aboutsummaryrefslogtreecommitdiff
path: root/src/vendorcode/amd/agesa/f14/Proc/Mem/NB/mndct.c
blob: 00024e2fa41733e68d02a9da7f0cc90d0644b634 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
/* $NoKeywords:$ */
/**
 * @file
 *
 * mndct.c
 *
 * Common Northbridge DCT support
 *
 * @xrefitem bom "File Content Label" "Release Content"
 * @e project: AGESA
 * @e sub-project: (Mem/NB)
 * @e \$Revision: 48511 $ @e \$Date: 2011-03-09 13:53:13 -0700 (Wed, 09 Mar 2011) $
 *
 **/
/*
 *****************************************************************************
 *
 * Copyright (c) 2011, Advanced Micro Devices, Inc.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of Advanced Micro Devices, Inc. nor the names of
 *       its contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL ADVANCED MICRO DEVICES, INC. BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * ***************************************************************************
 *
 */


/*
 *----------------------------------------------------------------------------
 *                                MODULES USED
 *
 *----------------------------------------------------------------------------
 */



#include "AGESA.h"
#include "amdlib.h"
#include "Ids.h"
#include "mport.h"
#include "mm.h"
#include "mn.h"
#include "mt.h"
#include "mu.h"
#include "mftds.h"
#include "merrhdl.h"
#include "OptionMemory.h"
#include "PlatformMemoryConfiguration.h"
#include "Filecode.h"
CODE_GROUP (G1_PEICC)
RDATA_GROUP (G1_PEICC)

#define FILECODE PROC_MEM_NB_MNDCT_FILECODE
/*----------------------------------------------------------------------------
 *                          DEFINITIONS AND MACROS
 *
 *----------------------------------------------------------------------------
 */
#define UNUSED_CLK 4

/*----------------------------------------------------------------------------
 *                           TYPEDEFS AND STRUCTURES
 *
 *----------------------------------------------------------------------------
 */

/*----------------------------------------------------------------------------
 *                        PROTOTYPES OF LOCAL FUNCTIONS
 *
 *----------------------------------------------------------------------------
 */

VOID
STATIC
MemNAfterStitchMemNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  );

UINT8
MemNGet1KTFawTkNb (
  IN       UINT8 k
  );

UINT8
MemNGet2KTFawTkNb (
  IN       UINT8 k
  );

VOID
STATIC
MemNQuarterMemClk2NClkNb (
  IN OUT   MEM_NB_BLOCK *NBPtr,
  IN OUT   UINT16 *SubTotalPtr
  );

/*----------------------------------------------------------------------------
 *                            EXPORTED FUNCTIONS
 *
 *----------------------------------------------------------------------------
 */

extern BUILD_OPT_CFG UserOptions;

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *      This function combines all the memory into a contiguous map.
 *      Requires that Mask values for each bank be programmed first and that
 *      the chip-select population indicator is correctly set.
 *
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 *     @return          TRUE - An Error value lower than AGESA_FATAL may have occurred
 *     @return          FALSE - An Error value greater than or equal to AGESA_FATAL may have occurred
 */

BOOLEAN
MemNStitchMemoryNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  BOOLEAN DSpareEn;
  UINT32 NxtCSBase;
  UINT32 CurCSBase;
  UINT32 CsSize;
  UINT32 BiggestBank;
  UINT8 p;
  UINT8 q;
  UINT8 BiggestDimm;
  MEM_PARAMETER_STRUCT *RefPtr;
  DIE_STRUCT *MCTPtr;
  DCT_STRUCT *DCTPtr;
  RefPtr = NBPtr->RefPtr;
  MCTPtr = NBPtr->MCTPtr;
  DCTPtr = NBPtr->DCTPtr;
  DSpareEn = FALSE;
  if (NBPtr->IsSupported[SetSpareEn]) {
    DSpareEn = FALSE;
    if (RefPtr->GStatus[GsbEnDIMMSpareNW]) {
      DSpareEn = TRUE;
    }
  }

  DCTPtr->Timings.CsEnabled = 0;
  NxtCSBase = 0;
  for (p = 0; p < MAX_CS_PER_CHANNEL; p++) {
    BiggestBank = 0;
    BiggestDimm = 0;
    for (q = 0; q < MAX_CS_PER_CHANNEL; q++) {
      if (((DCTPtr->Timings.CsPresent & ~DCTPtr->Timings.CsTestFail) & ((UINT16)1 << q)) != 0) {
        if ((MemNGetBitFieldNb (NBPtr, BFCSBaseAddr0Reg + q) & 7) == 0) {
          // (CSEnable|Spare==1)bank is not enabled yet
          CsSize = MemNGetBitFieldNb (NBPtr, BFCSMask0Reg + (q >> 1));
          if (CsSize != 0) {
            CsSize += ((UINT32)1 << 19);
            CsSize &= 0xFFF80000;
          }
          if (CsSize > BiggestBank) {
            BiggestBank = CsSize;
            BiggestDimm = q;
          }
        }
      }
    }

    if (BiggestBank != 0) {
      CurCSBase = NxtCSBase;
      if (NBPtr->IsSupported[CheckSpareEn]) {
        if (DSpareEn) {
          CurCSBase = ((UINT32)1 << BFSpare);
          DSpareEn = FALSE;
        } else {
          CurCSBase |= ((UINT32)1 << BFCSEnable);
          NxtCSBase += BiggestBank;
        }
      } else {
        CurCSBase |= ((UINT32)1 << BFCSEnable);
        NxtCSBase += BiggestBank;
      }
      if ((BiggestDimm & 1) != 0) {
        if (!(MCTPtr->Status[SbLrdimms])) {
          // For LRDIMMS, On Dimm Mirroring is enabled after SDI
          if ((DCTPtr->Timings.DimmMirrorPresent & (1 << (BiggestDimm >> 1))) != 0) {
            CurCSBase |= ((UINT32)1 << BFOnDimmMirror);
          }
        }
      }
      MemNSetBitFieldNb (NBPtr, BFCSBaseAddr0Reg + BiggestDimm, CurCSBase);
      DCTPtr->Timings.CsEnabled |= (1 << BiggestDimm);
    }
    if ((DCTPtr->Timings.CsTestFail & ((UINT16)1 << p)) != 0) {
      IDS_HDT_CONSOLE (MEM_FLOW, "Node %d Dct %d exclude CS %d\n", NBPtr->Node, NBPtr->Dct, p);
      MemNSetBitFieldNb (NBPtr, (BFCSBaseAddr0Reg + p), (UINT32)1 << BFTestFail);
    }
  }

  if (NxtCSBase != 0) {
    DCTPtr->Timings.DctMemSize = NxtCSBase >> 8;    // Scale base address from [39:8] to [47:16]
    MemNAfterStitchMemNb (NBPtr);
  }

  return (BOOLEAN) (MCTPtr->ErrCode < AGESA_FATAL);
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function gets platform specific config/timing values from the interface layer and
 *   programs them into DCT.
 *
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 *     @return          TRUE - An Error value lower than AGESA_FATAL may have occurred
 *     @return          FALSE - An Error value greater than or equal to AGESA_FATAL may have occurred
 */

BOOLEAN
MemNPlatformSpecNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  CONST BIT_FIELD_NAME ChipletPDRegs[] = {
  BFPhyClkConfig0,
  BFPhyClkConfig3,
  BFPhyClkConfig1,
  BFPhyClkConfig2
  };
  CONST UINT8 ChipletPDClkDisMap[][2] = {
  //F2[1, 0]x9C_x0D0F2030 -> F2x[1, 0]88[MemClkDis[1:0]]
  {0, 1},
  //F2[1, 0]x9C_x0D0F2330 -> F2x[1, 0]88[MemClkDis[7:6]]
  {6, 7},
  //F2x09C_x0D0F2130 -> F2x88[MemClkDis[5:4]]
  {4, 5},
  //F2x09C_x0D0F2230 -> F2x88[MemClkDis[3:2]]
  {2, 3},
  //F2x19C_x0D0F2130 -> F2x188[MemClkDis[5:2]]
  {2, 5},
  //F2x19C_x0D0F2230 -> F2x188[MemClkDis[4:3]]
  {3, 4}
  };

  UINT8 MemClkDis;
  UINT8 i;
  UINT8 MemoryAllClocks;
  UINT8 *MemClkDisMap;
  UINT16 CsPresent;
  UINT8 RegIndex;
  UINT8 Cs1;
  UINT8 Cs2;

  if (!MemNGetPlatformCfgNb (NBPtr)) {
    IDS_ERROR_TRAP;
  }

  if (!NBPtr->PsPtr->MemPDoPs (NBPtr)) {
    IDS_ERROR_TRAP;
  }
  MemNProgramPlatformSpecNb (NBPtr);

  MemProcessConditionalOverrides (NBPtr->RefPtr->PlatformMemoryConfiguration, NBPtr, PSO_ACTION_ODT, ALL_DIMMS);

  if (NBPtr->MCTPtr->GangedMode) {
    MemNSwitchDCTNb (NBPtr, 1);
    if (!MemNGetPlatformCfgNb (NBPtr)) {
      IDS_ERROR_TRAP;
    }
    MemNProgramPlatformSpecNb (NBPtr);
    MemNSwitchDCTNb (NBPtr, 0);
  }

  //======================================================================
  // Disable unused MemClk to save power
  //======================================================================
  //
  MemClkDis = 0;
  MemoryAllClocks = UserOptions.CfgMemoryAllClocksOn;
  IDS_OPTION_HOOK (IDS_ALL_MEMORY_CLOCK, &MemoryAllClocks, &(NBPtr->MemPtr->StdHeader));
  if (!MemoryAllClocks) {
    // Special Jedec SPD diagnostic bit - "enable all clocks"
    if (!NBPtr->MCTPtr->Status[SbDiagClks]) {
      MemClkDisMap = FindPSOverrideEntry (NBPtr->RefPtr->PlatformMemoryConfiguration, PSO_MEMCLK_DIS, NBPtr->MCTPtr->SocketId, MemNGetSocketRelativeChannelNb (NBPtr, NBPtr->Dct, 0));
      if (MemClkDisMap == NULL) {
        MemClkDisMap = NBPtr->ChannelPtr->MemClkDisMap;
      }

      // Turn off the unused CS clocks
      CsPresent = NBPtr->DCTPtr->Timings.CsPresent;

      if (NBPtr->IsSupported[CheckMemClkCSPresent]) {
        if (NBPtr->ChannelPtr->RegDimmPresent != 0) {
          // All DDR3 RDIMM use only one MEMCLOCK from edge finger to the register
          // regardless of how many Ranks are on the DIMM (Single, Dual or Quad)
          CsPresent = (CsPresent | (CsPresent >> 1)) & 0x5555;
        }
      }
      for (i = 0; i < 8; i++) {
        if ((CsPresent & MemClkDisMap[i]) == 0) {
          MemClkDis |= (UINT8) (1 << i);
        }
      }
      //Chiplet power down
      for (RegIndex = 0; RegIndex < GET_SIZE_OF (ChipletPDRegs); RegIndex++) {
        if ((NBPtr->Dct == 1) && (RegIndex >= 2)) {
          Cs1 =  MemClkDisMap[ChipletPDClkDisMap[RegIndex + 2][0]];
          Cs2 =  MemClkDisMap[ChipletPDClkDisMap[RegIndex + 2][1]];
        } else {
          Cs1 =  MemClkDisMap[ChipletPDClkDisMap[RegIndex][0]];
          Cs2 =  MemClkDisMap[ChipletPDClkDisMap[RegIndex][1]];
        }
        if ((CsPresent & (UINT16) (Cs1 | Cs2)) == 0) {
          MemNSetBitFieldNb (NBPtr, ChipletPDRegs[RegIndex], (MemNGetBitFieldNb (NBPtr, ChipletPDRegs[RegIndex]) | 0x10));
        }
      }
    }
  }
  MemNSetBitFieldNb (NBPtr, BFMemClkDis, MemClkDis);

  AGESA_TESTPOINT (TPProcMemPhyCompensation, &(NBPtr->MemPtr->StdHeader));
  NBPtr->MemNInitPhyComp (NBPtr);

  MemProcessConditionalOverrides (NBPtr->RefPtr->PlatformMemoryConfiguration, NBPtr, PSO_ACTION_SLEWRATE, ALL_DIMMS);

  // Program DramTerm for DDR2
  if ((MemNGetBitFieldNb (NBPtr, BFDdr3Mode)) == 0) {
    MemNSetBitFieldNb (NBPtr, BFDramTerm, NBPtr->PsPtr->DramTerm);
  } else {
    // Dynamic Dynamic DramTerm for DDR3
    // Dram Term for DDR3 may vary based on chip selects
    MemNSetBitFieldNb (NBPtr, BFDramTermDyn, NBPtr->PsPtr->DynamicDramTerm);
  }

