summaryrefslogtreecommitdiff
path: root/src/southbridge/intel/common/spi.c
blob: 1d3ebf649e99ca724ab00747c8059df7b4f70c24 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
/*
 * Copyright (c) 2011 The Chromium OS Authors.
 * Copyright (C) 2009, 2010 Carl-Daniel Hailfinger
 * Copyright (C) 2011 Stefan Tauner
 *
 * See file CREDITS for list of people who contributed to this
 * project.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but without any warranty; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc.
 */

/* This file is derived from the flashrom project. */
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <bootstate.h>
#include <delay.h>
#include <arch/io.h>
#include <console/console.h>
#include <device/pci_ids.h>
#include <device/pci.h>
#include <spi_flash.h>

#include <spi-generic.h>

#define HSFC_FCYCLE_OFF		1	/* 1-2: FLASH Cycle */
#define HSFC_FCYCLE		(0x3 << HSFC_FCYCLE_OFF)
#define HSFC_FDBC_OFF		8	/* 8-13: Flash Data Byte Count */
#define HSFC_FDBC		(0x3f << HSFC_FDBC_OFF)


#ifdef __SMM__
#include <arch/pci_mmio_cfg.h>
#define pci_read_config_byte(dev, reg, targ)\
	*(targ) = pci_read_config8(dev, reg)
#define pci_read_config_word(dev, reg, targ)\
	*(targ) = pci_read_config16(dev, reg)
#define pci_read_config_dword(dev, reg, targ)\
	*(targ) = pci_read_config32(dev, reg)
#define pci_write_config_byte(dev, reg, val)\
	pci_write_config8(dev, reg, val)
#define pci_write_config_word(dev, reg, val)\
	pci_write_config16(dev, reg, val)
#define pci_write_config_dword(dev, reg, val)\
	pci_write_config32(dev, reg, val)
#else /* !__SMM__ */
#include <device/device.h>
#include <device/pci.h>
#define pci_read_config_byte(dev, reg, targ)\
	*(targ) = pci_read_config8(dev, reg)
#define pci_read_config_word(dev, reg, targ)\
	*(targ) = pci_read_config16(dev, reg)
#define pci_read_config_dword(dev, reg, targ)\
	*(targ) = pci_read_config32(dev, reg)
#define pci_write_config_byte(dev, reg, val)\
	pci_write_config8(dev, reg, val)
#define pci_write_config_word(dev, reg, val)\
	pci_write_config16(dev, reg, val)
#define pci_write_config_dword(dev, reg, val)\
	pci_write_config32(dev, reg, val)
#endif /* !__SMM__ */

static int spi_is_multichip(void);
static struct spi_flash *spi_flash_hwseq(struct spi_slave *spi);

typedef struct spi_slave ich_spi_slave;

static int ichspi_lock = 0;

typedef struct ich7_spi_regs {
	uint16_t spis;
	uint16_t spic;
	uint32_t spia;
	uint64_t spid[8];
	uint64_t _pad;
	uint32_t bbar;
	uint16_t preop;
	uint16_t optype;
	uint8_t opmenu[8];
} __attribute__((packed)) ich7_spi_regs;

typedef struct ich9_spi_regs {
	uint32_t bfpr;
	uint16_t hsfs;
	uint16_t hsfc;
	uint32_t faddr;
	uint32_t _reserved0;
	uint32_t fdata[16];
	uint32_t frap;
	uint32_t freg[5];
	uint32_t _reserved1[3];
	uint32_t pr[5];
	uint32_t _reserved2[2];
	uint8_t ssfs;
	uint8_t ssfc[3];
	uint16_t preop;
	uint16_t optype;
	uint8_t opmenu[8];
	uint32_t bbar;
	uint8_t _reserved3[12];
	uint32_t fdoc;
	uint32_t fdod;
	uint8_t _reserved4[8];
	uint32_t afc;
	uint32_t lvscc;
	uint32_t uvscc;
	uint8_t _reserved5[4];
	uint32_t fpb;
	uint8_t _reserved6[28];
	uint32_t srdl;
	uint32_t srdc;
	uint32_t srd;
} __attribute__((packed)) ich9_spi_regs;

