1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
|
/* SPDX-License-Identifier: GPL-2.0-only */
#ifndef _HUDSON_EARLY_SETUP_C_
#define _HUDSON_EARLY_SETUP_C_
#include <assert.h>
#include <stdint.h>
#include <amdblocks/acpimmio.h>
#include <device/mmio.h>
#include <device/pci_ops.h>
#include "hudson.h"
#include "pci_devs.h"
#include <Fch/Fch.h>
void hudson_pci_port80(void)
{
u8 byte;
pci_devfn_t dev;
/* P2P Bridge */
dev = PCI_DEV(0, 0x14, 4);
/* Chip Control: Enable subtractive decoding */
byte = pci_read_config8(dev, 0x40);
byte |= 1 << 5;
pci_write_config8(dev, 0x40, byte);
/* Misc Control: Enable subtractive decoding if 0x40 bit 5 is set */
byte = pci_read_config8(dev, 0x4B);
byte |= 1 << 7;
pci_write_config8(dev, 0x4B, byte);
/* The same IO Base and IO Limit here is meaningful because we set the
* bridge to be subtractive. During early setup stage, we have to make
* sure that data can go through port 0x80.
*/
/* IO Base: 0xf000 */
byte = pci_read_config8(dev, 0x1C);
byte |= 0xF << 4;
pci_write_config8(dev, 0x1C, byte);
/* IO Limit: 0xf000 */
byte = pci_read_config8(dev, 0x1D);
byte |= 0xF << 4;
pci_write_config8(dev, 0x1D, byte);
/* PCI Command: Enable IO response */
byte = pci_read_config8(dev, 0x04);
byte |= 1 << 0;
pci_write_config8(dev, 0x04, byte);
/* LPC controller */
dev = PCI_DEV(0, 0x14, 3);
byte = pci_read_config8(dev, 0x4A);
byte &= ~(1 << 5); /* disable lpc port 80 */
pci_write_config8(dev, 0x4A, byte);
}
void hudson_lpc_port80(void)
{
u8 byte;
/* Enable port 80 LPC decode in pci function 3 configuration space. */
const pci_devfn_t dev = PCI_DEV(0, 0x14, 3);
byte = pci_read_config8(dev, 0x4a);
byte |= 1 << 5; /* enable port 80 */
pci_write_config8(dev, 0x4a, byte);
}
void hudson_lpc_decode(void)
{
u32 tmp;
/* Enable LPC controller */
pm_write8(0xec, pm_read8(0xec) | 0x01);
const pci_devfn_t dev = PCI_DEV(0, 0x14, 3);
/* Serial port numeration on Hudson:
* PORT0 - 0x3f8
* PORT1 - 0x2f8
* PORT5 - 0x2e8
* PORT7 - 0x3e8
*/
tmp = DECODE_ENABLE_SERIAL_PORT0 | DECODE_ENABLE_SERIAL_PORT1
| DECODE_ENABLE_SERIAL_PORT5 | DECODE_ENABLE_SERIAL_PORT7;
pci_write_config32(dev, LPC_IO_PORT_DECODE_ENABLE, tmp);
}
static void enable_wideio(uint8_t port, uint16_t size)
{
uint32_t wideio_enable[] = {
LPC_WIDEIO0_ENABLE,
LPC_WIDEIO1_ENABLE,
LPC_WIDEIO2_ENABLE
};
uint32_t alt_wideio_enable[] = {
LPC_ALT_WIDEIO0_ENABLE,
LPC_ALT_WIDEIO1_ENABLE,
LPC_ALT_WIDEIO2_ENABLE
};
const pci_devfn_t dev = PCI_DEV(0, PCU_DEV, LPC_FUNC);
uint32_t tmp;
/* Only allow port 0-2 */
assert(port <= ARRAY_SIZE(wideio_enable));
if (size == 16) {
tmp = pci_read_config32(dev, LPC_ALT_WIDEIO_RANGE_ENABLE);
tmp |= alt_wideio_enable[port];
pci_write_config32(dev, LPC_ALT_WIDEIO_RANGE_ENABLE, tmp);
} else { /* 512 */
tmp = pci_read_config32(dev, LPC_ALT_WIDEIO_RANGE_ENABLE);
tmp &= ~alt_wideio_enable[port];
pci_write_config32(dev, LPC_ALT_WIDEIO_RANGE_ENABLE, tmp);
}
/* Enable the range */
tmp = pci_read_config32(dev, LPC_IO_OR_MEM_DECODE_ENABLE);
tmp |= wideio_enable[port];
pci_write_config32(dev, LPC_IO_OR_MEM_DECODE_ENABLE, tmp);
}
/*
* lpc_wideio_window() may be called any point in romstage, but take
* care that AGESA doesn't overwrite the range this function used.
* The function checks if there is an empty range and if all ranges are
* used the function throws an assert. The function doesn't check for a
* duplicate range, for ranges that can be merged into a single
* range, or ranges that overlap.