  MemFInitTableDrive (NBPtr, MTAfterPlatformSpec);

  return (BOOLEAN) (NBPtr->MCTPtr->ErrCode < AGESA_FATAL);
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function gets platform specific config/timing values from the interface layer and
 *   programs them into DCT.
 *
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 *     @return          TRUE - An Error value lower than AGESA_FATAL may have occurred
 *     @return          FALSE - An Error value greater than or equal to AGESA_FATAL may have occurred
 */

BOOLEAN
MemNPlatformSpecUnb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  UINT8 MemClkDis;
  UINT8 i;
  UINT8 MemoryAllClocks;
  UINT8 *MemClkDisMap;
  UINT16 CsPresent;

  if (!MemNGetPlatformCfgNb (NBPtr)) {
    IDS_ERROR_TRAP;
  }

  if (!NBPtr->PsPtr->MemPDoPs (NBPtr)) {
    IDS_HDT_CONSOLE (MEM_FLOW, "\tDisable DCT%d due to unsupported DIMM configuration\n", NBPtr->Dct);
    NBPtr->MemPtr->ErrorHandling (NBPtr->MCTPtr, NBPtr->Dct, EXCLUDE_ALL_CHIPSEL, &NBPtr->MemPtr->StdHeader);
    NBPtr->DisableDCT (NBPtr);
  } else {

    MemNProgramPlatformSpecNb (NBPtr);
    MemProcessConditionalOverrides (NBPtr->RefPtr->PlatformMemoryConfiguration, NBPtr, PSO_ACTION_ODT, ALL_DIMMS);

    //======================================================================
    // Disable unused MemClk to save power
    //======================================================================
    //
    MemClkDis = 0;
    MemoryAllClocks = UserOptions.CfgMemoryAllClocksOn;
    IDS_OPTION_HOOK (IDS_ALL_MEMORY_CLOCK, &MemoryAllClocks, &(NBPtr->MemPtr->StdHeader));
    if (!MemoryAllClocks) {
      // Special Jedec SPD diagnostic bit - "enable all clocks"
      if (!NBPtr->MCTPtr->Status[SbDiagClks]) {
        MemClkDisMap = FindPSOverrideEntry (NBPtr->RefPtr->PlatformMemoryConfiguration, PSO_MEMCLK_DIS, NBPtr->MCTPtr->SocketId, NBPtr->Dct);
        if (MemClkDisMap == NULL) {
          MemClkDisMap = NBPtr->ChannelPtr->MemClkDisMap;
        }

        // Turn off unused clocks
        CsPresent = NBPtr->DCTPtr->Timings.CsPresent;

        for (i = 0; i < 8; i++) {
          if ((CsPresent & MemClkDisMap[i]) == 0) {
            MemClkDis |= (UINT8) (1 << i);
          }
        }

        // Turn off unused chiplets
        for (i = 0; i < 3; i++) {
          if (((MemClkDis >> (i * 2)) & 0x3) == 0x3) {
            MemNSetBitFieldNb (NBPtr, BFPhyClkConfig0 + i, 0x0010);
          }
        }
      }
    }
    MemNSetBitFieldNb (NBPtr, BFMemClkDis, MemClkDis);
    MemFInitTableDrive (NBPtr, MTAfterPlatformSpec);
  }

  return (BOOLEAN) (NBPtr->MCTPtr->ErrCode < AGESA_FATAL);
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function disables the DCT and mem clock
 *
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */

VOID
MemNDisableDCTNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  MemNSetBitFieldNb (NBPtr, BFCKETri, 0x03);
  MemNSetBitFieldNb (NBPtr, BFODTTri, 0x0F);
  MemNSetBitFieldNb (NBPtr, BFChipSelTri, 0xFF);

  // To maximize power savings when DisDramInterface=1b,
  // all of the MemClkDis bits should also be set.
  //
  MemNSetBitFieldNb (NBPtr, BFMemClkDis, 0xFF);
  MemNSetBitFieldNb (NBPtr, BFDisDramInterface, 1);
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function disables the DCT and mem clock for client NB
 *
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */

VOID
MemNDisableDCTClientNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  MemNSetBitFieldNb (NBPtr, BFCKETri, 0x03);
  MemNSetBitFieldNb (NBPtr, BFODTTri, 0x0F);
  MemNSetBitFieldNb (NBPtr, BFChipSelTri, 0xFF);

  //Wait for 24 MEMCLKs
  MemNWaitXMemClksNb (NBPtr, 24);

  // To maximize power savings when DisDramInterface=1b,
  // all of the MemClkDis bits should also be set.
  //
  MemNSetBitFieldNb (NBPtr, BFMemClkDis, 0xFF);

  MemNSetBitFieldNb (NBPtr, BFDramPhyStatusReg, 0x80800000);

  MemNSetBitFieldNb (NBPtr, BFDisDramInterface, 1);
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *  This function initializes the DRAM devices on all DCTs at the same time
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */

VOID
MemNStartupDCTNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  // 1. Ensure F2x[1, 0]9C_x08[DisAutoComp] = 1.
  // 2. BIOS waits 5 us for the disabling of the compensation engine to complete.
  // DisAutoComp is still being set since InitPhyComp

  if (NBPtr->MCTPtr->NodeMemSize != 0) {
    // Init MemClk frequency
    MemNBrdcstSetNb (NBPtr, BFMemClkFreqVal, 1);


    AGESA_TESTPOINT (TpProcMemBeforeDramInit, &(NBPtr->MemPtr->StdHeader));
    NBPtr->MemNBeforeDramInitNb (NBPtr);
    IDS_HDT_CONSOLE (MEM_FLOW, "\nMemClkFreq: %d MHz\n", NBPtr->DCTPtr->Timings.Speed);
    AGESA_TESTPOINT (TpProcMemDramInit, &(NBPtr->MemPtr->StdHeader));
    NBPtr->FeatPtr->DramInit (NBPtr->TechPtr);
  }

  // 7. Program F2x[1, 0]9C_x08[DisAutoComp] = 0.
  // 8. BIOS must wait 750 us for the phy compensation engine
  //    to reinitialize.
  // DisAutoComp will be cleared after DramEnabled turns to 1

}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *  This function initializes the DRAM devices on all DCTs at the same time
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */

VOID
MemNStartupDCTUnb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  UINT8 Dct;

  if (NBPtr->MCTPtr->NodeMemSize != 0) {
    // Update NB frequency for startup DDR speed
    NBPtr->ChangeNbFrequency (NBPtr);

    // Program D18F2x[1,0]9C_x0000_000B = 80000000h. #109999.
    MemNBrdcstSetNb (NBPtr, BFDramPhyStatusReg, 0x80000000);

    // Program D18F2x[1,0]9C_x0D0F_E013[PllRegWaitTime] = 0118h. #194060.
    MemNBrdcstSetNb (NBPtr, BFPllRegWaitTime, 0x118);

    // Phy Voltage Level Programming
    MemNPhyVoltageLevelNb (NBPtr);

    // Run frequency change sequence
    MemNBrdcstSetNb (NBPtr, BFPllLockTime, NBPtr->FreqChangeParam->PllLockTimeDefault);
    MemNBrdcstSetNb (NBPtr, BFMemClkFreq, NBPtr->GetMemClkFreqId (NBPtr, NBPtr->DCTPtr->Timings.Speed));
    NBPtr->ProgramNbPsDependentRegs (NBPtr);
    MemNBrdcstSetNb (NBPtr, BFMemClkFreqVal, 1);
    MemNPollBitFieldNb (NBPtr, BFFreqChgInProg, 0, PCI_ACCESS_TIMEOUT, TRUE);
    NBPtr->FamilySpecificHook[AfterMemClkFreqVal] (NBPtr, &Dct);
    MemNBrdcstSetNb (NBPtr, BFPllLockTime, 0x000F);

    NBPtr->FamilySpecificHook[BeforePhyFenceTraining] (NBPtr, NBPtr);

    for (Dct = 0; Dct < NBPtr->DctCount; Dct++) {
      MemNSwitchDCTNb (NBPtr, Dct);
      if (NBPtr->DCTPtr->Timings.DctMemSize != 0) {
        IDS_HDT_CONSOLE (MEM_STATUS, "\tDct %d\n", Dct);

        // Phy fence programming
        AGESA_TESTPOINT (TpProcMemPhyFenceTraining, &(NBPtr->MemPtr->StdHeader));
        NBPtr->PhyFenceTraining (NBPtr);

        // Phy compensation initialization
        AGESA_TESTPOINT (TPProcMemPhyCompensation, &(NBPtr->MemPtr->StdHeader));
        NBPtr->MemNInitPhyComp (NBPtr);
        MemProcessConditionalOverrides (NBPtr->RefPtr->PlatformMemoryConfiguration, NBPtr, PSO_ACTION_SLEWRATE, ALL_DIMMS);
      }
    }

    AGESA_TESTPOINT (TpProcMemBeforeDramInit, &(NBPtr->MemPtr->StdHeader));
    NBPtr->MemNBeforeDramInitNb (NBPtr);

    AGESA_TESTPOINT (TpProcMemDramInit, &(NBPtr->MemPtr->StdHeader));
    IDS_HDT_CONSOLE (MEM_FLOW, "\nMemClkFreq: %d MHz\n", NBPtr->DCTPtr->Timings.Speed);
    NBPtr->FeatPtr->DramInit (NBPtr->TechPtr);
  }
}

/* -----------------------------------------------------------------------------*/
/**
 *
 * MemNChangeFrequencyHy:
 *
 *  This function change MemClk frequency to the value that is specified by DCTPtr->Timings.Speed
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */

VOID
MemNChangeFrequencyNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  MEM_TECH_BLOCK *TechPtr;
  UINT8 Dct;
  UINT8 ChipSel;
  UINT32 Dummy;

  TechPtr = NBPtr->TechPtr;
  if (NBPtr->IsSupported[CheckDisDllShutdownSR] && !(NBPtr->IsSupported[SetDllShutDown])) {
    // #107421
    MemNBrdcstSetNb (NBPtr, BFDisDllShutdownSR, 1);
  }

  //Program F2x[1,0]90[EnterSelfRefresh]=1.
  //Wait until the hardware resets F2x[1,0]90[EnterSelfRefresh]=0.
  MemNBrdcstSetNb (NBPtr, BFEnterSelfRef, 1);
  MemNPollBitFieldNb (NBPtr, BFEnterSelfRef, 0, PCI_ACCESS_TIMEOUT, TRUE);

  //Program F2x9C_x08[DisAutoComp]=1
  MemNSwitchDCTNb (NBPtr, 0);
  MemNSetBitFieldNb (NBPtr, BFDisAutoComp, 1);

  //Program F2x[1, 0]94[MemClkFreqVal] = 0.
  MemNBrdcstSetNb (NBPtr, BFMemClkFreqVal, 0);

  //Program F2x[1, 0]94[MemClkFreq] to specify the target MEMCLK frequency.
  MemNBrdcstSetNb (NBPtr, BFMemClkFreq, NBPtr->GetMemClkFreqId (NBPtr, NBPtr->DCTPtr->Timings.Speed));

  IDS_OPTION_HOOK (IDS_BEFORE_MEM_FREQ_CHG, NBPtr, &(NBPtr->MemPtr->StdHeader));
  //Program F2x[1, 0]94[MemClkFreqVal] = 1.
  MemNBrdcstSetNb (NBPtr, BFMemClkFreqVal, 1);

  //Wait until F2x[1, 0]94[FreqChgInProg]=0.
  MemNPollBitFieldNb (NBPtr, BFFreqChgInProg, 0, PCI_ACCESS_TIMEOUT, TRUE);

  if (NBPtr->IsSupported[CheckPhyFenceTraining]) {
    //Perform Phy Fence retraining after frequency changed
    AGESA_TESTPOINT (TpProcMemPhyFenceTraining, &(NBPtr->MemPtr->StdHeader));
    for (Dct = 0; Dct < NBPtr->DctCount; Dct++) {
      MemNSwitchDCTNb (NBPtr, Dct);
      if (NBPtr->DCTPtr->Timings.DctMemSize != 0) {
        IDS_HDT_CONSOLE (MEM_STATUS, "\tDct %d\n", Dct);
        AGESA_TESTPOINT (TpProcMemPhyFenceTraining, &(NBPtr->MemPtr->StdHeader));
        MemNPhyFenceTrainingNb (NBPtr);
      }
    }
  }

  //Program F2x9C_x08[DisAutoComp]=0
  MemNSwitchDCTNb (NBPtr, 0);
  MemNSetBitFieldNb (NBPtr, BFDisAutoComp, 0);

  //Program F2x[1,0]90[ExitSelfRef]=1 for both DCTs.
  //Wait until the hardware resets F2x[1, 0]90[ExitSelfRef]=0.
  MemNBrdcstSetNb (NBPtr, BFExitSelfRef, 1);
  MemNPollBitFieldNb (NBPtr, BFExitSelfRef, 0, PCI_ACCESS_TIMEOUT, TRUE);

  if (NBPtr->MCTPtr->Status[SbRegistered]) {
    for (Dct = 0; Dct < NBPtr->DctCount; Dct++) {
      MemNSwitchDCTNb (NBPtr, Dct);
      if (NBPtr->DCTPtr->Timings.DctMemSize != 0) {
        TechPtr->FreqChgCtrlWrd (TechPtr);
      }
    }
  }