typedef struct ich_spi_controller {
	int locked;
	uint32_t flmap0;
	uint32_t hsfs;

	ich9_spi_regs *ich9_spi;
	uint8_t *opmenu;
	int menubytes;
	uint16_t *preop;
	uint16_t *optype;
	uint32_t *addr;
	uint8_t *data;
	unsigned databytes;
	uint8_t *status;
	uint16_t *control;
	uint32_t *bbar;
} ich_spi_controller;

static ich_spi_controller cntlr;

enum {
	SPIS_SCIP =		0x0001,
	SPIS_GRANT =		0x0002,
	SPIS_CDS =		0x0004,
	SPIS_FCERR =		0x0008,
	SSFS_AEL =		0x0010,
	SPIS_LOCK =		0x8000,
	SPIS_RESERVED_MASK =	0x7ff0,
	SSFS_RESERVED_MASK =	0x7fe2
};

enum {
	SPIC_SCGO =		0x000002,
	SPIC_ACS =		0x000004,
	SPIC_SPOP =		0x000008,
	SPIC_DBC =		0x003f00,
	SPIC_DS =		0x004000,
	SPIC_SME =		0x008000,
	SSFC_SCF_MASK =		0x070000,
	SSFC_RESERVED =		0xf80000
};

enum {
	HSFS_FDONE =		0x0001,
	HSFS_FCERR =		0x0002,
	HSFS_AEL =		0x0004,
	HSFS_BERASE_MASK =	0x0018,
	HSFS_BERASE_SHIFT =	3,
	HSFS_SCIP =		0x0020,
	HSFS_FDOPSS =		0x2000,
	HSFS_FDV =		0x4000,
	HSFS_FLOCKDN =		0x8000
};

enum {
	HSFC_FGO =		0x0001,
	HSFC_FCYCLE_MASK =	0x0006,
	HSFC_FCYCLE_SHIFT =	1,
	HSFC_FDBC_MASK =	0x3f00,
	HSFC_FDBC_SHIFT =	8,
	HSFC_FSMIE =		0x8000
};

enum {
	SPI_OPCODE_TYPE_READ_NO_ADDRESS =	0,
	SPI_OPCODE_TYPE_WRITE_NO_ADDRESS =	1,
	SPI_OPCODE_TYPE_READ_WITH_ADDRESS =	2,
	SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS =	3
};

#if CONFIG_DEBUG_SPI_FLASH

static u8 readb_(const void *addr)
{
	u8 v = read8(addr);
	printk(BIOS_DEBUG, "read %2.2x from %4.4x\n",
	       v, ((unsigned) addr & 0xffff) - 0xf020);
	return v;
}

static u16 readw_(const void *addr)
{
	u16 v = read16(addr);
	printk(BIOS_DEBUG, "read %4.4x from %4.4x\n",
	       v, ((unsigned) addr & 0xffff) - 0xf020);
	return v;
}

static u32 readl_(const void *addr)
{
	u32 v = read32(addr);
	printk(BIOS_DEBUG, "read %8.8x from %4.4x\n",
	       v, ((unsigned) addr & 0xffff) - 0xf020);
	return v;
}

static void writeb_(u8 b, void *addr)
{
	write8(addr, b);
	printk(BIOS_DEBUG, "wrote %2.2x to %4.4x\n",
	       b, ((unsigned) addr & 0xffff) - 0xf020);
}

static void writew_(u16 b, void *addr)
{
	write16(addr, b);
	printk(BIOS_DEBUG, "wrote %4.4x to %4.4x\n",
	       b, ((unsigned) addr & 0xffff) - 0xf020);
}

static void writel_(u32 b, void *addr)
{
	write32(addr, b);
	printk(BIOS_DEBUG, "wrote %8.8x to %4.4x\n",
	       b, ((unsigned) addr & 0xffff) - 0xf020);
}

#else /* CONFIG_DEBUG_SPI_FLASH ^^^ enabled  vvv NOT enabled */

#define readb_(a) read8(a)
#define readw_(a) read16(a)
#define readl_(a) read32(a)
#define writeb_(val, addr) write8(addr, val)
#define writew_(val, addr) write16(addr, val)
#define writel_(val, addr) write32(addr, val)

