2
 */
int __bdk_dram_retry_failure2(int burst, uint64_t address1, uint64_t data1, uint64_t address2, uint64_t data2)
{
    int refail = 0;

    // bypass the retries if we are already over the limit...
    if (bdk_atomic_get64(&dram_test_thread_errors) < MAX_ERRORS_TO_REPORT) {

        for (int i = 0; i < RETRY_LIMIT; i++) {
            __bdk_dram_flush_to_mem(address1);
            __bdk_dram_flush_to_mem(address2);
            BDK_DCACHE_INVALIDATE;

            uint64_t d1 = __bdk_dram_read64(address1);
            uint64_t d2 = __bdk_dram_read64(address2);

            if (d1 != d2) {
                refail++;
            }
        }
    } else
        refail = -1;

    // this will increment the errors always, but maybe not print...
    __bdk_dram_report_error2(address1, data1, address2, data2, burst, refail);

    return 1;
}

/**
 * Inject a DRAM error at a specific address in memory. The injection can either
 * be a single bit inside the byte, or a double bit error in the ECC byte. Double
 * bit errors may corrupt memory, causing software to crash. The corruption is
 * written to memory and will continue to exist until the cache line is written
 * again. After a call to this function, the BDK should report a ECC error. Double
 * bit errors corrupt bits 0-1.
 *
 * @param address Physical address to corrupt. Any byte alignment is supported
 * @param bit     Bit to corrupt in the byte (0-7), or -1 to create a double bit fault in the ECC
 *                byte.
 */
void bdk_dram_test_inject_error(uint64_t address, int bit)
{
    uint64_t aligned_address = address & -16;
    int corrupt_bit = -1;
    if (bit >= 0)
        corrupt_bit = (address & 0xf) * 8 + bit;

    /* Extract the DRAM controller information */
    int node, lmc, dimm, prank, lrank, bank, row, col;
    bdk_dram_address_extract_info(address, &node, &lmc, &dimm, &prank, &lrank, &bank, &row, &col);

    /* Read the current data */
    uint64_t data = __bdk_dram_read64(aligned_address);

    /* Program LMC to inject the error */
    if ((corrupt_bit >= 0) && (corrupt_bit < 64))
        BDK_CSR_WRITE(node, BDK_LMCX_CHAR_MASK0(lmc), 1ull << corrupt_bit);
    else if (bit == -1)
        BDK_CSR_WRITE(node, BDK_LMCX_CHAR_MASK0(lmc), 3);
    else
        BDK_CSR_WRITE(node, BDK_LMCX_CHAR_MASK0(lmc), 0);
    if (corrupt_bit >= 64)
        BDK_CSR_WRITE(node, BDK_LMCX_CHAR_MASK2(lmc), 1ull << (corrupt_bit - 64));
    else
        BDK_CSR_WRITE(node, BDK_LMCX_CHAR_MASK2(lmc), 0);
    BDK_CSR_MODIFY(c, node, BDK_LMCX_ECC_PARITY_TEST(lmc),
        c.s.ecc_corrupt_idx = (address & 0x7f) >> 4;
        c.s.ecc_corrupt_ena = 1);
    BDK_CSR_READ(node, BDK_LMCX_ECC_PARITY_TEST(lmc));

    /* Perform a write and push it to DRAM. This creates the error */
    __bdk_dram_write64(aligned_address, data);
    __bdk_dram_flush_to_mem(aligned_address);

    /* Disable error injection */
    BDK_CSR_MODIFY(c, node, BDK_LMCX_ECC_PARITY_TEST(lmc),
        c.s.ecc_corrupt_ena = 0);
    BDK_CSR_READ(node, BDK_LMCX_ECC_PARITY_TEST(lmc));
    BDK_CSR_WRITE(node, BDK_LMCX_CHAR_MASK0(lmc), 0);
    BDK_CSR_WRITE(node, BDK_LMCX_CHAR_MASK2(lmc), 0);

    /* Read back the data, which should now cause an error */
    printf("Loading the injected error address 0x%llx, node=%d, lmc=%d, dimm=%d, rank=%d/%d, bank=%d, row=%d, col=%d\n",
           address, node, lmc, dimm, prank, lrank, bank, row, col);
    __bdk_dram_read64(aligned_address);
}