  //wait for 500 MCLKs after ExitSelfRef, 500*2.5ns=1250ns
  MemNWaitXMemClksNb (NBPtr, 500);

  if (NBPtr->IsSupported[CheckDisDllShutdownSR] && !(NBPtr->IsSupported[SetDllShutDown])) {
    // #107421
    MemNBrdcstSetNb (NBPtr, BFDisDllShutdownSR, 0);
  }

  for (Dct = 0; Dct < NBPtr->DctCount; Dct++) {
    IDS_HDT_CONSOLE (MEM_STATUS, "\tDct %d\n", Dct);
    MemNSwitchDCTNb (NBPtr, Dct);
    if (NBPtr->DCTPtr->Timings.DctMemSize != 0) {

      //9.Configure the DCT to send initialization MR commands:
      //  BIOS must reprogram Twr, Tcwl, and Tcl based on the new MEMCLK frequency.
      //  Program F2x[1, 0]7C similar to step #2 in Pass 1 above for the new Dimm values.
      TechPtr->AutoCycTiming (TechPtr);
      if (!MemNPlatformSpecNb (NBPtr)) {
        IDS_ERROR_TRAP;
      }

      for (ChipSel = 0; ChipSel < MAX_CS_PER_CHANNEL; ChipSel++) {
        if (NBPtr->IsSupported[CheckGetMCTSysAddr]) {
          if (MemNGetMCTSysAddrNb (NBPtr, ChipSel, &Dummy)) {
            // if chip select present
            TechPtr->SendAllMRCmds (TechPtr, ChipSel);
            // NOTE: wait 512 clocks for DLL-relock
            MemUWait10ns (50000, NBPtr->MemPtr);  // wait 500us
          }
        }
        if (NBPtr->IsSupported[CheckSendAllMRCmds]) {
          if (MemNGetMCTSysAddrNb (NBPtr, ChipSel, &Dummy)) {
            // if chip select present
            TechPtr->SendAllMRCmds (TechPtr, ChipSel);
          }
        }
      }
      if ((NBPtr->DCTPtr->Timings.Speed == DDR1600_FREQUENCY) && (NBPtr->IsSupported[CheckDllSpeedUp])) {
        MemNSetBitFieldNb (NBPtr, BFPhy0x0D080F11, (MemNGetBitFieldNb (NBPtr, BFPhy0x0D080F11) | 0x2000));
        MemNSetBitFieldNb (NBPtr, BFPhy0x0D080F10, (MemNGetBitFieldNb (NBPtr, BFPhy0x0D080F10) | 0x2000));
        MemNSetBitFieldNb (NBPtr, BFPhy0x0D088F30, (MemNGetBitFieldNb (NBPtr, BFPhy0x0D088F30) | 0x2000));
        MemNSetBitFieldNb (NBPtr, BFPhy0x0D08C030, (MemNGetBitFieldNb (NBPtr, BFPhy0x0D08C030) | 0x2000));
        if (Dct == 0) {
          MemNSetBitFieldNb (NBPtr, BFPhy0x0D082F30, (MemNGetBitFieldNb (NBPtr, BFPhy0x0D082F30) | 0x2000));
        }
        // NOTE: wait 512 clocks for DLL-relock
        MemUWait10ns (50000, NBPtr->MemPtr);  // wait 500us
      }
    }
  }
  // Re-enable phy compensation since it had been disabled during InitPhyComp
  MemNSwitchDCTNb (NBPtr, 0);
  MemNSetBitFieldNb (NBPtr, BFDisAutoComp, 0);
}


/* -----------------------------------------------------------------------------*/
/**
 *
 *      This function ramp up frequency the next level if it have not reached
 *      its TargetSpeed yet.
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 *     @return          TRUE -  No fatal error occurs.
 *     @return          FALSE - Fatal error occurs.
 */

BOOLEAN
MemNRampUpFrequencyNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  CONST UINT16 FreqList[] = {
    DDR400_FREQUENCY,
    DDR533_FREQUENCY,
    DDR667_FREQUENCY,
    DDR800_FREQUENCY,
    DDR1066_FREQUENCY,
    DDR1333_FREQUENCY,
    DDR1600_FREQUENCY,
    DDR1866_FREQUENCY
  };
  UINT8 Dct;
  UINT8 i;
  UINT16 NewSpeed;
  DIE_STRUCT *MCTPtr;

  MCTPtr = NBPtr->MCTPtr;

  // Do not change frequency when it is already at TargetSpeed
  if (NBPtr->DCTPtr->Timings.Speed == NBPtr->DCTPtr->Timings.TargetSpeed) {
    return TRUE;
  }

  // Find the next supported frequency level
  NewSpeed = NBPtr->DCTPtr->Timings.TargetSpeed;
  for (i = 0; i < (GET_SIZE_OF (FreqList) - 1); i++) {
    if (NBPtr->DCTPtr->Timings.Speed == FreqList[i]) {
      NewSpeed = FreqList[i + 1];
      break;
    }
  }
  ASSERT (i < (GET_SIZE_OF (FreqList) - 1));
  ASSERT (NewSpeed <= NBPtr->DCTPtr->Timings.TargetSpeed);

  // BIOS must program both DCTs to the same frequency.
  IDS_HDT_CONSOLE (MEM_FLOW, "\nMemClkFreq changed: %d MHz", NBPtr->DCTPtr->Timings.Speed);
  for (Dct = 0; Dct < MCTPtr->DctCount; Dct++) {
    NBPtr->SwitchDCT (NBPtr, Dct);
    NBPtr->DCTPtr->Timings.Speed = NewSpeed;
  }
  IDS_HDT_CONSOLE (MEM_FLOW, " -> %d MHz", NewSpeed);

  NBPtr->ChangeFrequency (NBPtr);

  return (BOOLEAN) (MCTPtr->ErrCode < AGESA_FATAL);
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *      This function uses calculated values from DCT.Timings structure to
 *      program its registers.
 *
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */

VOID
MemNProgramCycTimingsNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  CONST CTENTRY TmgAdjTab[] = {
    // BitField, Min, Max, Bias, Ratio_x2
    {BFTcl, 4, 12, 4, 2},
    {BFTrcd, 5, 12, 5, 2},
    {BFTrp, 5, 12, 5, 2},
    {BFTrtp, 4, 7, 4, 2},
    {BFTras, 15, 30, 15, 2},
    {BFTrc, 11, 42, 11, 2},
    {BFTwrDDR3, 5, 12, 4, 2},
    {BFTrrd, 4, 7, 4, 2},
    {BFTwtr, 4, 7, 4, 2},
    {BFFourActWindow, 16, 32, 14, 1}
  };

  DCT_STRUCT *DCTPtr;
  UINT8  *MiniMaxTmg;
  UINT8  *MiniMaxTrfc;
  UINT8  Value8;
  UINT8  j;
  BIT_FIELD_NAME BitField;

  DCTPtr = NBPtr->DCTPtr;

  //======================================================================
  // Program turnaround timings to their max during DRAM init and training
  //======================================================================
  //
  MemNSetBitFieldNb (NBPtr, BFNonSPD, 0x28FF);

  MemNSetBitFieldNb (NBPtr, BFNonSPDHi, 0x2A);

  //======================================================================
  // Program DRAM Timing values
  //======================================================================
  //
  MiniMaxTmg = &DCTPtr->Timings.CasL;
  for (j = 0; j < GET_SIZE_OF (TmgAdjTab); j++) {
    BitField = TmgAdjTab[j].BitField;

    if (MiniMaxTmg[j] < TmgAdjTab[j].Min) {
      MiniMaxTmg[j] = TmgAdjTab[j].Min;
    } else if (MiniMaxTmg[j] > TmgAdjTab[j].Max) {
      MiniMaxTmg[j] = TmgAdjTab[j].Max;
    }

    Value8 = (UINT8) MiniMaxTmg[j];

    if (BitField == BFTwrDDR3) {
      Value8 = (Value8 == 10) ? 9 : (Value8 >= 11) ? 10 : Value8;
    } else if (BitField == BFTrtp) {
      Value8 = (DCTPtr->Timings.Speed <= DDR1066_FREQUENCY) ? 4 : (DCTPtr->Timings.Speed == DDR1333_FREQUENCY) ? 5 : 6;
    }

    Value8 = Value8 - TmgAdjTab[j].Bias;
    Value8 = (Value8 * TmgAdjTab[j].Ratio_x2) >> 1;

    ASSERT ((BitField == BFTcl ) ? (Value8 <= 8) :
            (BitField == BFTrcd) ? (Value8 <= 7) :
            (BitField == BFTrp ) ? (Value8 <= 7) :
            (BitField == BFTrtp) ? (Value8 <= 3) :
            (BitField == BFTras) ? (Value8 <= 15) :
            (BitField == BFTrc ) ? (Value8 <= 31) :
            (BitField == BFTrrd) ? (Value8 <= 3) :
            (BitField == BFTwtr) ? (Value8 <= 3) :
            (BitField == BFTwrDDR3) ? ((Value8 >= 1) && (Value8 <= 6)) :
            (BitField == BFFourActWindow) ? ((Value8 >= 1) && (Value8 <= 9)) : FALSE);
    MemNSetBitFieldNb (NBPtr, BitField, Value8);
  }

  MiniMaxTrfc = &DCTPtr->Timings.Trfc0;
  for (j = 0; j < 4; j++) {
    ASSERT (MiniMaxTrfc[j] <= 4);
    MemNSetBitFieldNb (NBPtr, BFTrfc0 + j, MiniMaxTrfc[j]);
  }

  MemNSetBitFieldNb (NBPtr, BFTcwl, ((DCTPtr->Timings.Speed >= DDR800_FREQUENCY) ?
                                     (NBPtr->GetMemClkFreqId (NBPtr, DCTPtr->Timings.Speed) - 3) : 0));

  MemNSetBitFieldNb (NBPtr, BFTref, 2);      // 7.8 us

  //======================================================================
  // DRAM MRS Register, set ODT
  //======================================================================
  //
  // DrvImpCtrl: drive impedance control.01b(34 ohm driver; Ron34 = Rzq/7)
  MemNSetBitFieldNb (NBPtr, BFDrvImpCtrl, 1);

  // burst length control
  if (NBPtr->MCTPtr->Status[Sb128bitmode]) {
    MemNSetBitFieldNb (NBPtr, BFBurstCtrl, 2);
  }

  // ASR=1, auto self refresh; SRT=0
  MemNSetBitFieldNb (NBPtr, BFASR, 1);
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *      This function uses calculated values from DCT.Timings structure to
 *      program its registers.
 *
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */

VOID
MemNProgramCycTimingsClientNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  CONST CTENTRY TmgAdjTab[] = {
    // BitField, Min, Max, Bias, Ratio_x2
    {BFTcl, 5, 14, 4, 2},
    {BFTrcd, 5, 14, 5, 2},
    {BFTrp, 5, 14, 5, 2},
    {BFTrtp, 4, 8, 4, 2},
    {BFTras, 15, 36, 15, 2},
    {BFTrc, 20, 49, 11, 2},
    {BFTwrDDR3, 5, 16, 4, 2},
    {BFTrrd, 4, 8, 4, 2},
    {BFTwtr, 4, 8, 4, 2},
    {BFFourActWindow, 16, 40, 14, 1}
  };

  DCT_STRUCT *DCTPtr;
  UINT8  *MiniMaxTmg;
  UINT8  *MiniMaxTrfc;
  UINT8  Value8;
  UINT8  j;
  UINT8  Tcwl;
  UINT8  Trcd;
  INT32  TCK_ps;
  BIT_FIELD_NAME BitField;

  DCTPtr = NBPtr->DCTPtr;

  //======================================================================
  // Program DRAM Timing values
  //======================================================================
  //
  MiniMaxTmg = &DCTPtr->Timings.CasL;
  for (j = 0; j < GET_SIZE_OF (TmgAdjTab); j++) {
    BitField = TmgAdjTab[j].BitField;

    if (MiniMaxTmg[j] < TmgAdjTab[j].Min) {
      MiniMaxTmg[j] = TmgAdjTab[j].Min;
    } else if (MiniMaxTmg[j] > TmgAdjTab[j].Max) {
      MiniMaxTmg[j] = TmgAdjTab[j].Max;
    }

    Value8 = (UINT8) MiniMaxTmg[j];

    if (BitField == BFTwrDDR3) {
      if (NBPtr->IsSupported[AdjustTwr]) {
        Value8 ++;
      }
      Value8 = (Value8 >= 10) ? (((Value8 + 1) / 2) + 4) : Value8;
    }

    if ((BitField == BFTrc) && NBPtr->IsSupported[AdjustTrc]) {
      Value8 -= 5;
    }

    Value8 = Value8 - TmgAdjTab[j].Bias;
    Value8 = (Value8 * TmgAdjTab[j].Ratio_x2) >> 1;