#endif  /* CONFIG_DEBUG_SPI_FLASH ^^^ NOT enabled */

static void write_reg(const void *value, void *dest, uint32_t size)
{
	const uint8_t *bvalue = value;
	uint8_t *bdest = dest;

	while (size >= 4) {
		writel_(*(const uint32_t *)bvalue, bdest);
		bdest += 4; bvalue += 4; size -= 4;
	}
	while (size) {
		writeb_(*bvalue, bdest);
		bdest++; bvalue++; size--;
	}
}

static void read_reg(const void *src, void *value, uint32_t size)
{
	const uint8_t *bsrc = src;
	uint8_t *bvalue = value;

	while (size >= 4) {
		*(uint32_t *)bvalue = readl_(bsrc);
		bsrc += 4; bvalue += 4; size -= 4;
	}
	while (size) {
		*bvalue = readb_(bsrc);
		bsrc++; bvalue++; size--;
	}
}

static void ich_set_bbar(uint32_t minaddr)
{
	const uint32_t bbar_mask = 0x00ffff00;
	uint32_t ichspi_bbar;

	minaddr &= bbar_mask;
	ichspi_bbar = readl_(cntlr.bbar) & ~bbar_mask;
	ichspi_bbar |= minaddr;
	writel_(ichspi_bbar, cntlr.bbar);
}

struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs)
{
	ich_spi_slave *slave = malloc(sizeof(*slave));

	if (!slave) {
		printk(BIOS_DEBUG, "ICH SPI: Bad allocation\n");
		return NULL;
	}

	memset(slave, 0, sizeof(*slave));

	slave->bus = bus;
	slave->cs = cs;
	slave->force_programmer_specific = spi_is_multichip ();
	slave->programmer_specific_probe = spi_flash_hwseq;
	return slave;
}

void spi_init(void)
{
	uint8_t *rcrb; /* Root Complex Register Block */
	uint32_t rcba; /* Root Complex Base Address */
	uint8_t bios_cntl;
	device_t dev;
	ich9_spi_regs *ich9_spi;
	uint16_t hsfs;

#ifdef __SMM__
	dev = PCI_DEV(0, 31, 0);
#else
	dev = dev_find_slot(0, PCI_DEVFN(31, 0));
#endif

	pci_read_config_dword(dev, 0xf0, &rcba);
	/* Bits 31-14 are the base address, 13-1 are reserved, 0 is enable. */
	rcrb = (uint8_t *)(rcba & 0xffffc000);
	ich9_spi = (ich9_spi_regs *)(rcrb + 0x3800);
	cntlr.ich9_spi = ich9_spi;
	hsfs = readw_(&ich9_spi->hsfs);
	ichspi_lock = hsfs & HSFS_FLOCKDN;
	cntlr.hsfs = hsfs;
	cntlr.opmenu = ich9_spi->opmenu;
	cntlr.menubytes = sizeof(ich9_spi->opmenu);
	cntlr.optype = &ich9_spi->optype;
	cntlr.addr = &ich9_spi->faddr;
	cntlr.data = (uint8_t *)ich9_spi->fdata;
	cntlr.databytes = sizeof(ich9_spi->fdata);
	cntlr.status = &ich9_spi->ssfs;
	cntlr.control = (uint16_t *)ich9_spi->ssfc;
	cntlr.bbar = &ich9_spi->bbar;
	cntlr.preop = &ich9_spi->preop;

	if (cntlr.hsfs & HSFS_FDV)
	{
		writel_ (4, &ich9_spi->fdoc);
		cntlr.flmap0 = readl_(&ich9_spi->fdod);
	}

	ich_set_bbar(0);

	/* Disable the BIOS write protect so write commands are allowed. */
	pci_read_config_byte(dev, 0xdc, &bios_cntl);
	/* Deassert SMM BIOS Write Protect Disable. */
	bios_cntl &= ~(1 << 5);
	pci_write_config_byte(dev, 0xdc, bios_cntl | 0x1);
}
#ifndef __SMM__
static void spi_init_cb(void *unused)
{
	spi_init();
}