*
* The developer is expected to ensure that there are no conflicts.
*/
static void lpc_wideio_window(uint16_t base, uint16_t size)
{
const pci_devfn_t dev = PCI_DEV(0, PCU_DEV, LPC_FUNC);
u32 tmp;
/* Support 512 or 16 bytes per range */
assert(size == 512 || size == 16);
/* Find and open Base Register and program it */
tmp = pci_read_config32(dev, LPC_WIDEIO_GENERIC_PORT);
if ((tmp & 0xFFFF) == 0) { /* WIDEIO0 */
tmp |= base;
pci_write_config32(dev, LPC_WIDEIO_GENERIC_PORT, tmp);
enable_wideio(0, size);
} else if ((tmp & 0xFFFF0000) == 0) { /* WIDEIO1 */
tmp |= (base << 16);
pci_write_config32(dev, LPC_WIDEIO_GENERIC_PORT, tmp);
enable_wideio(1, size);
} else { /* Check WIDEIO2 register */
tmp = pci_read_config32(dev, LPC_WIDEIO2_GENERIC_PORT);
if ((tmp & 0xFFFF) == 0) { /* WIDEIO2 */
tmp |= base;
pci_write_config32(dev, LPC_WIDEIO2_GENERIC_PORT, tmp);
enable_wideio(2, size);
} else { /* All WIDEIO locations used*/
BUG();
}
}
}
void lpc_wideio_512_window(uint16_t base)
{
assert(IS_ALIGNED(base, 512));
lpc_wideio_window(base, 512);
}
void lpc_wideio_16_window(uint16_t base)
{
assert(IS_ALIGNED(base, 16));
lpc_wideio_window(base, 16);
}
void hudson_clk_output_48Mhz(void)
{
u32 ctrl;
/*
* Enable the X14M_25M_48M_OSC pin and leaving it at it's default so
* 48Mhz will be on ball AP13 (FT3b package)
*/
ctrl = misc_read32(FCH_MISC_REG40);
/* clear the OSCOUT1_ClkOutputEnb to enable the 48 Mhz clock */
ctrl &= (u32)~(1<<2);
misc_write32(FCH_MISC_REG40, ctrl);
}
static uintptr_t hudson_spibase(void)
{
/* Make sure the base address is predictable */
const pci_devfn_t dev = PCI_DEV(0, 0x14, 3);
u32 base = pci_read_config32(dev, SPIROM_BASE_ADDRESS_REGISTER)
& 0xfffffff0;
if (!base){
base = SPI_BASE_ADDRESS;
pci_write_config32(dev, SPIROM_BASE_ADDRESS_REGISTER, base
| SPI_ROM_ENABLE);
/* PCI_COMMAND_MEMORY is read-only and enabled. */
}
return (uintptr_t)base;
}
void hudson_set_spi100(u16 norm, u16 fast, u16 alt, u16 tpm)
{
uintptr_t base = hudson_spibase();
write16((void *)(base + SPI100_SPEED_CONFIG),
(norm << SPI_NORM_SPEED_NEW_SH) |
(fast << SPI_FAST_SPEED_NEW_SH) |
(alt << SPI_ALT_SPEED_NEW_SH) |
(tpm << SPI_TPM_SPEED_NEW_SH));
write16((void *)(base + SPI100_ENABLE), SPI_USE_SPI100 |
read16((void *)(base + SPI100_ENABLE)));
}
void hudson_disable_4dw_burst(void)
{
uintptr_t base = hudson_spibase();
write16((void *)(base + SPI100_HOST_PREF_CONFIG),
read16((void *)(base + SPI100_HOST_PREF_CONFIG))
& ~SPI_RD4DW_EN_HOST);
}
/* Hudson 1-3 only. For Hudson 1, call with fast=1 */
void hudson_set_readspeed(u16 norm, u16 fast)
{
uintptr_t base = hudson_spibase();
write16((void *)(base + SPI_CNTRL1),
(read16((void *)(base + SPI_CNTRL1))
& ~SPI_CNTRL1_SPEED_MASK)
| (norm << SPI_NORM_SPEED_SH)
| (fast << SPI_FAST_SPEED_SH));
}
void hudson_read_mode(u32 mode)
{
uintptr_t base = hudson_spibase();
write32((void *)(base + SPI_CNTRL0),
(read32((void *)(base + SPI_CNTRL0))
& ~SPI_READ_MODE_MASK) | mode);
}
void hudson_tpm_decode_spi(void)
{
const pci_devfn_t dev = PCI_DEV(0, 0x14, 3); /* LPC device */
u32 spibase = pci_read_config32(dev, SPIROM_BASE_ADDRESS_REGISTER);
pci_write_config32(dev, SPIROM_BASE_ADDRESS_REGISTER, spibase
| ROUTE_TPM_2_SPI);
}
#endif
|