    ASSERT ((BitField == BFTcl ) ? ((Value8 >= 1) && (Value8 <= 10)) :
            (BitField == BFTrcd) ? (Value8 <= 9) :
            (BitField == BFTrp ) ? (Value8 <= 9) :
            (BitField == BFTrtp) ? (Value8 <= 4) :
            (BitField == BFTras) ? (Value8 <= 21) :
            (BitField == BFTrc ) ? (NBPtr->IsSupported[AdjustTrc] ? ((Value8 >= 4) && (Value8 <= 38)) : ((Value8 >= 9) && (Value8 <= 38))) :
            (BitField == BFTrrd) ? (Value8 <= 4) :
            (BitField == BFTwtr) ? (Value8 <= 4) :
            (BitField == BFTwrDDR3) ? (Value8 <= 7) :
            (BitField == BFFourActWindow) ? ((Value8 >= 1) && (Value8 <= 13)) : FALSE);
    MemNSetBitFieldNb (NBPtr, BitField, Value8);
  }

  MiniMaxTrfc = &DCTPtr->Timings.Trfc0;
  for (j = 0; j < 4; j++) {
    ASSERT (MiniMaxTrfc[j] <= 5);
    MemNSetBitFieldNb (NBPtr, BFTrfc0 + j, MiniMaxTrfc[j]);
  }

  Tcwl = (UINT8) (DCTPtr->Timings.Speed / 133) + 2;
  MemNSetBitFieldNb (NBPtr, BFTcwl, ((Tcwl > 5) ? (Tcwl - 5) : 0));

  MemNSetBitFieldNb (NBPtr, BFTref, 2);      // Tref = 7.8 us

  // Skid buffer can only be programmed once before Dram init
  if (NBPtr->DCTPtr->Timings.Speed == DDR800_FREQUENCY) {
    TCK_ps = 1000500 / DCTPtr->Timings.TargetSpeed;
    Trcd = (UINT8) ((((1000 / 40) * (UINT32)DCTPtr->Timings.DIMMTrcd) + TCK_ps - 1) / TCK_ps);
    MemNSetBitFieldNb (NBPtr, BFDbeSkidBufDis, (Trcd > 10) ? 0 : 1);
  }

  MemNSetBitFieldNb (NBPtr, BFRdOdtTrnOnDly, (DCTPtr->Timings.CasL > Tcwl) ? (DCTPtr->Timings.CasL - Tcwl) : 0);

}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function gets platform specific settings for the current channel
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 *     @return          TRUE - All platform types defined have initialized successfully
 *     @return          FALSE - At least one of the platform types gave not been initialized successfully
 */

BOOLEAN
MemNGetPlatformCfgNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  UINT8 p;

  for (p = 0; p < MAX_PLATFORM_TYPES; p++) {
    ASSERT (NBPtr->MemPtr->GetPlatformCfg[p] != NULL);
    if (NBPtr->MemPtr->GetPlatformCfg[p] (NBPtr->MemPtr, NBPtr->MCTPtr->SocketId, NBPtr->ChannelPtr) == AGESA_SUCCESS) {
      break;
    }
  }
  return (p < MAX_PLATFORM_TYPES);
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function retrieves the Max latency parameters
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 *     @param[in]  *MinDlyPtr - Pointer to variable to store the Minimum Delay value
 *     @param[in]  *MaxDlyPtr - Pointer to variable to store the Maximum Delay value
 *     @param[in]  *DlyBiasPtr - Pointer to variable to store Delay Bias value
 *     @param[in]  MaxRcvEnDly - Maximum receiver enable delay value
 */

VOID
MemNGetMaxLatParamsNb (
  IN OUT   MEM_NB_BLOCK *NBPtr,
  IN       UINT16 MaxRcvEnDly,
  IN OUT   UINT16 *MinDlyPtr,
  IN OUT   UINT16 *MaxDlyPtr,
  IN OUT   UINT16 *DlyBiasPtr
  )
{
  *MinDlyPtr = (MemNTotalSyncComponentsNb (NBPtr) + (MaxRcvEnDly >> 5)) * 2;
  MemNQuarterMemClk2NClkNb (NBPtr, MinDlyPtr);

  *MaxDlyPtr = 0x3FF;

  *DlyBiasPtr = 4;
  MemNQuarterMemClk2NClkNb (NBPtr, DlyBiasPtr);   // 1 MEMCLK Margin

  *DlyBiasPtr += 1;  // add 1 NCLK
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function  sets the maximum round-trip latency in the system from the processor to the DRAM
 *   devices and back.
 *
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *     @param[in]     MaxRcvEnDly - Maximum receiver enable delay value
 *
 */

VOID
MemNSetMaxLatencyNb (
  IN OUT   MEM_NB_BLOCK *NBPtr,
  IN       UINT16 MaxRcvEnDly
  )
{
  UINT16 SubTotal;

  AGESA_TESTPOINT (TpProcMemRcvrCalcLatency, &(NBPtr->MemPtr->StdHeader));

  SubTotal = 0xC8;    // init value for MaxRdLat used in training


  if (MaxRcvEnDly != 0xFFFF) {
    // Get all sync components BKDG steps 1-5
    SubTotal = MemNTotalSyncComponentsNb (NBPtr);

    // Add the maximum (worst case) delay value of DqsRcvEnGrossDelay
    // that exists across all DIMMs and byte lanes.
    //
    SubTotal += MaxRcvEnDly >> 5;


    // Add 14.5 to the sub-total. 14.5 represents part of the processor
    // specific constant delay value in the DRAM clock domain.
    //
    SubTotal <<= 1;             // scale 1/2 MemClk to 1/4 MemClk
    SubTotal += 29;             // add 14.5 1/2 MemClk

    // Convert the sub-total (in 1/2 MEMCLKs) to northbridge clocks (NCLKs)
    // as follows (assuming DDR400 and assuming that no P-state or link speed
    // changes have occurred).
    //
    MemNQuarterMemClk2NClkNb (NBPtr, &SubTotal);

    // Add 2 NCLKs to the sub-total. 2 represents part of the processor
    // specific constant value in the northbridge clock domain.
    //
    SubTotal += 2;
  }

  NBPtr->DCTPtr->Timings.MaxRdLat = SubTotal;
  // Program the F2x[1, 0]78[MaxRdLatency] register with the total delay value
  IDS_HDT_CONSOLE (MEM_FLOW, "\t\tMaxRdLat: %03x\n", SubTotal);
  MemNSetBitFieldNb (NBPtr, BFMaxLatency, SubTotal);
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function sends the ZQCL command
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */

VOID
MemNSendZQCmdNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  // 1.Program MrsAddress[10]=1
  MemNSetBitFieldNb (NBPtr, BFMrsAddress, (UINT32)1 << 10);

  // 2.Set SendZQCmd=1
  MemNSetBitFieldNb (NBPtr, BFSendZQCmd, 1);

  // 3.Wait for SendZQCmd=0
  MemNPollBitFieldNb (NBPtr, BFSendZQCmd, 0, PCI_ACCESS_TIMEOUT, FALSE);

  // 4.Wait 512 MEMCLKs
  MemNWaitXMemClksNb (NBPtr, 512);
}


/*----------------------------------------------------------------------------
 *                              LOCAL FUNCTIONS
 *
 *----------------------------------------------------------------------------
 */

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function is used to create the DRAM map
 *
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 */

VOID
STATIC
MemNAfterStitchMemNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  if (NBPtr->MCTPtr->GangedMode) {
    NBPtr->MCTPtr->NodeMemSize = NBPtr->DCTPtr->Timings.DctMemSize;
    NBPtr->MCTPtr->NodeSysLimit = NBPtr->MCTPtr->NodeMemSize - 1;
    NBPtr->MCTPtr->DctData[1].Timings.CsPresent = NBPtr->DCTPtr->Timings.CsPresent;
    NBPtr->MCTPtr->DctData[1].Timings.CsEnabled = NBPtr->DCTPtr->Timings.CsEnabled;
    NBPtr->MCTPtr->DctData[1].Timings.DctMemSize = NBPtr->DCTPtr->Timings.DctMemSize;
  } else {
    // In unganged mode, add DCT0 and DCT1 to NodeMemSize
    NBPtr->MCTPtr->NodeMemSize += NBPtr->DCTPtr->Timings.DctMemSize;
    NBPtr->MCTPtr->NodeSysLimit = NBPtr->MCTPtr->NodeMemSize - 1;
  }
}


/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *       This function Return the binary value of tfaw associated with
 *       the index k
 *
 *     @param[in]     k value
 *
 *     @return       F[k], in Binary MHz.
 */

UINT8
MemNGet1KTFawTkNb (
  IN       UINT8 k
  )
{
  CONST UINT8 Tab1KTfawTK[] = {0, 8, 10, 13, 14, 19};
  ASSERT (k <= 5);
  return Tab1KTfawTK[k];
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *       This function Return the binary value of the 2KTFaw associated with
 *       the index k
 *
 *     @param[in]     k value
 *
 *     @return       2KTFaw converted based on k.
 */

UINT8
MemNGet2KTFawTkNb (
  IN       UINT8 k
  )
{
  CONST UINT8 Tab2KTfawTK[] = {0, 10, 14, 17, 18, 24};
  ASSERT (k <= 5);
  return Tab2KTfawTK[k];
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function converts the sub-total (in 1/4 MEMCLKs) to northbridge clocks (NCLKs)
 *      (assuming DDR400 and assuming that no P-state or link speed
 *      changes have occurred).
 *
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *     @param[in,out]   *SubTotalPtr - pointer to Sub-Total
 */

VOID
STATIC
MemNQuarterMemClk2NClkNb (
  IN OUT   MEM_NB_BLOCK *NBPtr,
  IN OUT   UINT16 *SubTotalPtr
  )
{
  UINT32 NBFreq;
  UINT32 MemFreq;

  // Multiply SubTotal by NB COF
  NBFreq = (MemNGetBitFieldNb (NBPtr, BFNbFid) + 4) * 200;
  // Divide SubTotal by 4 times current MemClk frequency
  MemFreq = NBPtr->DCTPtr->Timings.Speed * 4;
  *SubTotalPtr = (UINT16) (((NBFreq * (*SubTotalPtr)) + MemFreq - 1) / MemFreq);  // round up
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function gets the total of sync components for Max Read Latency calculation
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 *     @return      Total in 1/2 MEMCLKs
 */

UINT16
MemNTotalSyncComponentsNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  UINT16 SubTotal;

  // Multiply the CAS Latency by two to get a number of 1/2 MEMCLKs UINTs.
  SubTotal = (UINT16) MemNGetBitFieldNb (NBPtr, BFTcl) + 1;
  if ((MemNGetBitFieldNb (NBPtr, BFDdr3Mode)) != 0) {
    SubTotal += 3;
  }
  SubTotal *= 2;

  // If registered DIMMs are being used then add 1 MEMCLK to the sub-total.
  if ((MemNGetBitFieldNb (NBPtr, BFUnBuffDimm)) == 0) {
    SubTotal += 2;
  }

  // If (F2x[1, 0]9C_x04[AddrCmdSetup] and F2x[1, 0]9C_x04[CsOdtSetup] and F2x[1, 0]9C_x04[Cke-Setup] = 0) then K = K + 1
  // If (F2x[1, 0]9C_x04[AddrCmdSetup] or F2x[1, 0]9C_x04[CsOdtSetup] or F2x[1, 0]9C_x04[CkeSetup] = 1) then K = K + 2
  if ((MemNGetBitFieldNb (NBPtr, BFAddrTmgControl) & 0x0202020) == 0) {
    SubTotal += 1;
  } else {
    SubTotal += 2;
  }

  // If the F2x[1, 0]78[RdPtrInit] field is 4, 5, 6 or 7 MEMCLKs,
  // then add 4, 3, 2, or 1 MEMCLKs, respectively to the sub-total.
  //
  SubTotal = SubTotal + (8 - (UINT16) MemNGetBitFieldNb (NBPtr, BFRdPtrInit));

  return SubTotal;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function swaps bits for OnDimmMirror support
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */

VOID
MemNSwapBitsNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  UINT8 ChipSel;
  UINT32 MRSReg;

  ChipSel = (UINT8) MemNGetBitFieldNb (NBPtr, BFMrsChipSel);
  if ((ChipSel & 1) != 0) {
    MRSReg = MemNGetBitFieldNb (NBPtr, BFDramInitRegReg);
    if ((NBPtr->DCTPtr->Timings.DimmMirrorPresent & (1 << (ChipSel >> 1))) != 0) {
      MRSReg = (MRSReg & 0xFFFCFE07) | ((MRSReg&0x100A8) << 1) | ((MRSReg&0x20150) >> 1);
      MemNSetBitFieldNb (NBPtr, BFDramInitRegReg, MRSReg);
    }
  }
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function swaps bits for OnDimmMirror support for Unb
 *
 *     Dimm Mirroring Requires that, during MRS command cycles, the following
 *     bits are swapped by software
 *
 *             A3 -> A4         A7 -> A8
 *             A4 -> A3         BA0 -> BA1
 *             A5 -> A6         BA1 -> BA0
 *             A6 -> A5
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */

VOID
MemNSwapBitsUnb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  UINT8 ChipSel;
  UINT32 MRSBank;
  UINT32 MRSAddr;

  ChipSel = (UINT8) MemNGetBitFieldNb (NBPtr, BFMrsChipSel);
  if ((ChipSel & 1) != 0) {
    if ((NBPtr->DCTPtr->Timings.DimmMirrorPresent & (1 << (ChipSel >> 1))) != 0) {
      MRSBank = MemNGetBitFieldNb (NBPtr, BFMrsBank);
      MRSAddr = MemNGetBitFieldNb (NBPtr, BFMrsAddress);

      IDS_HDT_CONSOLE (MEM_FLOW, "\t\t\tCS%d MR%d %05x swapped to ->",
                                                                    (ChipSel & 0x7),
                                                                    (MRSBank & 0x7),
                                                                    (MRSAddr & 0x3FFFF));
      //
      // Swap Mrs Bank bits 0 with 1
      MRSBank = (MRSBank & 0x0100) | ((MRSBank & 0x01) << 1) | ((MRSBank & 0x02) >> 1);
      //
      // Swap Mrs Address bits 3 with 4, 5 with 6, and 7 with 8
      MRSAddr = (MRSAddr & 0x03FE07) | ((MRSAddr&0x000A8) << 1) | ((MRSAddr&0x00150) >> 1);
      MemNSetBitFieldNb (NBPtr, BFMrsBank, MRSBank);
      MemNSetBitFieldNb (NBPtr, BFMrsAddress, MRSAddr);
    }
  }
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *   Programs Address/command timings, driver strengths, and tri-state fields.
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */
VOID
MemNProgramPlatformSpecNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  CONST UINT8           PinType[3]  = {PSO_CKE_TRI, PSO_ODT_TRI,   PSO_CS_TRI};
  CONST UINT8           TabSize[3]  = {          2,           4,            8};
  CONST BIT_FIELD_NAME  BitField[3] = {   BFCKETri,    BFODTTri, BFChipSelTri};
  UINT8  *TabPtr;
  UINT8  i;
  UINT8  k;
  UINT8  Value;
  //===================================================================
  // Tristate unused CKE, ODT and chip select to save power
  //===================================================================
  //
  TabPtr = NULL;
  for (k = 0; k < sizeof (PinType); k++) {
    if (NBPtr->IsSupported[CheckFindPSOverideWithSocket]) {
      TabPtr = FindPSOverrideEntry (NBPtr->RefPtr->PlatformMemoryConfiguration, PinType[k], NBPtr->MCTPtr->SocketId, MemNGetSocketRelativeChannelNb (NBPtr, NBPtr->Dct, 0));
    }
    if (NBPtr->IsSupported[CheckFindPSDct]) {
      TabPtr = FindPSOverrideEntry (NBPtr->RefPtr->PlatformMemoryConfiguration, PinType[k], NBPtr->MCTPtr->SocketId, NBPtr->Dct);
    }
    if (TabPtr == NULL) {
      switch (k) {
      case 0:
        TabPtr = NBPtr->ChannelPtr->CKETriMap;
        break;
      case 1:
        TabPtr = NBPtr->ChannelPtr->ODTTriMap;
        break;
      case 2:
        TabPtr = NBPtr->ChannelPtr->ChipSelTriMap;
        break;
      default:
        IDS_ERROR_TRAP;
      }
    }
    ASSERT (TabPtr != NULL);

    Value = 0;
    for (i = 0; i < TabSize[k]; i++) {
      if ((NBPtr->DCTPtr->Timings.CsPresent & TabPtr[i]) == 0) {
        Value |= (UINT8) (1 << i);
      }
    }

    if (k == PSO_CS_TRI) {
      NBPtr->FamilySpecificHook[BeforeSetCsTri] (NBPtr, &Value);
    }

    ASSERT (k < GET_SIZE_OF (BitField));
    MemNSetBitFieldNb (NBPtr, BitField[k], Value);
  }
  NBPtr->MemNBeforePlatformSpecNb (NBPtr);

  //===================================================================
  // Program Address/Command timings and driver strength
  //===================================================================
  //
  MemProcessConditionalOverrides (NBPtr->RefPtr->PlatformMemoryConfiguration, NBPtr, PSO_ACTION_ADDRTMG, ALL_DIMMS);
  MemProcessConditionalOverrides (NBPtr->RefPtr->PlatformMemoryConfiguration, NBPtr, PSO_ACTION_ODCCONTROL, ALL_DIMMS);

  MemNSetBitFieldNb (NBPtr, BFSlowAccessMode, (NBPtr->ChannelPtr->SlowMode) ? 1 : 0);
  MemNSetBitFieldNb (NBPtr, BFODCControl, NBPtr->ChannelPtr->DctOdcCtl);
  MemNSetBitFieldNb (NBPtr, BFAddrTmgControl, NBPtr->ChannelPtr->DctAddrTmg);
  NBPtr->FamilySpecificHook[SetDqsODT] (NBPtr, NBPtr);

  if (NBPtr->IsSupported[CheckODTControls]) {
    MemNSetBitFieldNb (NBPtr, BFPhyRODTCSLow, NBPtr->ChannelPtr->PhyRODTCSLow);
    MemNSetBitFieldNb (NBPtr, BFPhyRODTCSHigh, NBPtr->ChannelPtr->PhyRODTCSHigh);
    MemNSetBitFieldNb (NBPtr, BFPhyWODTCSLow, NBPtr->ChannelPtr->PhyWODTCSLow);
    MemNSetBitFieldNb (NBPtr, BFPhyWODTCSHigh, NBPtr->ChannelPtr->PhyWODTCSHigh);
  }
}
/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function gets the Trdrd value
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 *     @return      Trdrd value
 */

UINT8
MemNGetTrdrdNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  DCT_STRUCT *DCTPtr;
  INT8 Cgdd;

  DCTPtr = NBPtr->DCTPtr;

  // BIOS calculates Trdrd (in MEMCLKs) = CGDD / 2 + 3 clocks and programs F2x[1, 0]8C[Trdrd] with the
  // converted field value. BIOS rounds fractional values down.
  // The Critical Gross Delay Difference (CGDD) for Trdrd on any given byte lane is the largest F2x[1,
  // 0]9C_x[3:0][2B:10][DqsRcvEnGrossDelay] delay of any DIMM minus the F2x[1,
  // 0]9C_x[3:0][2B:10][DqsRcvEnGrossDelay] delay of any other DIMM.

  Cgdd = MemNGetOptimalCGDDNb (NBPtr, AccessRcvEnDly, AccessRcvEnDly);
  DCTPtr->Timings.Trdrd = (Cgdd / 2) + 3;

  // Transfer clk to reg definition, 2T is 00b, etc.
  DCTPtr->Timings.Trdrd -= 2;
  if (DCTPtr->Timings.Trdrd > 8) {
    DCTPtr->Timings.Trdrd = 8;
  }

  return DCTPtr->Timings.Trdrd;
}


/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function gets the Twrwr value
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 *     @return      Twrwr value
 */

UINT8
MemNGetTwrwrNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  DCT_STRUCT *DCTPtr;
  INT8 Cgdd;

  DCTPtr = NBPtr->DCTPtr;

  // Twrwr (in MEMCLKs) = CGDD / 2 + 3 clocks and programs F2x[1, 0]8C[Twrwr] with the
  // converted field value. BIOS rounds fractional values down.
  // On any given byte lane, the largest F2x[1, 0]9C_x[3:0][A, 7, 6, 0][2:1]:F2x[1, 0]9C_x[3:0][A, 7, 6,
  // 0]3[WrDatGrossDlyByte] delay of any DIMM minus the F2x[1, 0]9C_x[3:0][A, 7, 6, 0][2:1]:F2x[1,
  // 0]9C_x[3:0][A, 7, 6, 0]3[WrDatGrossDlyByte] delay of any other DIMM is equal to the Critical Gross
  // Delay Difference (CGDD) for Twrwr.

  Cgdd = MemNGetOptimalCGDDNb (NBPtr, AccessWrDatDly, AccessWrDatDly);
  DCTPtr->Timings.Twrwr = (Cgdd / 2) + 3;
  NBPtr->TechPtr->AdjustTwrwr (NBPtr->TechPtr);

  return DCTPtr->Timings.Twrwr;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function gets the Twrrd value. BIOS calculates Twrrd (in MEMCLKs) = CGDD / 2 - LD + 3 clocks and programs
 * F2x[1, 0]8C[Twrrd] with the converted field value. BIOS rounds fractional
 * values down.
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 *     @return  Value to be programmed to Twrrd field
 *              pDCT->Timings.Twrrd updated
 */

UINT8
MemNGetTwrrdNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  INT8 Cgdd;
  INT8 Ld;
  INT8 Twrrd;
  DCT_STRUCT *DCTPtr;

  DCTPtr = NBPtr->DCTPtr;

  //
  // For DDR3, BIOS calculates the latency difference (Ld) as equal to read CAS latency minus write CAS
  // latency, in MEMCLKs (see F2x[1, 0]88[Tcl] and F2x[1, 0]84[Tcwl]) which can be a negative or positive
  // value.
  // For DDR2, LD is always one clock (For DDR2, Tcwl is always Tcl minus 1).
  //
  Ld = NBPtr->TechPtr->GetLD (NBPtr->TechPtr);

  // On any given byte lane, the largest WrDatGrossDlyByte delay of any DIMM
  // minus the DqsRcvEnGrossDelay delay of any other DIMM is
  // equal to the Critical Gross Delay Difference (CGDD) for Twrrd.
  Cgdd = MemNGetOptimalCGDDNb (NBPtr, AccessWrDatDly, AccessRcvEnDly);
  Twrrd = (Cgdd / 2) - Ld + 3;
  DCTPtr->Timings.Twrrd = (UINT8) ((Twrrd >= 0) ? Twrrd : 0);
  NBPtr->TechPtr->AdjustTwrrd (NBPtr->TechPtr);

  return DCTPtr->Timings.Twrrd;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function gets the TrwtTO value
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 *     @return  pDCT->Timings.TrwtTO updated
 */

UINT8
MemNGetTrwtTONb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  INT8 Cgdd;
  INT8 Ld;
  INT8 TrwtTO;
  DCT_STRUCT *DCTPtr;

  DCTPtr = NBPtr->DCTPtr;
  //
  // For DDR3, BIOS calculates the latency difference (Ld) as equal to read CAS latency minus write CAS
  // latency, in MEMCLKs (see F2x[1, 0]88[Tcl] and F2x[1, 0]84[Tcwl]) which can be a negative or positive
  // value.
  // For DDR2, LD is always one clock (For DDR2, Tcwl is always Tcl minus 1).
  //
  Ld = NBPtr->TechPtr->GetLD (NBPtr->TechPtr);

  // On any byte lane, the largest DqsRcvEnGrossDelay delay of any DIMM minus
  // the WrDatGrossDlyByte delay of any other DIMM is equal to the Critical Gross
  // Delay Difference (CGDD) for TrwtTO.
  Cgdd = MemNGetOptimalCGDDNb (NBPtr, AccessRcvEnDly, AccessWrDatDly);
  TrwtTO = (Cgdd / 2) + Ld + 3;
  TrwtTO -= 2;
  DCTPtr->Timings.TrwtTO = (UINT8) ((TrwtTO > 1) ? TrwtTO : 1);

  return DCTPtr->Timings.TrwtTO;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function gets the TrwtWB value
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 *     @return      TrwtWB value
 */
UINT8
MemNGetTrwtWBNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  DCT_STRUCT *DCTPtr;

  DCTPtr = NBPtr->DCTPtr;

  // TrwtWB ensures read-to-write data-bus turnaround.
  // This value should be one more than the programmed TrwtTO.
  return DCTPtr->Timings.TrwtWB = DCTPtr->Timings.TrwtTO;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function converts MemClk frequency in MHz to MemClkFreq value
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *     @param[in]       Speed   - MemClk frequency in MHz
 *
 *     @return      MemClkFreq value
 */
UINT8
MemNGetMemClkFreqIdNb (
  IN OUT   MEM_NB_BLOCK *NBPtr,
  IN       UINT16 Speed
  )
{
  return (UINT8) ((Speed < DDR800_FREQUENCY) ? ((Speed / 66) - 3) : (Speed / 133));
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function enables swapping interleaved region feature.
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *     @param[in]   Base   - Swap interleaved region base [47:27]
 *     @param[in]   Limit   - Swap interleaved region limit [47:27]
 *
 */
VOID
MemNEnableSwapIntlvRgnNb (
  IN OUT   MEM_NB_BLOCK *NBPtr,
  IN       UINT32 Base,
  IN       UINT32 Limit
  )
{
  UINT32 Size;
  UINT32 SizeOfAlign;