BOOT_STATE_INIT_ENTRY(BS_DEV_INIT, BS_ON_ENTRY, spi_init_cb, NULL);
#endif

int spi_claim_bus(struct spi_slave *slave)
{
	/* Handled by ICH automatically. */
	return 0;
}

void spi_release_bus(struct spi_slave *slave)
{
	/* Handled by ICH automatically. */
}

typedef struct spi_transaction {
	const uint8_t *out;
	uint32_t bytesout;
	uint8_t *in;
	uint32_t bytesin;
	uint8_t type;
	uint8_t opcode;
	uint32_t offset;
} spi_transaction;

static inline void spi_use_out(spi_transaction *trans, unsigned bytes)
{
	trans->out += bytes;
	trans->bytesout -= bytes;
}

static inline void spi_use_in(spi_transaction *trans, unsigned bytes)
{
	trans->in += bytes;
	trans->bytesin -= bytes;
}

static void spi_setup_type(spi_transaction *trans)
{
	trans->type = 0xFF;

	/* Try to guess spi type from read/write sizes. */
	if (trans->bytesin == 0) {
		if (trans->bytesout > 4)
			/*
			 * If bytesin = 0 and bytesout > 4, we presume this is
			 * a write data operation, which is accompanied by an
			 * address.
			 */
			trans->type = SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS;
		else
			trans->type = SPI_OPCODE_TYPE_WRITE_NO_ADDRESS;
		return;
	}

	if (trans->bytesout == 1) { /* and bytesin is > 0 */
		trans->type = SPI_OPCODE_TYPE_READ_NO_ADDRESS;
		return;
	}

	if (trans->bytesout == 4) { /* and bytesin is > 0 */
		trans->type = SPI_OPCODE_TYPE_READ_WITH_ADDRESS;
	}

	/* Fast read command is called with 5 bytes instead of 4 */
	if (trans->out[0] == SPI_OPCODE_FAST_READ && trans->bytesout == 5) {
		trans->type = SPI_OPCODE_TYPE_READ_WITH_ADDRESS;
		--trans->bytesout;
	}
}

static int spi_setup_opcode(spi_transaction *trans)
{
	uint16_t optypes;
	uint8_t opmenu[cntlr.menubytes];

	trans->opcode = trans->out[0];
	spi_use_out(trans, 1);
	if (!ichspi_lock) {
		/* The lock is off, so just use index 0. */
		writeb_(trans->opcode, cntlr.opmenu);
		optypes = readw_(cntlr.optype);
		optypes = (optypes & 0xfffc) | (trans->type & 0x3);
		writew_(optypes, cntlr.optype);
		return 0;
	} else {
		/* The lock is on. See if what we need is on the menu. */
		uint8_t optype;
		uint16_t opcode_index;

		/* Write Enable is handled as atomic prefix */
		if (trans->opcode == SPI_OPCODE_WREN)
			return 0;

		read_reg(cntlr.opmenu, opmenu, sizeof(opmenu));
		for (opcode_index = 0; opcode_index < cntlr.menubytes;
				opcode_index++) {
			if (opmenu[opcode_index] == trans->opcode)
				break;
		}

		if (opcode_index == cntlr.menubytes) {
			printk(BIOS_DEBUG, "ICH SPI: Opcode %x not found\n",
				trans->opcode);
			return -1;
		}

		optypes = readw_(cntlr.optype);
		optype = (optypes >> (opcode_index * 2)) & 0x3;
		if (trans->type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS &&
			optype == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS &&
			trans->bytesout >= 3) {
			/* We guessed wrong earlier. Fix it up. */
			trans->type = optype;
		}
		if (optype != trans->type) {
			printk(BIOS_DEBUG, "ICH SPI: Transaction doesn't fit type %d\n",
				optype);
			return -1;
		}
		return opcode_index;
	}
}

