1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
|
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2013 DMP Electronics Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <console/console.h>
#include <device/device.h>
#include <device/pci.h>
#include <device/pci_ops.h>
#include <device/pci_ids.h>
#include <pc80/mc146818rtc.h>
#include <string.h>
#include "arch/io.h"
#include "chip.h"
#include "southbridge.h"
/* IRQ number to S/B PCI Interrupt routing table reg(0x58/0xb4) mapping table. */
static const unsigned char irq_to_int_routing[16] = {
0x0, 0x0, 0x0, 0x2, // IRQ0-2 is unmappable, IRQ3 = 2.
0x4, 0x5, 0x7, 0x6, // IRQ4-7 = 4, 5, 7, 6.
0x0, 0x1, 0x3, 0x9, // IRQ8 is unmappable, IRQ9-11 = 1, 3, 9.
0xb, 0x0, 0xd, 0xf // IRQ12 = b, IRQ13 is unmappable, IRQ14-15 = d, f.
};
/* S/B PCI Interrupt routing table reg(0x58) field bit shift. */
#define EHCIH_IRQ_SHIFT 28
#define OHCII_IRQ_SHIFT 24
#define MAC_IRQ_SHIFT 16
#define RT3_IRQ_SHIFT 12
#define RT2_IRQ_SHIFT 8
#define RT1_IRQ_SHIFT 4
#define RT0_IRQ_SHIFT 0
/* S/B Extend PCI Interrupt routing table reg(0xb4) field bit shift. */
#define USBD_IRQ_SHIFT 16
#define SIDE_IRQ_SHIFT 12
#define PIDE_IRQ_SHIFT 8
/* in-chip PCI device IRQs(0 for disabled). */
#define EHCII_IRQ 5
#define OHCII_IRQ 5
#define MAC_IRQ 6
#define USBD_IRQ 0
#define PIDE_IRQ 5
/* RT0-3 IRQs. */
#define RT3_IRQ 3
#define RT2_IRQ 4
#define RT1_IRQ 5
#define RT0_IRQ 6
/* IDE legacy mode IRQs. */
#define IDE1_LEGACY_IRQ 14
#define IDE2_LEGACY_IRQ 15
/* Internal parallel port */
#define LPT_INT_C 0
#define LPT_INT_ACK_SET 0
#define LPT_UE 1
#define LPT_PDMAS 0
#define LPT_DREQS 0
/* Post codes */
#define POST_KBD_FW_UPLOAD 0x06
#define POST_KBD_CHK_READY 0x07
#define POST_KBD_IS_READY 0x08
#define POST_KBD_FW_VERIFY_FAILURE 0x82
static u8 get_pci_dev_func(device_t dev)
{
return PCI_FUNC(dev->path.pci.devfn);
}
static void verify_dmp_keyboard_error(void)
{
post_code(POST_KBD_FW_VERIFY_FAILURE);
die("Internal keyboard firmware verify error!\n");
}
static void upload_dmp_keyboard_firmware(struct device *dev)
{
u32 reg_sb_c0;
u32 fwptr;
// enable firmware uploading function by set bit 10.
post_code(POST_KBD_FW_UPLOAD);
reg_sb_c0 = pci_read_config32(dev, SB_REG_IPFCR);
pci_write_config32(dev, SB_REG_IPFCR, reg_sb_c0 | 0x400);
outw(0, 0x62); // reset upload address to 0.
// upload 4096 bytes from 0xFFFFE000.
outsb(0x66, (u8 *) 0xffffe000, 4096);
// upload 4096 bytes from 0xFFFFC000.
outsb(0x66, (u8 *) 0xffffc000, 4096);
outw(0, 0x62); // reset upload address to 0.
