1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
|
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* This is a ramstage driver for the Intel Management Engine found in the
* 6-series chipset. It handles the required boot-time messages over the
* MMIO-based Management Engine Interface to tell the ME that the BIOS is
* finished with POST. Additional messages are defined for debug but are
* not used unless the console loglevel is high enough.
*/
#include <acpi/acpi.h>
#include <cf9_reset.h>
#include <device/mmio.h>
#include <device/device.h>
#include <device/pci.h>
#include <device/pci_ops.h>
#include <console/console.h>
#include <device/pci_ids.h>
#include <device/pci_def.h>
#include <elog.h>
#include <halt.h>
#include <option.h>
#include <southbridge/intel/common/me.h>
#include "me.h"
#include "pch.h"
/* Determine the path that we should take based on ME status */
static me_bios_path intel_me_path(struct device *dev)
{
me_bios_path path = ME_DISABLE_BIOS_PATH;
union me_hfs hfs;
union me_gmes gmes;
/* S3 wake skips all MKHI messages */
if (acpi_is_wakeup_s3())
return ME_S3WAKE_BIOS_PATH;
hfs.raw = pci_read_config32(dev, PCI_ME_HFS);
gmes.raw = pci_read_config32(dev, PCI_ME_GMES);
/* Check and dump status */
intel_me_status(&hfs, &gmes);
/* Check Current Working State */
switch (hfs.working_state) {
case ME_HFS_CWS_NORMAL:
path = ME_NORMAL_BIOS_PATH;
break;
case ME_HFS_CWS_REC:
path = ME_RECOVERY_BIOS_PATH;
break;
default:
path = ME_DISABLE_BIOS_PATH;
break;
}
/* Check Current Operation Mode */
switch (hfs.operation_mode) {
case ME_HFS_MODE_NORMAL:
break;
case ME_HFS_MODE_DEBUG:
case ME_HFS_MODE_DIS:
case ME_HFS_MODE_OVER_JMPR:
case ME_HFS_MODE_OVER_MEI:
default:
path = ME_DISABLE_BIOS_PATH;
break;
}
/* Check for any error code and valid firmware */
if (hfs.error_code || hfs.fpt_bad)
path = ME_ERROR_BIOS_PATH;
if (CONFIG(ELOG) && path != ME_NORMAL_BIOS_PATH) {
struct elog_event_data_me_extended data = {
.current_working_state = hfs.working_state,
.operation_state = hfs.operation_state,
.operation_mode = hfs.operation_mode,
.error_code = hfs.error_code,
.progress_code = gmes.progress_code,
.current_pmevent = gmes.current_pmevent,
.current_state = gmes.current_state,
};
elog_add_event_byte(ELOG_TYPE_MANAGEMENT_ENGINE, path);
elog_add_event_raw(ELOG_TYPE_MANAGEMENT_ENGINE_EXT,
&data, sizeof(data));
}
return path;
}
/* Get ME firmware version */
static int mkhi_get_fw_version(void)
{
struct me_fw_version version;
struct mkhi_header mkhi = {
.group_id = MKHI_GROUP_ID_GEN,
.command = MKHI_GET_FW_VERSION,
};
struct mei_header mei = {
.is_complete = 1,
.host_address = MEI_HOST_ADDRESS,
.client_address = MEI_ADDRESS_MKHI,
.length = sizeof(mkhi),
};
/* Send request and wait for response */
if (mei_sendrecv(&mei, &mkhi, NULL, &version, sizeof(version)) < 0) {
printk(BIOS_ERR, "ME: GET FW VERSION message failed\n");
return -1;
}
printk(BIOS_INFO, "ME: Firmware Version %u.%u.%u.%u (code) "
"%u.%u.%u.%u (recovery)\n",
version.code_major, version.code_minor,
version.code_build_number, version.code_hot_fix,
version.recovery_major, version.recovery_minor,
version.recovery_build_number, version.recovery_hot_fix);
return 0;
}
static inline void print_cap(const char *name, int state)
{
printk(BIOS_DEBUG, "ME Capability: %-30s : %sabled\n",
name, state ? "en" : "dis");
}
/* Get ME Firmware Capabilities */
static int mkhi_get_fwcaps(void)
{
u32 rule_id = 0;
struct me_fwcaps cap;
struct mkhi_header mkhi = {
.group_id = MKHI_GROUP_ID_FWCAPS,
.command = MKHI_FWCAPS_GET_RULE,
};
struct mei_header mei = {
.is_complete = 1,
.host_address = MEI_HOST_ADDRESS,
.client_address = MEI_ADDRESS_MKHI,
.length = sizeof(mkhi) + sizeof(rule_id),
};
/* Send request and wait for response */
if (mei_sendrecv(&mei, &mkhi, &rule_id, &cap, sizeof(cap)) < 0) {
printk(BIOS_ERR, "ME: GET FWCAPS message failed\n");
return -1;
}