static int spi_setup_offset(spi_transaction *trans)
{
	/* Separate the SPI address and data. */
	switch (trans->type) {
	case SPI_OPCODE_TYPE_READ_NO_ADDRESS:
	case SPI_OPCODE_TYPE_WRITE_NO_ADDRESS:
		return 0;
	case SPI_OPCODE_TYPE_READ_WITH_ADDRESS:
	case SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS:
		trans->offset = ((uint32_t)trans->out[0] << 16) |
				((uint32_t)trans->out[1] << 8) |
				((uint32_t)trans->out[2] << 0);
		spi_use_out(trans, 3);
		return 1;
	default:
		printk(BIOS_DEBUG, "Unrecognized SPI transaction type %#x\n", trans->type);
		return -1;
	}
}

/*
 * Wait for up to 6s til status register bit(s) turn 1 (in case wait_til_set
 * below is True) or 0. In case the wait was for the bit(s) to set - write
 * those bits back, which would cause resetting them.
 *
 * Return the last read status value on success or -1 on failure.
 */
static int ich_status_poll(u16 bitmask, int wait_til_set)
{
	int timeout = 600000; /* This will result in 6 seconds */
	u16 status = 0;

	while (timeout--) {
		status = readw_(cntlr.status);
		if (wait_til_set ^ ((status & bitmask) == 0)) {
			if (wait_til_set)
				writew_((status & bitmask), cntlr.status);
			return status;
		}
		udelay(10);
	}

	printk(BIOS_DEBUG, "ICH SPI: SCIP timeout, read %x, bitmask %x\n",
		status, bitmask);
	return -1;
}

static int spi_is_multichip (void)
{
	if (!(cntlr.hsfs & HSFS_FDV))
		return 0;
	return !!((cntlr.flmap0 >> 8) & 3);
}

unsigned int spi_crop_chunk(unsigned int cmd_len, unsigned int buf_len)
{
	return min(cntlr.databytes, buf_len);
}

int spi_xfer(struct spi_slave *slave, const void *dout,
		unsigned int bytesout, void *din, unsigned int bytesin)
{
	uint16_t control;
	int16_t opcode_index;
	int with_address;
	int status;

	spi_transaction trans = {
		dout, bytesout,
		din, bytesin,
		0xff, 0xff, 0
	};

	/* There has to always at least be an opcode. */
	if (!bytesout || !dout) {
		printk(BIOS_DEBUG, "ICH SPI: No opcode for transfer\n");
		return -1;
	}
	/* Make sure if we read something we have a place to put it. */
	if (bytesin != 0 && !din) {
		printk(BIOS_DEBUG, "ICH SPI: Read but no target buffer\n");
		return -1;
	}

	if (ich_status_poll(SPIS_SCIP, 0) == -1)
		return -1;

	writew_(SPIS_CDS | SPIS_FCERR, cntlr.status);

	spi_setup_type(&trans);
	if ((opcode_index = spi_setup_opcode(&trans)) < 0)
		return -1;
	if ((with_address = spi_setup_offset(&trans)) < 0)
		return -1;

	if (trans.opcode == SPI_OPCODE_WREN) {
		/*
		 * Treat Write Enable as Atomic Pre-Op if possible
		 * in order to prevent the Management Engine from
		 * issuing a transaction between WREN and DATA.
		 */
		if (!ichspi_lock)
			writew_(trans.opcode, cntlr.preop);
		return 0;
	}

	/* Preset control fields */
	control = SPIC_SCGO | ((opcode_index & 0x07) << 4);

	/* Issue atomic preop cycle if needed */
	if (readw_(cntlr.preop))
		control |= SPIC_ACS;

	if (!trans.bytesout && !trans.bytesin) {
		/* SPI addresses are 24 bit only */
		if (with_address)
			writel_(trans.offset & 0x00FFFFFF, cntlr.addr);

		/*
		 * This is a 'no data' command (like Write Enable), its
		 * bitesout size was 1, decremented to zero while executing
		 * spi_setup_opcode() above. Tell the chip to send the
		 * command.
		 */
		writew_(control, cntlr.control);