// verify 4096 bytes from 0xFFFFE000.
for (fwptr = 0xffffe000; fwptr < 0xfffff000; fwptr++) {
if (inb(0x66) != *(u8 *) fwptr) {
verify_dmp_keyboard_error();
}
}
// verify 4096 bytes from 0xFFFFC000.
for (fwptr = 0xffffc000; fwptr < 0xffffd000; fwptr++) {
if (inb(0x66) != *(u8 *) fwptr) {
verify_dmp_keyboard_error();
}
}
// disable firmware uploading.
pci_write_config32(dev, SB_REG_IPFCR, reg_sb_c0 & ~0x400L);
// wait keyboard controller ready by checking status port bit 2.
post_code(POST_KBD_CHK_READY);
while ((inb(0x64) & 0x4) == 0) {
}
post_code(POST_KBD_IS_READY);
}
static void pci_routing_fixup(struct device *dev)
{
const unsigned slot[3] = { 0 };
const unsigned char slot_irqs[1][4] = {
{RT0_IRQ, RT1_IRQ, RT2_IRQ, RT3_IRQ},
};
const int slot_num = 1;
int i;
u32 int_routing = 0;
u32 ext_int_routing = 0;
/* assign PCI-e bridge (bus#0, dev#1, fn#0) IRQ to RT0. */
pci_assign_irqs(0, 1, slot_irqs[0]);
/* RT0 is enabled. */
int_routing |= irq_to_int_routing[RT0_IRQ] << RT0_IRQ_SHIFT;
/* assign PCI slot IRQs. */
for (i = 0; i < slot_num; i++) {
pci_assign_irqs(1, slot[i], slot_irqs[i]);
}
/* Read PCI slot IRQs to see if RT1-3 is used, and enables it */
for (i = 0; i < slot_num; i++) {
unsigned int funct;
device_t pdev;
u8 irq;
/* Each slot may contain up to eight functions. */
for (funct = 0; funct < 8; funct++) {
pdev = dev_find_slot(1, (slot[i] << 3) + funct);
if (!pdev)
continue;
irq = pci_read_config8(pdev, PCI_INTERRUPT_LINE);
if (irq == RT1_IRQ) {
int_routing |= irq_to_int_routing[RT1_IRQ] << RT1_IRQ_SHIFT;
} else if (irq == RT2_IRQ) {
int_routing |= irq_to_int_routing[RT2_IRQ] << RT2_IRQ_SHIFT;
} else if (irq == RT3_IRQ) {
int_routing |= irq_to_int_routing[RT3_IRQ] << RT3_IRQ_SHIFT;
}
}
}
/* Setup S/B PCI Interrupt routing table reg(0x58). */
int_routing |= irq_to_int_routing[EHCII_IRQ] << EHCIH_IRQ_SHIFT;
int_routing |= irq_to_int_routing[OHCII_IRQ] << OHCII_IRQ_SHIFT;
int_routing |= irq_to_int_routing[MAC_IRQ] << MAC_IRQ_SHIFT;
pci_write_config32(dev, SB_REG_PIRQ_X_ROUT, int_routing);
/* Setup S/B PCI Extend Interrupt routing table reg(0xb4). */
ext_int_routing |= irq_to_int_routing[USBD_IRQ] << USBD_IRQ_SHIFT;
#if CONFIG_IDE_NATIVE_MODE
/* IDE in native mode, only uses one IRQ. */
ext_int_routing |= irq_to_int_routing[0] << SIDE_IRQ_SHIFT;
ext_int_routing |= irq_to_int_routing[PIDE_IRQ] << PIDE_IRQ_SHIFT;
#else
/* IDE in legacy mode, use IRQ 14, 15. */
ext_int_routing |= irq_to_int_routing[IDE2_LEGACY_IRQ] << SIDE_IRQ_SHIFT;
ext_int_routing |= irq_to_int_routing[IDE1_LEGACY_IRQ] << PIDE_IRQ_SHIFT;
#endif
pci_write_config32(dev, SB_REG_PIRQ_X_ROUT2, ext_int_routing);
/* Assign in-chip PCI device IRQs. */
if (MAC_IRQ) {
unsigned char irqs[4] = { MAC_IRQ, 0, 0, 0 };
pci_assign_irqs(0, 0x8, irqs);
}
if (OHCII_IRQ && EHCII_IRQ) {
unsigned char irqs[4] = { OHCII_IRQ, EHCII_IRQ, 0, 0 };
pci_assign_irqs(0, 0xa, irqs);
}
if (CONFIG_IDE_NATIVE_MODE && PIDE_IRQ) {
/* IDE in native mode, setup PCI IRQ. */
unsigned char irqs[4] = { PIDE_IRQ, 0, 0, 0 };
pci_assign_irqs(0, 0xc, irqs);
}
if (USBD_IRQ) {
unsigned char irqs[4] = { USBD_IRQ, 0, 0, 0 };
pci_assign_irqs(0, 0xf, irqs);
}
}
static void vortex_sb_init(struct device *dev)
{
u32 lpt_reg = 0;
#if CONFIG_LPT_ENABLE
int ppmod = 0;
#if CONFIG_LPT_MODE_BPP
ppmod = 0;
#elif CONFIG_LPT_MODE_EPP_19_AND_SPP
ppmod = 1;
#elif CONFIG_LPT_MODE_ECP
ppmod = 2;
#elif CONFIG_LPT_MODE_ECP_AND_EPP_19
ppmod = 3;
#elif CONFIG_LPT_MODE_SPP
ppmod = 4;
#elif CONFIG_LPT_MODE_EPP_17_AND_SPP
ppmod = 5;
#elif CONFIG_LPT_MODE_ECP_AND_EPP_17
ppmod = 7;
#else
#error CONFIG_LPT_MODE error.