  // Swapped interleaving region must be below 16G
  if (Limit < (1 << (34 - 27))) {
    // Adjust Base and Size to meet :
    // 1. The size of the swapped region must be less than or equal to the alignment of F2x10C[IntLvRegionBase].
    // 2. Entire UMA region is swapped with interleaving region.
    Size = Limit - Base;
    SizeOfAlign = (UINT32) 1 << LibAmdBitScanForward (Base);
    while (SizeOfAlign <= Size) {
      // In case of SizeOfAlign <= Size, UmaBase -= 128MB, SizeOfIntlvrgn += 128MB.
      Base -= 1;
      Size += 1;
      SizeOfAlign = (UINT32) 1 << LibAmdBitScanForward (Base);
    }
    MemNSetBitFieldNb (NBPtr, BFIntLvRgnBaseAddr, Base);
    MemNSetBitFieldNb (NBPtr, BFIntLvRgnLmtAddr, (Limit - 1));
    MemNSetBitFieldNb (NBPtr, BFIntLvRgnSize, Size);
    MemNSetBitFieldNb (NBPtr, BFIntLvRgnSwapEn, 1);
  }
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function converts MemClk frequency in MHz to MemClkFreq value
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *     @param[in]       Speed   - MemClk frequency in MHz
 *
 *     @return      MemClkFreq value
 */
UINT8
MemNGetMemClkFreqIdClientNb (
  IN OUT   MEM_NB_BLOCK *NBPtr,
  IN       UINT16 Speed
  )
{
  return (UINT8) ((Speed > DDR400_FREQUENCY) ? ((Speed / 33) - 6) : ((Speed == DDR400_FREQUENCY) ? 2 : (Speed / 55)));
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function converts MemClk frequency in MHz to MemClkFreq value
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *     @param[in]       Speed   - MemClk frequency in MHz
 *
 *     @return      MemClkFreq value
 */
UINT8
MemNGetMemClkFreqIdUnb (
  IN OUT   MEM_NB_BLOCK *NBPtr,
  IN       UINT16 Speed
  )
{
  return (UINT8) ((Speed > DDR400_FREQUENCY) ? ((Speed / 33) - 6) : ((Speed == DDR400_FREQUENCY) ? 2 : (Speed / 55)));
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function converts MemClkFreq Id value to MemClk frequency in MHz
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *     @param[in]       FreqId   - FreqId from Register
 *
 *     @return          MemClk frequency in MHz
 */
UINT16
MemNGetMemClkFreqUnb (
  IN OUT   MEM_NB_BLOCK *NBPtr,
  IN       UINT8 FreqId
  )
{
  UINT16 MemClkFreq;
  if (FreqId > 2) {
    MemClkFreq = (FreqId == 14) ? 667 : (300 + ((FreqId - 3) * 33) + (FreqId - 3) / 3);
  } else if (FreqId == 2) {
    MemClkFreq = 200;
  } else {
    MemClkFreq = 50 + (50 * FreqId);
  }
  return MemClkFreq;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *  This function change MemClk frequency to the value that is specified by DCTPtr->Timings.Speed
 *  for client NB.
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */

VOID
MemNChangeFrequencyUnb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  MEM_TECH_BLOCK *TechPtr;
  UINT8 Dct;
  UINT8 ChipSel;
  UINT32 Dummy;
  BOOLEAN FrequencyChangeSuccess;

  TechPtr = NBPtr->TechPtr;

  MemNBrdcstSetNb (NBPtr, BFDisDllShutdownSR, 1);

  //Program F2x[1,0]90[EnterSelfRefresh]=1.
  //Wait until the hardware resets F2x[1,0]90[EnterSelfRefresh]=0.
  MemNBrdcstSetNb (NBPtr, BFEnterSelfRef, 1);
  MemNPollBitFieldNb (NBPtr, BFEnterSelfRef, 0, PCI_ACCESS_TIMEOUT, TRUE);

  if (NBPtr->ChangeNbFrequency (NBPtr)) {
    // Reprogram Twr, Tcwl, and Tcl based on the new MEMCLK frequency.
    for (Dct = 0; Dct < NBPtr->DctCount; Dct++) {
      MemNSwitchDCTNb (NBPtr, Dct);
      if (NBPtr->DCTPtr->Timings.DctMemSize != 0) {
        TechPtr->AutoCycTiming (TechPtr);
        if (!MemNPlatformSpecUnb (NBPtr)) {
          IDS_ERROR_TRAP;
        }
      }
    }

    // 1. Program PllLockTime to Family-specific value
    MemNBrdcstSetNb (NBPtr, BFPllLockTime, NBPtr->FreqChangeParam->PllLockTimeDefault);

    // 2. Program D18F2x[1,0]94[MemClkFreqVal] = 0.
    MemNBrdcstSetNb (NBPtr, BFMemClkFreqVal, 0);

    // 3. Program D18F2x[1,0]94[MemClkFreq] to the desired DRAM frequency.
    MemNBrdcstSetNb (NBPtr, BFMemClkFreq, NBPtr->GetMemClkFreqId (NBPtr, NBPtr->DCTPtr->Timings.Speed));

    // 4. Program D18F2x[1,0]F4_x30[DbeGskFifoNumerator] and D18F2x[1,0]F4_x31[DbeGskFifoDenominator].
    // 5. Program D18F2x[1,0]F4_x32[DataTxFifoSchedDlyNegSlot1, DataTxFifoSchedDlySlot1,
    // DataTxFifoSchedDlyNegSlot0, DataTxFifoSchedDlySlot0]. See 2.10.3.2.2.1 [DCT Transmit Fifo Schedule
    // Delay Programming].
    // 6. D18F2x[1,0]78[RdPtrInit] = IF (D18F2x[1,0]94[MemClkFreq] >= 667 MHz) THEN 7 ELSE 8 ENDIF (Llano)
    //                                                                         THEN 2 ELSE 3 ENDIF (Ontario)
    NBPtr->ProgramNbPsDependentRegs (NBPtr);

    NBPtr->FamilySpecificHook[BeforeMemClkFreqVal] (NBPtr, NBPtr);
    IDS_OPTION_HOOK (IDS_BEFORE_MEM_FREQ_CHG, NBPtr, &(NBPtr->MemPtr->StdHeader));
    // 7. Program D18F2x[1,0]94[MemClkFreqVal] = 1.
    MemNBrdcstSetNb (NBPtr, BFMemClkFreqVal, 1);
    MemNPollBitFieldNb (NBPtr, BFFreqChgInProg, 0, PCI_ACCESS_TIMEOUT, TRUE);
    NBPtr->FamilySpecificHook[AfterMemClkFreqVal] (NBPtr, &Dct);

    // 8. IF (D18F2x[1,0]9C_x0D0F_E00A[CsrPhySrPllPdMode]==0) THEN program
    // D18F2x[1,0]9C_x0D0F_E006[PllLockTime] = 0Fh.
    // (CsrPhySrPllPdMode is kept 0 before training)
    MemNBrdcstSetNb (NBPtr, BFPllLockTime, 0x000F);

    FrequencyChangeSuccess = TRUE;
  } else {
    // If NB frequency cannot be updated, use the current speed as the target speed
    for (Dct = 0; Dct < NBPtr->DctCount; Dct++) {
      MemNSwitchDCTNb (NBPtr, Dct);
      NBPtr->DCTPtr->Timings.Speed = NBPtr->TechPtr->PrevSpeed;
      NBPtr->DCTPtr->Timings.TargetSpeed = NBPtr->TechPtr->PrevSpeed;
    }
    FrequencyChangeSuccess = FALSE;
  }

  //Program F2x[1,0]90[ExitSelfRef]=1 for both DCTs.
  //Wait until the hardware resets F2x[1, 0]90[ExitSelfRef]=0.
  MemNBrdcstSetNb (NBPtr, BFExitSelfRef, 1);
  MemNPollBitFieldNb (NBPtr, BFExitSelfRef, 0, PCI_ACCESS_TIMEOUT, TRUE);
  MemNBrdcstSetNb (NBPtr, BFDisDllShutdownSR, 0);

  if (FrequencyChangeSuccess) {
    NBPtr->FamilySpecificHook[AfterMemClkFreqChg] (NBPtr, NULL);

    // Perform Phy Fence training and Phy comp init after frequency change
    for (Dct = 0; Dct < NBPtr->DctCount; Dct++) {
      MemNSwitchDCTNb (NBPtr, Dct);
      if (NBPtr->DCTPtr->Timings.DctMemSize != 0) {
        IDS_HDT_CONSOLE (MEM_STATUS, "\tDct %d\n", Dct);

        // Phy fence programming
        AGESA_TESTPOINT (TpProcMemPhyFenceTraining, &(NBPtr->MemPtr->StdHeader));
        NBPtr->PhyFenceTraining (NBPtr);

        // Phy compensation initialization
        AGESA_TESTPOINT (TPProcMemPhyCompensation, &(NBPtr->MemPtr->StdHeader));
        NBPtr->MemNInitPhyComp (NBPtr);
        MemProcessConditionalOverrides (NBPtr->RefPtr->PlatformMemoryConfiguration, NBPtr, PSO_ACTION_SLEWRATE, ALL_DIMMS);
      }
    }

    //======================================================================
    // Calculate and program DRAM Timings at new frequency
    //======================================================================
    //
    for (Dct = 0; Dct < NBPtr->DctCount; Dct++) {
      IDS_HDT_CONSOLE (MEM_STATUS, "\tDct %d\n", Dct);
      MemNSwitchDCTNb (NBPtr, Dct);
      if (NBPtr->DCTPtr->Timings.DctMemSize != 0) {
        for (ChipSel = 0; ChipSel < MAX_CS_PER_CHANNEL; ChipSel++) {
          if (MemNGetMCTSysAddrNb (NBPtr, ChipSel, &Dummy)) {
            // if chip select present
            if (!(TechPtr->TechnologySpecificHook[LrdimmSendAllMRCmds] (TechPtr, &ChipSel))) {
              TechPtr->SendAllMRCmds (TechPtr, ChipSel);
            }
          }
        }
        // Wait 512 clocks for DLL-relock
        MemNWaitXMemClksNb (NBPtr, 512);
      }
    }
  }
}


/* -----------------------------------------------------------------------------*/
/**
 *
 *  This function calculates and programs NB P-state dependent registers
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */

VOID
MemNProgramNbPstateDependentRegistersUnb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  UINT8 RdPtrInit;
  UINT8 Dct;

  RdPtrInit = (NBPtr->DCTPtr->Timings.Speed <= DDR1600_FREQUENCY) ? 6 : 5;
  MemNBrdcstSetNb (NBPtr, BFRdPtrInit, RdPtrInit);
  IDS_HDT_CONSOLE (MEM_FLOW, "\t\tRdPtr: %d\n", RdPtrInit);

  switch (RdPtrInit) {
  case 4:
    if (MemNGetBitFieldNb (NBPtr, BFNbPsSel) == 0) {
      MemNBrdcstSetNb (NBPtr, BFDataTxFifoWrDly, 2);
    } else {
      MemNBrdcstSetNb (NBPtr, BFDataTxFifoWrDly, 1);
    }
    break;
  case 5:
    MemNBrdcstSetNb (NBPtr, BFDataTxFifoWrDly, 1);
    break;
  case 6:
    MemNBrdcstSetNb (NBPtr, BFDataTxFifoWrDly, 0);
    break;
  default:
    ASSERT (FALSE);
  }

  for (Dct = 0; Dct < NBPtr->DctCount; Dct++) {
    MemNSwitchDCTNb (NBPtr, Dct);
    if (NBPtr->DCTPtr->Timings.DctMemSize != 0) {
      // Set ProcOdtAdv
      if (NBPtr->DCTPtr->Timings.Speed <= DDR1333_FREQUENCY) {
        MemNSetBitFieldNb (NBPtr, BFProcOdtAdv, 0);
      } else {
        MemNSetBitFieldNb (NBPtr, BFProcOdtAdv, 0x4000);
      }
    }
  }

  NBPtr->FamilySpecificHook[OverrideDataTxFifoWrDly] (NBPtr, NBPtr);
  IDS_OPTION_HOOK (IDS_NBPS_REG_OVERRIDE, NBPtr, &NBPtr->MemPtr->StdHeader);
}

/* -----------------------------------------------------------------------------*/
CONST UINT8 PllDivTab[] = {0, 0, 0, 2, 3, 3, 2, 3};
CONST UINT8 PllMultTab[] = {0, 0, 0, 16, 32, 40, 32, 56};

/**
 *
 *  This function calculates and programs NB P-state dependent registers
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */

VOID
MemNProgramNbPstateDependentRegistersClientNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  UINT8 i;
  UINT8 Dct;
  UINT8 NclkFid;
  UINT16 MemClkDid;
  UINT8 PllMult;
  UINT8 NclkDiv;
  UINT8 RdPtrInitMin;
  UINT8 RdPtrInit;
  UINT32 NclkPeriod;
  UINT32 MemClkPeriod;
  INT32 PartialSum2x;
  INT32 PartialSumSlotI2x;
  INT32 RdPtrInitRmdr2x;
  INT32 TDataProp;
  UINT8 NbPstate;
  UINT8 SlowMode;

  NclkFid = (UINT8) (MemNGetBitFieldNb (NBPtr, BFMainPllOpFreqId) + 0x10);  // NclkFid is in 100MHz