		/* wait for the result */
		status = ich_status_poll(SPIS_CDS | SPIS_FCERR, 1);
		if (status == -1)
			return -1;

		if (status & SPIS_FCERR) {
			printk(BIOS_DEBUG, "ICH SPI: Command transaction error\n");
			return -1;
		}

		return 0;
	}

	/*
	 * Check if this is a write command attempting to transfer more bytes
	 * than the controller can handle. Iterations for writes are not
	 * supported here because each SPI write command needs to be preceded
	 * and followed by other SPI commands, and this sequence is controlled
	 * by the SPI chip driver.
	 */
	if (trans.bytesout > cntlr.databytes) {
		printk(BIOS_DEBUG, "ICH SPI: Too much to write. Does your SPI chip driver use"
		     " spi_crop_chunk()?\n");
		return -1;
	}

	/*
	 * Read or write up to databytes bytes at a time until everything has
	 * been sent.
	 */
	while (trans.bytesout || trans.bytesin) {
		uint32_t data_length;

		/* SPI addresses are 24 bit only */
		writel_(trans.offset & 0x00FFFFFF, cntlr.addr);

		if (trans.bytesout)
			data_length = min(trans.bytesout, cntlr.databytes);
		else
			data_length = min(trans.bytesin, cntlr.databytes);

		/* Program data into FDATA0 to N */
		if (trans.bytesout) {
			write_reg(trans.out, cntlr.data, data_length);
			spi_use_out(&trans, data_length);
			if (with_address)
				trans.offset += data_length;
		}

		/* Add proper control fields' values */
		control &= ~((cntlr.databytes - 1) << 8);
		control |= SPIC_DS;
		control |= (data_length - 1) << 8;

		/* write it */
		writew_(control, cntlr.control);

		/* Wait for Cycle Done Status or Flash Cycle Error. */
		status = ich_status_poll(SPIS_CDS | SPIS_FCERR, 1);
		if (status == -1)
			return -1;

		if (status & SPIS_FCERR) {
			printk(BIOS_DEBUG, "ICH SPI: Data transaction error\n");
			return -1;
		}

		if (trans.bytesin) {
			read_reg(cntlr.data, trans.in, data_length);
			spi_use_in(&trans, data_length);
			if (with_address)
				trans.offset += data_length;
		}
	}

	/* Clear atomic preop now that xfer is done */
	writew_(0, cntlr.preop);

	return 0;
}

/* Sets FLA in FADDR to (addr & 0x01FFFFFF) without touching other bits. */
static void ich_hwseq_set_addr(uint32_t addr)
{
	uint32_t addr_old = readl_(&cntlr.ich9_spi->faddr) & ~0x01FFFFFF;
	writel_((addr & 0x01FFFFFF) | addr_old, &cntlr.ich9_spi->faddr);
}

/* Polls for Cycle Done Status, Flash Cycle Error or timeout in 8 us intervals.
   Resets all error flags in HSFS.
   Returns 0 if the cycle completes successfully without errors within
   timeout us, 1 on errors. */
static int ich_hwseq_wait_for_cycle_complete(unsigned int timeout,
					     unsigned int len)
{
	uint16_t hsfs;
	uint32_t addr;

	timeout /= 8; /* scale timeout duration to counter */
	while ((((hsfs = readw_(&cntlr.ich9_spi->hsfs)) &
		 (HSFS_FDONE | HSFS_FCERR)) == 0) &&
	       --timeout) {
		udelay(8);
	}
	writew_(readw_(&cntlr.ich9_spi->hsfs), &cntlr.ich9_spi->hsfs);

	if (!timeout) {
		uint16_t hsfc;
		addr = readl_(&cntlr.ich9_spi->faddr) & 0x01FFFFFF;
		hsfc = readw_(&cntlr.ich9_spi->hsfc);
		printk(BIOS_ERR, "Transaction timeout between offset 0x%08x and "
		       "0x%08x (= 0x%08x + %d) HSFC=%x HSFS=%x!\n",
		       addr, addr + len - 1, addr, len - 1,
		       hsfc, hsfs);
		return 1;
	}