#endif
/* Setup internal parallel port */
lpt_reg |= (LPT_INT_C << 28);
lpt_reg |= (LPT_INT_ACK_SET << 27);
lpt_reg |= (ppmod << 24);
lpt_reg |= (LPT_UE << 23);
lpt_reg |= (LPT_PDMAS << 22);
lpt_reg |= (LPT_DREQS << 20);
lpt_reg |= (irq_to_int_routing[CONFIG_LPT_IRQ] << 16);
lpt_reg |= (CONFIG_LPT_IO << 0);
#endif // CONFIG_LPT_ENABLE
pci_write_config32(dev, SB_REG_IPPCR, lpt_reg);
}
#define SETUP_GPIO_ADDR(n) \
u32 cfg##n = (CONFIG_GPIO_P##n##_DIR_ADDR << 16) | (CONFIG_GPIO_P##n##_DATA_ADDR);\
outl(cfg##n, base + 4 + (n * 4));\
gpio_enable_mask |= (1 << n);
#define INIT_GPIO(n) \
outb(CONFIG_GPIO_P##n##_INIT_DIR, CONFIG_GPIO_P##n##_DIR_ADDR);\
outb(CONFIG_GPIO_P##n##_INIT_DATA, CONFIG_GPIO_P##n##_DATA_ADDR);
static void ex_sb_gpio_init(struct device *dev)
{
const int base = 0xb00;
u32 gpio_enable_mask = 0;
/* S/B register 63h - 62h : GPIO Port Config IO Base Address */
pci_write_config16(dev, SB_REG_GPIO_CFG_IO_BASE, base | 1);
/* Set GPIO port 0~9 base address.
* Config Base + 04h, 08h, 0ch... : GPIO port 0~9 data/dir decode addr.
* Bit 31-16 : DBA, GPIO direction base address.
* Bit 15-0 : DPBA, GPIO data port base address.
* */
#if CONFIG_GPIO_P0_ENABLE
SETUP_GPIO_ADDR(0)
#endif
#if CONFIG_GPIO_P1_ENABLE
SETUP_GPIO_ADDR(1)
#endif
#if CONFIG_GPIO_P2_ENABLE
SETUP_GPIO_ADDR(2)
#endif
#if CONFIG_GPIO_P3_ENABLE
SETUP_GPIO_ADDR(3)
#endif
#if CONFIG_GPIO_P4_ENABLE
SETUP_GPIO_ADDR(4)
#endif
#if CONFIG_GPIO_P5_ENABLE
SETUP_GPIO_ADDR(5)
#endif
#if CONFIG_GPIO_P6_ENABLE
SETUP_GPIO_ADDR(6)
#endif
#if CONFIG_GPIO_P7_ENABLE
SETUP_GPIO_ADDR(7)
#endif
#if CONFIG_GPIO_P8_ENABLE
SETUP_GPIO_ADDR(8)
#endif
#if CONFIG_GPIO_P9_ENABLE
SETUP_GPIO_ADDR(9)
#endif
/* Enable GPIO port 0~9. */
outl(gpio_enable_mask, base);
/* Set GPIO port 0-9 initial dir and data. */
#if CONFIG_GPIO_P0_ENABLE
INIT_GPIO(0)
#endif
#if CONFIG_GPIO_P1_ENABLE
INIT_GPIO(1)
#endif
#if CONFIG_GPIO_P2_ENABLE
INIT_GPIO(2)
#endif
#if CONFIG_GPIO_P3_ENABLE
INIT_GPIO(3)
#endif
#if CONFIG_GPIO_P4_ENABLE
INIT_GPIO(4)
#endif
#if CONFIG_GPIO_P5_ENABLE
INIT_GPIO(5)
#endif
#if CONFIG_GPIO_P6_ENABLE
INIT_GPIO(6)
#endif
#if CONFIG_GPIO_P7_ENABLE
INIT_GPIO(7)
#endif
#if CONFIG_GPIO_P8_ENABLE
INIT_GPIO(8)
#endif
#if CONFIG_GPIO_P9_ENABLE
INIT_GPIO(9)
#endif
/* Disable GPIO Port Config IO Base Address. */
pci_write_config16(dev, SB_REG_GPIO_CFG_IO_BASE, 0x0);
}
static u32 make_uart_config(u16 base, u8 irq)
{
u8 mapped_irq = irq_to_int_routing[irq];
u32 cfg = 0;
cfg |= 1 << 23; // UE = enabled.