  MemClkDid = PllDivTab[NBPtr->DCTPtr->Timings.Speed / 133];
  NBPtr->FamilySpecificHook[OverridePllDiv] (NBPtr, &MemClkDid);
  PllMult = PllMultTab[NBPtr->DCTPtr->Timings.Speed / 133];
  NBPtr->FamilySpecificHook[OverridePllMult] (NBPtr, &PllMult);

  if (NBPtr->NbFreqChgState == 2) {
    MemNSetBitFieldNb (NBPtr, BFNbPsCsrAccSel, 1);
    MemNSetBitFieldNb (NBPtr, BFNbPsDbgEn, 1);
    NclkDiv = (UINT8) MemNGetBitFieldNb (NBPtr, BFNbPs1NclkDiv);
    // Divisors less than 8 are undefined.  Maybe the CPU does not support NB P-states.
    if (NclkDiv < 8) {
      // Set a dummy divisor to prevent divide by zero exception below.
      NclkDiv = 8;
    }
    NbPstate = 1;
  } else {
    NclkDiv = (UINT8) MemNGetBitFieldNb (NBPtr, BFNbPs0NclkDiv);
    NbPstate = 0;
  }
  NclkPeriod = (2500 * NclkDiv) / NclkFid;  // (1,000,000 * 0.25 * NclkDiv) / (NclkFid * 100MHz) = ps
  MemClkPeriod = 1000000 / NBPtr->DCTPtr->Timings.Speed;
  NBPtr->NBClkFreq = ((UINT32) NclkFid * 400) / NclkDiv;

  IDS_HDT_CONSOLE (MEM_FLOW, "\n\tNB P%d  Freq: %dMHz\n", NbPstate, NBPtr->NBClkFreq);
  IDS_HDT_CONSOLE (MEM_FLOW, "\tMemClk Freq: %dMHz\n", NBPtr->DCTPtr->Timings.Speed);
  // D18F2x[1,0]78[RdPtrInit] = IF (D18F2x[1,0]94[MemClkFreq] >= 667 MHz) THEN 7 ELSE 8 ENDIF (Llano)
  //                                                                      THEN 2 ELSE 3 ENDIF (Ontario)
  RdPtrInit = RdPtrInitMin = (NBPtr->DCTPtr->Timings.Speed >= DDR1333_FREQUENCY) ? NBPtr->FreqChangeParam->RdPtrInit667orHigher : NBPtr->FreqChangeParam->RdPtrInitLower667;
  MemNBrdcstSetNb (NBPtr, BFRdPtrInit, RdPtrInit);
  IDS_HDT_CONSOLE (MEM_FLOW, "\t\tRdPtr: %d\n", RdPtrInit);

  // Program D18F2x[1,0]F4_x30[DbeGskFifoNumerator] and D18F2x[1,0]F4_x31[DbeGskFifoDenominator].
  MemNBrdcstSetNb (NBPtr, BFDbeGskFifoNumerator, NclkFid * MemClkDid * 16);
  MemNBrdcstSetNb (NBPtr, BFDbeGskFifoDenominator, PllMult * NclkDiv);
  IDS_HDT_CONSOLE (MEM_FLOW, "\t\tDbeGskFifoNumerator: %d\n", NclkFid * MemClkDid * 16);
  IDS_HDT_CONSOLE (MEM_FLOW, "\t\tDbeGskFifoDenominator: %d\n", PllMult * NclkDiv);

  // Program D18F2x[1,0]F4_x32[DataTxFifoSchedDlyNegSlot1, DataTxFifoSchedDlySlot1,
  // DataTxFifoSchedDlyNegSlot0, DataTxFifoSchedDlySlot0].
  //   PartialSum = ((7 * NclkPeriod) + (1.5 * MemClkPeriod) + 520ps)*MemClkFrequency - tCWL -
  //   CmdSetup - PtrSeparation - 1. (Llano)
  //   PartialSum = ((5 * NclkPeriod) + MemClkPeriod) + 520ps)*MemClkFrequency - tCWL -
  //   CmdSetup - PtrSeparation - 1. (Ontario)
  for (Dct = 0; Dct < NBPtr->DctCount; Dct++) {
    MemNSwitchDCTNb (NBPtr, Dct);
    if (NBPtr->DCTPtr->Timings.DctMemSize != 0) {
      PartialSum2x = NBPtr->FreqChangeParam->NclkPeriodMul2x * NclkPeriod;
      PartialSum2x += NBPtr->FreqChangeParam->MemClkPeriodMul2x * MemClkPeriod;
      PartialSum2x += 520 * 2;

      // PtrSeparation = ((16 + RdPtrInitMin - D18F2x[1,0]78[RdPtrInit]) MOD 16)/2 + RdPtrInitRmdr
      // If (D18F2x[1,0]94[MemClkFreq] >= 800 MHz)
      // then RdPtrInitRmdr = (((4.5 * MemClkPeriod) - 990ps) MOD MemClkPeriod)/MemClkPeriod
      // else RdPtrInitRmdr = (((4.5 * MemClkPeriod) - 1466ps) MOD MemClkPeriod)/MemClkPeriod
      TDataProp = (NBPtr->DCTPtr->Timings.Speed >= DDR1600_FREQUENCY) ?
                  NBPtr->FreqChangeParam->TDataProp800orHigher : NBPtr->FreqChangeParam->TDataPropLower800;
      RdPtrInitRmdr2x = ((NBPtr->FreqChangeParam->SyncTimeMul4x * MemClkPeriod) / 2) - 2 * (TDataProp + 520);
      RdPtrInitRmdr2x %= MemClkPeriod;
      PartialSum2x -= ((16 + RdPtrInitMin - RdPtrInit) % 16) * MemClkPeriod + RdPtrInitRmdr2x;

      // Convert PartialSum2x to PCLK
      PartialSum2x = (PartialSum2x + MemClkPeriod - 1) / MemClkPeriod;  // round-up here
      PartialSum2x -= 2 * (MemNGetBitFieldNb (NBPtr, BFTcwl) + 5);
      if ((MemNGetBitFieldNb (NBPtr, BFAddrTmgControl) & 0x0202020) == 0) {
        PartialSum2x -= 1;
      } else {
        PartialSum2x -= 2;
      }
      PartialSum2x -= 2;

      // If PartialSumSlotN is positive:
      //   DataTxFifoSchedDlySlotN=CEIL(PartialSumSlotN).
      //   DataTxFifoSchedDlyNegSlotN=0.
      // Else if PartialSumSlotN is negative:
      //   DataTxFifoSchedDlySlotN=ABS(CEIL(PartialSumSlotN*MemClkPeriod/NclkPeriod)).
      //   DataTxFifoSchedDlyNegSlotN=1.
      for (i = 0; i < 2; i++) {
        PartialSumSlotI2x = PartialSum2x;
        SlowMode = (UINT8) MemNGetBitFieldNb (NBPtr, BFSlowAccessMode);
        if ((i == 0) && (SlowMode == 0)) {
          PartialSumSlotI2x += 2;
        }
        if (NBPtr->IsSupported[SchedDlySlot1Extra] && (i == 1) && (SlowMode != 0)) {
          PartialSumSlotI2x -= 2;
        }
        if (PartialSumSlotI2x > 0) {
          MemNSetBitFieldNb (NBPtr, BFDataTxFifoSchedDlyNegSlot0 + i, 0);
          MemNSetBitFieldNb (NBPtr, BFDataTxFifoSchedDlySlot0 + i, (PartialSumSlotI2x + 1) / 2);
          IDS_HDT_CONSOLE (MEM_FLOW, "\t\tDataTxFifoSchedDlySlot%d: %d\n", i, (PartialSumSlotI2x + 1) / 2);
        } else {
          MemNSetBitFieldNb (NBPtr, BFDataTxFifoSchedDlyNegSlot0 + i, 1);
          PartialSumSlotI2x = ((-PartialSumSlotI2x) * MemClkPeriod) / (2 * NclkPeriod);
          MemNSetBitFieldNb (NBPtr, BFDataTxFifoSchedDlySlot0 + i, PartialSumSlotI2x);
          IDS_HDT_CONSOLE (MEM_FLOW, "\t\tDataTxFifoSchedDlySlot%d: -%d\n", i, PartialSumSlotI2x);
        }
      }

      // Set ProcOdtAdv
      if (NBPtr->DCTPtr->Timings.Speed <= DDR1333_FREQUENCY) {
        MemNSetBitFieldNb (NBPtr, BFProcOdtAdv, 0);
      } else {
        MemNSetBitFieldNb (NBPtr, BFProcOdtAdv, 0x4000);
      }
    }
  }

  MemFInitTableDrive (NBPtr, MTAfterNbPstateChange);
  if (NBPtr->NbFreqChgState == 2) {
    MemNSetBitFieldNb (NBPtr, BFNbPsDbgEn, 0);
    MemNSetBitFieldNb (NBPtr, BFNbPsCsrAccSel, 0);
  }
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function gets the total of sync components for Max Read Latency calculation
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 *     @return      Total in ps
 */

UINT32
MemNTotalSyncComponentsClientNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  UINT32 P;
  UINT32 T;
  UINT8  RdPtrInitMin;
  UINT8  RdPtrInit;
  UINT32 AddrTmgCtl;
  UINT8  DbeGskMemClkAlignMode;
  UINT32 MemClkPeriod;

  // P = P + ((16 + RdPtrInitMin - D18F2x[1,0]78[RdPtrInit]) MOD 16)
  RdPtrInitMin = (NBPtr->DCTPtr->Timings.Speed >= DDR1333_FREQUENCY) ? NBPtr->FreqChangeParam->RdPtrInit667orHigher : NBPtr->FreqChangeParam->RdPtrInitLower667;
  RdPtrInit = (UINT8) MemNGetBitFieldNb (NBPtr, BFRdPtrInit);
  P = (16 + RdPtrInitMin - RdPtrInit) % 16;

  // IF (AddrCmdSetup != CkeSetup) THEN P = P + 1
  AddrTmgCtl = MemNGetBitFieldNb (NBPtr, BFAddrTmgControl);
  if (((AddrTmgCtl >> 16) & 0x20) != (AddrTmgCtl & 0x20)) {
    P += 1;
  }

  // IF (DbeGskMemClkAlignMode==01b || (DbeGskMemClkAlignMode==00b && !(AddrCmdSetup==CsOdtSetup==CkeSetup)))
  // THEN P = P + 1
  DbeGskMemClkAlignMode = (UINT8) MemNGetBitFieldNb (NBPtr, BFDbeGskMemClkAlignMode);
  if ((DbeGskMemClkAlignMode == 1) || ((DbeGskMemClkAlignMode == 0) &&
      !((((AddrTmgCtl >> 16) & 0x20) == (AddrTmgCtl & 0x20)) && (((AddrTmgCtl >> 8) & 0x20) == (AddrTmgCtl & 0x20))))) {
    P += 1;
  }

  // IF (SlowAccessMode==1) THEN P = P + 2
  if (MemNGetBitFieldNb (NBPtr, BFSlowAccessMode) == 1) {
    P += 2;
  }

  // P = P + 2
  P += 2;
  T = 0;

  // If (AddrCmdSetup==0 && CsOdtSetup==0 && CkeSetup==0)
  // then P = P + 1
  // else P = P + 2
  if ((AddrTmgCtl & 0x0202020) == 0) {
    P += 1;
  } else {
    P += 2;
  }

  // P = P + (2 * (D18F2x[1,0]88[Tcl] clocks - 1))
  P += 2 * (NBPtr->DCTPtr->Timings.CasL - 1);

  // If (DisCutThroughMode==0)
  // then P = P + 3
  // else P = P + 7
  if (MemNGetBitFieldNb (NBPtr, BFDisCutThroughMode) == 0) {
    P += 3;
  } else {
    P += 7;
  }