	if (hsfs & HSFS_FCERR) {
		uint16_t hsfc;
		addr = readl_(&cntlr.ich9_spi->faddr) & 0x01FFFFFF;
		hsfc = readw_(&cntlr.ich9_spi->hsfc);
		printk(BIOS_ERR, "Transaction error between offset 0x%08x and "
		       "0x%08x (= 0x%08x + %d) HSFC=%x HSFS=%x!\n",
		       addr, addr + len - 1, addr, len - 1,
		       hsfc, hsfs);
		return 1;
	}
	return 0;
}


static int ich_hwseq_erase(struct spi_flash *flash, u32 offset, size_t len)
{
	u32 start, end, erase_size;
	int ret;
	uint16_t hsfc;
	uint16_t timeout = 1000 * 60;

	erase_size = flash->sector_size;
	if (offset % erase_size || len % erase_size) {
		printk(BIOS_ERR, "SF: Erase offset/length not multiple of erase size\n");
		return -1;
	}

	flash->spi->rw = SPI_WRITE_FLAG;
	ret = spi_claim_bus(flash->spi);
	if (ret) {
		printk(BIOS_ERR, "SF: Unable to claim SPI bus\n");
		return ret;
	}

	start = offset;
	end = start + len;

	while (offset < end) {
		/* make sure FDONE, FCERR, AEL are cleared by writing 1 to them */
		writew_(readw_(&cntlr.ich9_spi->hsfs), &cntlr.ich9_spi->hsfs);

		ich_hwseq_set_addr(offset);

		offset += erase_size;

		hsfc = readw_(&cntlr.ich9_spi->hsfc);
		hsfc &= ~HSFC_FCYCLE; /* clear operation */
		hsfc |= (0x3 << HSFC_FCYCLE_OFF); /* set erase operation */
		hsfc |= HSFC_FGO; /* start */
		writew_(hsfc, &cntlr.ich9_spi->hsfc);
		if (ich_hwseq_wait_for_cycle_complete(timeout, len))
		{
			printk(BIOS_ERR, "SF: Erase failed at %x\n", offset - erase_size);
			ret = -1;
			goto out;
		}
	}

	printk(BIOS_DEBUG, "SF: Successfully erased %zu bytes @ %#x\n", len, start);

out:
	spi_release_bus(flash->spi);
	return ret;
}

static void ich_read_data(uint8_t *data, int len)
{
	int i;
	uint32_t temp32 = 0;

	for (i = 0; i < len; i++) {
		if ((i % 4) == 0)
			temp32 = readl_(cntlr.data + i);

		data[i] = (temp32 >> ((i % 4) * 8)) & 0xff;
	}
}

static int ich_hwseq_read(struct spi_flash *flash,
			  u32 addr, size_t len, void *buf)
{
	uint16_t hsfc;
	uint16_t timeout = 100 * 60;
	uint8_t block_len;

	if (addr + len > flash->size) {
		printk (BIOS_ERR,
			"Attempt to read %x-%x which is out of chip\n",
			(unsigned) addr,
			(unsigned) addr+(unsigned) len);
		return -1;
	}

	/* clear FDONE, FCERR, AEL by writing 1 to them (if they are set) */
	writew_(readw_(&cntlr.ich9_spi->hsfs), &cntlr.ich9_spi->hsfs);

	while (len > 0) {
		block_len = min(len, cntlr.databytes);
		if (block_len > (~addr & 0xff))
			block_len = (~addr & 0xff) + 1;
		ich_hwseq_set_addr(addr);
		hsfc = readw_(&cntlr.ich9_spi->hsfc);
		hsfc &= ~HSFC_FCYCLE; /* set read operation */
		hsfc &= ~HSFC_FDBC; /* clear byte count */
		/* set byte count */
		hsfc |= (((block_len - 1) << HSFC_FDBC_OFF) & HSFC_FDBC);
		hsfc |= HSFC_FGO; /* start */
		writew_(hsfc, &cntlr.ich9_spi->hsfc);

		if (ich_hwseq_wait_for_cycle_complete(timeout, block_len))
			return 1;
		ich_read_data(buf, block_len);
		addr += block_len;
		buf += block_len;
		len -= block_len;
	}
	return 0;
}