cfg |= (mapped_irq << 16); // UIRT.
cfg |= base; // UIOA.
return cfg;
}
#define SETUP_UART(n) \
uart_cfg = make_uart_config(CONFIG_UART##n##_IO, CONFIG_UART##n##_IRQ);\
outl(uart_cfg, base + (n - 1) * 4);\
uart8250_init(CONFIG_UART##n##_IO, 115200 / CONFIG_UART##n##_BAUD);
static void ex_sb_uart_init(struct device *dev)
{
const int base = 0xc00;
u32 uart_cfg = 0;
/* S/B register 61h - 60h : UART Config IO Base Address */
pci_write_config16(dev, SB_REG_UART_CFG_IO_BASE, base | 1);
/* setup UART */
#if CONFIG_UART1_ENABLE
SETUP_UART(1)
#endif
#if CONFIG_UART2_ENABLE
SETUP_UART(2)
#endif
#if CONFIG_UART3_ENABLE
SETUP_UART(3)
#endif
#if CONFIG_UART4_ENABLE
SETUP_UART(4)
#endif
#if CONFIG_UART5_ENABLE
SETUP_UART(5)
#endif
#if CONFIG_UART6_ENABLE
SETUP_UART(6)
#endif
#if CONFIG_UART7_ENABLE
SETUP_UART(7)
#endif
#if CONFIG_UART8_ENABLE
SETUP_UART(8)
#endif
#if CONFIG_UART9_ENABLE
SETUP_UART(9)
#endif
#if CONFIG_UART10_ENABLE
SETUP_UART(10)
#endif
/* Keep UART Config I/O base address */
//pci_write_config16(SB, SB_REG_UART_CFG_IO_BASE, 0x0);
}
static int get_rtc_update_in_progress(void)
{
if (cmos_read(RTC_REG_A) & RTC_UIP)
return 1;
return 0;
}
static void unsafe_read_cmos_rtc(u8 rtc[7])
{
rtc[0] = cmos_read(RTC_CLK_ALTCENTURY);
rtc[1] = cmos_read(RTC_CLK_YEAR);
rtc[2] = cmos_read(RTC_CLK_MONTH);
rtc[3] = cmos_read(RTC_CLK_DAYOFMONTH);
rtc[4] = cmos_read(RTC_CLK_HOUR);
rtc[5] = cmos_read(RTC_CLK_MINUTE);
rtc[6] = cmos_read(RTC_CLK_SECOND);
}
static void read_cmos_rtc(u8 rtc[7])
{
/* Read RTC twice and check update-in-progress flag, to make
* sure RTC is correct */
u8 rtc_old[7], rtc_new[7];
while (get_rtc_update_in_progress()) ;
unsafe_read_cmos_rtc(rtc_new);
do {
memcpy(rtc_old, rtc_new, 7);
while (get_rtc_update_in_progress()) ;
unsafe_read_cmos_rtc(rtc_new);
} while (memcmp(rtc_new, rtc_old, 7) != 0);
}
/*
* Convert a number in decimal format into the BCD format.