  MemClkPeriod = 1000000 / NBPtr->DCTPtr->Timings.Speed;
  return (((P * MemClkPeriod + 1) / 2) + T);
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function sets up phy power saving for client NB
 *
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */
VOID
MemNPhyPowerSavingClientNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  // 4. Program D18F2x[1,0]9C_x0D0F_0[F,7:0]13[DllDisEarlyU] = 1b.
  // 5. Program D18F2x[1,0]9C_x0D0F_0[F,7:0]13[DllDisEarlyL] = 1b.
  // 6. Program D18F2x[1,0]9C_x0D0F_0[F,7:0]13[7:4] = 1010b.
  MemNSetBitFieldNb (NBPtr, BFPhy0x0D0F0F13Bit0to7, 0xA3);
  // 7. Program D18F2x[1,0]9C_x0D0F_812F[7, 5, 0] = {1b, 1b, 1b} to disable unused PAR and A[17:16] pins.
  MemNSetBitFieldNb (NBPtr, BFAddrCmdTri, MemNGetBitFieldNb (NBPtr, BFAddrCmdTri) | 0xA1);
  // 8. Program D18F2x[1,0]9C_x0D0F_C000[LowPowerDrvStrengthEn] = 1.
  if (!NBPtr->FamilySpecificHook[DisLowPwrDrvStr] (NBPtr, NULL)) {
    MemNSetBitFieldNb (NBPtr, BFLowPowerDrvStrengthEn, 0x100);
  }
  // 9. Program D18F2x[1,0]9C_x0D0F_0[F,7:0]10[EnRxPadStandby]= IF (D18F2x[1,0]94[MemClkFreq] <=
  //    800 MHz) THEN 1 ELSE 0 ENDIF.
  MemNSetBitFieldNb (NBPtr, BFEnRxPadStandby, (NBPtr->DCTPtr->Timings.Speed <= DDR1600_FREQUENCY) ? 0x1000 : 0);
  // 10. Program D18F2x[1,0]9C_x0000_000D as follows:
  //    TxMaxDurDllNoLock/RxMaxDurDllNoLock = 7h.
  MemNSetBitFieldNb (NBPtr, BFRxMaxDurDllNoLock, 7);
  MemNSetBitFieldNb (NBPtr, BFTxMaxDurDllNoLock, 7);
  //    TxCPUpdPeriod/RxCPUpdPeriod = 011b.
  MemNSetBitFieldNb (NBPtr, BFTxCPUpdPeriod, 3);
  MemNSetBitFieldNb (NBPtr, BFRxCPUpdPeriod, 3);
  //    TxDLLWakeupTime/RxDLLWakeupTime = 11b.
  MemNSetBitFieldNb (NBPtr, BFTxDLLWakeupTime, 3);
  MemNSetBitFieldNb (NBPtr, BFRxDLLWakeupTime, 3);

  IDS_OPTION_HOOK (IDS_PHY_DLL_STANDBY_CTRL, NBPtr, &NBPtr->MemPtr->StdHeader);
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function overrides the ASR and SRT value in MRS command
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */
VOID
MemNSetASRSRTNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  UINT32 MrsAddress;
  UINT8 Dimm;
  UINT8 *SpdBufferPtr;

  // Look for MR2
  if (NBPtr->GetBitField (NBPtr, BFMrsBank) == 2) {
    MrsAddress = NBPtr->GetBitField (NBPtr, BFMrsAddress);
    // Clear A6(ASR) and A7(SRT)
    MrsAddress &= (UINT32) ~0xC0;
    Dimm = (UINT8) (NBPtr->GetBitField (NBPtr, BFMrsChipSel) >> 1);
    // Make sure we access SPD of the second logical dimm of QR dimm correctly
    if ((Dimm >= 2) && ((NBPtr->ChannelPtr->DimmQrPresent & (UINT8) (1 << Dimm)) != 0)) {
      Dimm -= 2;
    }
    if (NBPtr->TechPtr->GetDimmSpdBuffer (NBPtr->TechPtr, &SpdBufferPtr, Dimm)) {
      // Bit 2 is ASR
      if (SpdBufferPtr[THERMAL_OPT] & 0x4) {
        // when ASR is 1, set SRT to 0
        MrsAddress |= 0x40;
      } else {
        // Set SRT based on bit on of thermal byte
        MrsAddress |= ((SpdBufferPtr[THERMAL_OPT] & 1) << 7);
      }
      NBPtr->SetBitField (NBPtr, BFMrsAddress, MrsAddress);
    }
  }
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *   This function changes NB frequency as below:
 *     NBP0-DDR800 -> NBP0-DDR1066 -> ... -> NBP0-DDRTarget -> NBP1-DDRTarget -> NBP0-DDRTarget
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */

BOOLEAN
MemNChangeNbFrequencyNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  BOOLEAN Status;

  Status = FALSE;

  // State machine to change NB frequency and NB Pstate
  switch (NBPtr->NbFreqChgState) {
  case 0:
    // Starting up by not changing NB P state, but only updating NB frequency based on current MemClk frequency
    Status = NBPtr->ChangeNbFrequencyWrap (NBPtr, 0);
    if (NBPtr->DCTPtr->Timings.Speed == NBPtr->DCTPtr->Timings.TargetSpeed) {
      // When MemClk has been ramped up to its max, transition to next state, which changes NBPstate to P1
      NBPtr->NbFreqChgState = 1;
      IDS_OPTION_HOOK (IDS_NB_PSTATE_DIDVID, NBPtr, &(NBPtr->MemPtr->StdHeader));
    }
    break;

  case 1:
    // Clear ForceCasToSlot0 after MaxRdLatency training is completed for NB-P0
    MemNBrdcstSetNb (NBPtr, BFForceCasToSlot0, 0);

    // Next state would be to change NBPstate back to P0
    NBPtr->NbFreqChgState = 2;

    // Update NB freq dependent registers
    NBPtr->ProgramNbPsDependentRegs (NBPtr);

    // Change NB P-State to NBP1 for MaxRdLat training
    if (NBPtr->ChangeNbFrequencyWrap (NBPtr, 1)) {
      // Enable cut through mode for NB P1
      MemNBrdcstSetNb (NBPtr, BFDisCutThroughMode, 0);

      // Return TRUE to repeat MaxRdLat training
      Status = TRUE;

    } else {
      // If transition to NB-P1 fails, transition to exit state machine
      NBPtr->NbFreqChgState = 3;
    }
    break;

  case 2:
    // Clear ForceCasToSlot0 after MaxRdLatency training is completed for NB-P1
    MemNBrdcstSetNb (NBPtr, BFForceCasToSlot0, 0);

    // Change NB P-State back to NBP0
    Status = NBPtr->ChangeNbFrequencyWrap (NBPtr, 0);
    ASSERT (Status);

    // Return FALSE to get out of MaxRdLat training loop
    Status = FALSE;

    // Exit state machine
    NBPtr->NbFreqChgState = 3;
    break;

  default:
    break;
  }

  return Status;
}

/*-----------------------------------------------------------------------------
 *
 *
 *     This function programs registers before phy fence training for CNB
 *
 *     @param[in,out]  *NBPtr     - Pointer to the MEM_NB_BLOCK
 *     @param[in,out]  OptParam   - Optional parameter
 *
 *     @return    TRUE
 * ----------------------------------------------------------------------------
 */
BOOLEAN
MemNBeforePhyFenceTrainingClientNb (
  IN OUT   MEM_NB_BLOCK *NBPtr,
  IN OUT   VOID *OptParam
  )
{
  IDS_HDT_CONSOLE (MEM_FLOW, "\tMemClkAlign=0\n");
  MemNBrdcstSetNb (NBPtr, BFDbeGskMemClkAlignMode, 0);

  IDS_HDT_CONSOLE (MEM_FLOW, "\tEnDramInit = 1 for both DCTs\n");
  MemNBrdcstSetNb (NBPtr, BFEnDramInit, 1);

  return TRUE;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *   This function changes NB frequency foras below:
 *     NBP0-DDR800 -> NBP0-DDR1066 -> ... -> NBP0-DDRTarget -> NBP1-DDRTarget -> NBP2-DDRTarget -> NBP3-DDRTarget -> NBP0-DDRTarget
 *
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */

BOOLEAN
MemNChangeNbFrequencyUnb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  BOOLEAN Status;

  Status = FALSE;

  // State machine to change NB frequency and NB Pstate
  switch (NBPtr->NbFreqChgState) {
  case 0:
    // Starting up by not changing NB P state, but only updating NB frequency based on current MemClk frequency
    Status = NBPtr->ChangeNbFrequencyWrap (NBPtr, 0);
    if (NBPtr->DCTPtr->Timings.Speed == NBPtr->DCTPtr->Timings.TargetSpeed) {
      // When MemClk has been ramped up to its max, transition to next state, which changes NBPstate to P1
      NBPtr->NbFreqChgState = 1;
      IDS_OPTION_HOOK (IDS_NB_PSTATE_DIDVID, NBPtr, &(NBPtr->MemPtr->StdHeader));
    }
    break;

  case 1:
  case 2:
  case 3:
    // Change NB P-State to NBP1 for MaxRdLat training
    if (NBPtr->ChangeNbFrequencyWrap (NBPtr, NBPtr->NbFreqChgState)) {
      NBPtr->ProgramNbPsDependentRegs (NBPtr);

      // Next state is to try all NBPstates
      NBPtr->NbFreqChgState++;

      // Return TRUE to repeat MaxRdLat training
      Status = TRUE;
    } else {
      // If transition to any NBPs fails, transition to exit state machine
      NBPtr->NbFreqChgState = 4;
    }
    break;

  case 4:
    // Change NB P-State back to NBP0
    Status = NBPtr->ChangeNbFrequencyWrap (NBPtr, 0);
    ASSERT (Status);

    // Return FALSE to get out of MaxRdLat training loop
    Status = FALSE;

    // Exit state machine
    NBPtr->NbFreqChgState = 5;
    break;

  default:
    break;
  }

  return Status;
}


/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function gets "Dram Term" value from data structure
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *     @param[in]       ChipSel  - Targeted chipsel
 *
 *     @return       Dram Term value
 */
UINT8
MemNGetDramTermNb (
  IN OUT   MEM_NB_BLOCK *NBPtr,
  IN       UINT8 ChipSel
  )
{
  UINT8 DramTerm;

  if ((NBPtr->ChannelPtr->DimmQrPresent & ((UINT16) (1 << (ChipSel >> 1)))) != 0) {
    DramTerm = NBPtr->PsPtr->QR_DramTerm;
  } else {
    DramTerm = NBPtr->PsPtr->DramTerm;
  }

  return DramTerm;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function gets "Dynamic Dram Term" value from data structure
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *     @param[in]       ChipSel  - Targeted chipsel
 *
 *     @return       Dynamic Dram Term value
 */
UINT8
MemNGetDynDramTermNb (
  IN OUT   MEM_NB_BLOCK *NBPtr,
  IN       UINT8 ChipSel
  )
{
  return (NBPtr->PsPtr->DynamicDramTerm);
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function returns MR0[CL] value
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 *     @return       MR0[CL] value
 */
UINT32
MemNGetMR0CLNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  UINT8 Tcl;
  UINT32 Value32;

  Tcl = (UINT8) MemNGetBitFieldNb (NBPtr, BFTcl);
  Value32 = (UINT32) ((Tcl < 8) ? (Tcl << 4) : (((Tcl - 8) << 4) | 4));

  return Value32;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function returns MR0[WR] value
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 *     @return       MR0[WR] value
 */
UINT32
MemNGetMR0WRNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  UINT32 Value32;

  Value32 = MemNGetBitFieldNb (NBPtr, BFTwrDDR3) << 9;

  return Value32;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function returns MR2[CWL] value
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 *     @return       MR0[CWL] value
 */
UINT32
MemNGetMR2CWLNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  UINT32 Value32;

  Value32 = MemNGetBitFieldNb (NBPtr, BFTcwl) << 3;

  return Value32;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function sets Txp and Txpdll
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 *     @return       none
 */
VOID
MemNSetTxpNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  CONST UINT8 Txp[] = {0xFF, 0xFF, 3, 3, 4, 4, 5, 6, 7};
  CONST UINT8 Txpdll[] = {0xFF, 0xFF, 0xA, 0xA, 0xD, 0x10, 0x14, 0x17, 0x1A};
  UINT8 i;
  UINT8 TxpVal;
  UINT8 TxpdllVal;
  UINT16 Speed;

  Speed = NBPtr->DCTPtr->Timings.Speed;
  i = (UINT8) ((Speed < DDR800_FREQUENCY) ? ((Speed / 66) - 3) : (Speed / 133));
  ASSERT (i < sizeof (Txp));
  ASSERT (i < sizeof (Txpdll));

  TxpdllVal = Txpdll[i];

  if ((NBPtr->MCTPtr->Status[SbLrdimms] || NBPtr->MCTPtr->Status[SbRegistered]) &&
      ((NBPtr->DCTPtr->Timings.Speed == DDR667_FREQUENCY) || (NBPtr->DCTPtr->Timings.Speed == DDR800_FREQUENCY)) &&
      (NBPtr->RefPtr->DDR3Voltage == VOLT1_25)) {
    TxpVal = 4;
  } else {
    TxpVal = Txp[i];
  }

  if (TxpVal != 0xFF) {
    MemNSetBitFieldNb (NBPtr, BFTxp, TxpVal);
  }
  if (TxpdllVal != 0xFF) {
    NBPtr->FamilySpecificHook[AdjustTxpdll] (NBPtr, &TxpdllVal);
    MemNSetBitFieldNb (NBPtr, BFTxpdll, TxpdllVal);
  }
}

/*-----------------------------------------------------------------------------
 *
 *
 *     This function adjust value of Txpdll to encoded value.
 *
 *     @param[in,out]  *NBPtr     - Pointer to the MEM_NB_BLOCK
 *     @param[in,out]  OptParam   - Optional parameter
 *
 *     @return    TRUE
 * ----------------------------------------------------------------------------
 */
BOOLEAN
MemNAdjustTxpdllClientNb (
  IN OUT   MEM_NB_BLOCK *NBPtr,
  IN OUT   VOID *OptParam
  )
{
  *(UINT8 *) OptParam -= 10;
  return TRUE;
}