/* Fill len bytes from the data array into the fdata/spid registers.
 *
 * Note that using len > flash->pgm->spi.max_data_write will trash the registers
 * following the data registers.
 */
static void ich_fill_data(const uint8_t *data, int len)
{
	uint32_t temp32 = 0;
	int i;

	if (len <= 0)
		return;

	for (i = 0; i < len; i++) {
		if ((i % 4) == 0)
			temp32 = 0;

		temp32 |= ((uint32_t) data[i]) << ((i % 4) * 8);

		if ((i % 4) == 3) /* 32 bits are full, write them to regs. */
			writel_(temp32, cntlr.data + (i - (i % 4)));
	}
	i--;
	if ((i % 4) != 3) /* Write remaining data to regs. */
		writel_(temp32, cntlr.data + (i - (i % 4)));
}

static int ich_hwseq_write(struct spi_flash *flash,
			   u32 addr, size_t len, const void *buf)
{
	uint16_t hsfc;
	uint16_t timeout = 100 * 60;
	uint8_t block_len;
	uint32_t start = addr;

	if (addr + len > flash->size) {
		printk (BIOS_ERR,
			"Attempt to write 0x%x-0x%x which is out of chip\n",
			(unsigned)addr, (unsigned) (addr+len));
		return -1;
	}

	/* clear FDONE, FCERR, AEL by writing 1 to them (if they are set) */
	writew_(readw_(&cntlr.ich9_spi->hsfs), &cntlr.ich9_spi->hsfs);

	while (len > 0) {
		block_len = min(len, cntlr.databytes);
		if (block_len > (~addr & 0xff))
			block_len = (~addr & 0xff) + 1;

		ich_hwseq_set_addr(addr);

		ich_fill_data(buf, block_len);
		hsfc = readw_(&cntlr.ich9_spi->hsfc);
		hsfc &= ~HSFC_FCYCLE; /* clear operation */
		hsfc |= (0x2 << HSFC_FCYCLE_OFF); /* set write operation */
		hsfc &= ~HSFC_FDBC; /* clear byte count */
		/* set byte count */
		hsfc |= (((block_len - 1) << HSFC_FDBC_OFF) & HSFC_FDBC);
		hsfc |= HSFC_FGO; /* start */
		writew_(hsfc, &cntlr.ich9_spi->hsfc);

		if (ich_hwseq_wait_for_cycle_complete(timeout, block_len))
		{
			printk (BIOS_ERR, "SF: write failure at %x\n",
				addr);
			return -1;
		}
		addr += block_len;
		buf += block_len;
		len -= block_len;
	}
	printk(BIOS_DEBUG, "SF: Successfully written %u bytes @ %#x\n",
	       (unsigned) (addr - start), start);
	return 0;
}


static struct spi_flash *spi_flash_hwseq(struct spi_slave *spi)
{
	struct spi_flash *flash = NULL;
	uint32_t flcomp;

	flash = malloc(sizeof(*flash));
	if (!flash) {
		printk(BIOS_WARNING, "SF: Failed to allocate memory\n");
		return NULL;
	}

	flash->spi = spi;
	flash->name = "Opaque HW-sequencing";

	flash->write = ich_hwseq_write;
	flash->erase = ich_hwseq_erase;
	flash->read = ich_hwseq_read;
	ich_hwseq_set_addr (0);
	switch ((cntlr.hsfs >> 3) & 3)
	{
	case 0:
		flash->sector_size = 256;
		break;
	case 1:
		flash->sector_size = 4096;
		break;
	case 2:
		flash->sector_size = 8192;
		break;
	case 3:
		flash->sector_size = 65536;
		break;
	}

	writel_ (0x1000, &cntlr.ich9_spi->fdoc);
	flcomp = readl_(&cntlr.ich9_spi->fdod);

	flash->size = 1 << (19 + (flcomp & 7));

	if ((cntlr.hsfs & HSFS_FDV) && ((cntlr.flmap0 >> 8) & 3))
		flash->size += 1 << (19 + ((flcomp >> 3) & 7));
	printk (BIOS_DEBUG, "flash size 0x%x bytes\n", flash->size);

	return flash;
}