* Return 255 if not a valid BCD value.
*/
static u8 bcd2dec(u8 bcd)
{
u8 h, l;
h = bcd >> 4;
l = bcd & 0xf;
if (h > 9 || l > 9)
return 255;
return h * 10 + l;
}
static void fix_cmos_rtc_time(void)
{
/* Read RTC data. */
u8 rtc[7];
read_cmos_rtc(rtc);
/* Convert RTC from BCD format to binary. */
u8 bin_rtc[7];
int i;
for (i = 0; i < 8; i++) {
bin_rtc[i] = bcd2dec(rtc[i]);
}
/* If RTC date is invalid, fix it. */
if (bin_rtc[0] > 99 || bin_rtc[1] > 99 || bin_rtc[2] > 12 || bin_rtc[3] > 31) {
/* Set PC compatible timing mode. */
cmos_write(0x26, RTC_REG_A);
cmos_write(0x02, RTC_REG_B);
/* Now setup a default date 2008/08/08 08:08:08. */
cmos_write(0x8, RTC_CLK_SECOND);
cmos_write(0x8, RTC_CLK_MINUTE);
cmos_write(0x8, RTC_CLK_HOUR);
cmos_write(0x6, RTC_CLK_DAYOFWEEK); /* Friday */
cmos_write(0x8, RTC_CLK_DAYOFMONTH);
cmos_write(0x8, RTC_CLK_MONTH);
cmos_write(0x8, RTC_CLK_YEAR);
cmos_write(0x20, RTC_CLK_ALTCENTURY);
}
}
static void vortex86_sb_set_io_resv(device_t dev, u32 io_resv_size)
{
struct resource *res;
res = new_resource(dev, 1);
res->base = 0x0UL;
res->size = io_resv_size;
res->limit = 0xffffUL;
res->flags = IORESOURCE_IO | IORESOURCE_ASSIGNED | IORESOURCE_FIXED;
}
static void vortex86_sb_set_spi_flash_size(device_t dev, u32 flash_size)
{
/* SPI flash is in topmost of 4G memory space */
struct resource *res;
res = new_resource(dev, 2);
res->base = 0x100000000LL - flash_size;
res->size = flash_size;
res->limit = 0xffffffffUL;
res->flags = IORESOURCE_MEM | IORESOURCE_FIXED | IORESOURCE_STORED | IORESOURCE_ASSIGNED;
}
static void vortex86_sb_read_resources(device_t dev)
{
u32 flash_size = 8 * 1024 * 1024;
pci_dev_read_resources(dev);
if (dev->device == 0x6011) {
/* It is EX CPU southbridge */
if (get_pci_dev_func(dev) != 0) {
/* only for function 0, skip function 1 */
return;
}
/* default SPI flash ROM is 64MB */
flash_size = 64 * 1024 * 1024;
}
/* Reserve space for I/O */
vortex86_sb_set_io_resv(dev, 0x1000UL);
/* Reserve space for flash */
vortex86_sb_set_spi_flash_size(dev, flash_size);
}
static void southbridge_init(struct device *dev)
{
if (dev->device == 0x6011) {
/* It is EX CPU southbridge */
if (get_pci_dev_func(dev) != 0) {
/* only for function 0, skip function 1 */
return;
}
}
upload_dmp_keyboard_firmware(dev);
vortex_sb_init(dev);
if (dev->device == 0x6011) {
ex_sb_gpio_init(dev);
ex_sb_uart_init(dev);
}
pci_routing_fixup(dev);
fix_cmos_rtc_time();
rtc_init(0);
}
static struct device_operations vortex_sb_ops = {
.read_resources = vortex86_sb_read_resources,
.set_resources = pci_dev_set_resources,
.enable_resources = pci_dev_enable_resources,
.init = &southbridge_init,
.scan_bus = scan_static_bus,
.enable = 0,
.ops_pci = 0,
};
static const struct pci_driver pci_driver_6011 __pci_driver = {
.ops = &vortex_sb_ops,
.vendor = PCI_VENDOR_ID_RDC,
.device = 0x6011, /* EX CPU S/B ID */
};
struct chip_operations southbridge_dmp_vortex86ex_ops = {
CHIP_NAME("DMP Vortex86EX Southbridge")
.enable_dev = 0
};
|