print_cap("Full Network manageability", cap.caps_sku.full_net);
print_cap("Regular Network manageability", cap.caps_sku.std_net);
print_cap("Manageability", cap.caps_sku.manageability);
print_cap("Small business technology", cap.caps_sku.small_business);
print_cap("Level III manageability", cap.caps_sku.l3manageability);
print_cap("IntelR Anti-Theft (AT)", cap.caps_sku.intel_at);
print_cap("IntelR Capability Licensing Service (CLS)",
cap.caps_sku.intel_cls);
print_cap("IntelR Power Sharing Technology (MPC)",
cap.caps_sku.intel_mpc);
print_cap("ICC Over Clocking", cap.caps_sku.icc_over_clocking);
print_cap("Protected Audio Video Path (PAVP)", cap.caps_sku.pavp);
print_cap("IPV6", cap.caps_sku.ipv6);
print_cap("KVM Remote Control (KVM)", cap.caps_sku.kvm);
print_cap("Outbreak Containment Heuristic (OCH)", cap.caps_sku.och);
print_cap("Virtual LAN (VLAN)", cap.caps_sku.vlan);
print_cap("TLS", cap.caps_sku.tls);
print_cap("Wireless LAN (WLAN)", cap.caps_sku.wlan);
return 0;
}
/* Check whether ME is present and do basic init */
static void intel_me_init(struct device *dev)
{
me_bios_path path = intel_me_path(dev);
bool need_reset = false;
union me_hfs hfs;
/* Do initial setup and determine the BIOS path */
printk(BIOS_NOTICE, "ME: BIOS path: %s\n", me_get_bios_path_string(path));
u8 me_state = get_uint_option("me_state", 0);
u8 me_state_prev = get_uint_option("me_state_prev", 0);
printk(BIOS_DEBUG, "ME: me_state=%u, me_state_prev=%u\n", me_state, me_state_prev);
switch (path) {
case ME_S3WAKE_BIOS_PATH:
#if CONFIG(HIDE_MEI_ON_ERROR)
case ME_ERROR_BIOS_PATH:
#endif
intel_me_hide(dev);
break;
case ME_NORMAL_BIOS_PATH:
/* Validate the extend register */
if (intel_me_extend_valid(dev) < 0)
break; /* TODO: force recovery mode */
/* Prepare MEI MMIO interface */
if (intel_mei_setup(dev) < 0)
break;
if (CONFIG_DEFAULT_CONSOLE_LOGLEVEL >= BIOS_DEBUG) {
/* Print ME firmware version */
mkhi_get_fw_version();
/* Print ME firmware capabilities */
mkhi_get_fwcaps();
}
/* Put ME in Software Temporary Disable Mode, if needed */
if (me_state == CMOS_ME_STATE_DISABLED
&& CMOS_ME_STATE(me_state_prev) == CMOS_ME_STATE_NORMAL) {
printk(BIOS_INFO, "ME: disabling ME\n");
if (enter_soft_temp_disable()) {
enter_soft_temp_disable_wait();
need_reset = true;
} else {
printk(BIOS_ERR, "ME: failed to enter Soft Temporary Disable mode\n");
}
break;
}
/*
* Leave the ME unlocked in this path.
* It will be locked via SMI command later.
*/
break;
case ME_DISABLE_BIOS_PATH:
/* Bring ME out of Soft Temporary Disable mode, if needed */
hfs.raw = pci_read_config32(dev, PCI_ME_HFS);
if (hfs.operation_mode == ME_HFS_MODE_DIS
&& me_state == CMOS_ME_STATE_NORMAL
&& (CMOS_ME_STATE(me_state_prev) == CMOS_ME_STATE_DISABLED
|| !CMOS_ME_CHANGED(me_state_prev))) {
printk(BIOS_INFO, "ME: re-enabling ME\n");
exit_soft_temp_disable(dev);
exit_soft_temp_disable_wait(dev);
/*
* ME starts loading firmware immediately after writing to H_GS,
* but Lenovo BIOS performs a reboot after bringing ME back to
* Normal mode. Assume that global reset is needed.
*/
need_reset = true;
} else {
intel_me_hide(dev);
}
break;
#if !CONFIG(HIDE_MEI_ON_ERROR)
case ME_ERROR_BIOS_PATH:
#endif
case ME_RECOVERY_BIOS_PATH:
case ME_FIRMWARE_UPDATE_BIOS_PATH:
break;
}
/* To avoid boot loops if ME fails to get back from disabled mode,
set the 'changed' bit here. */
if (me_state != CMOS_ME_STATE(me_state_prev) || need_reset) {
u8 new_state = me_state | CMOS_ME_STATE_CHANGED;
set_uint_option("me_state_prev", new_state);
}
if (need_reset) {
set_global_reset(true);
full_reset();
}
}
static struct device_operations device_ops = {
.read_resources = pci_dev_read_resources,
.set_resources = pci_dev_set_resources,
.enable_resources = pci_dev_enable_resources,
.init = intel_me_init,
.ops_pci = &pci_dev_ops_pci,
};
static const struct pci_driver intel_me __pci_driver = {
.ops = &device_ops,
.vendor = PCI_VID_INTEL,
.device = 0x1c3a,
};
|