1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
|
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Taken and adapted from U-Boot.
*/
#include "sdram.h"
#include <types.h>
#include <device/mmio.h>
#include <delay.h>
#include "clock.h"
static struct vtp_reg *vtpreg[2] = {(struct vtp_reg *)VTP0_CTRL_ADDR,
(struct vtp_reg *)VTP1_CTRL_ADDR};
/**
* Base address for EMIF instances
*/
static struct emif_reg_struct *emif_reg[2] = {(struct emif_reg_struct *)EMIF4_0_CFG_BASE,
(struct emif_reg_struct *)EMIF4_1_CFG_BASE};
/**
* Base addresses for DDR PHY cmd/data regs
*/
static struct ddr_cmd_regs *ddr_cmd_reg[2] = {(struct ddr_cmd_regs *)DDR_PHY_CMD_ADDR,
(struct ddr_cmd_regs *)DDR_PHY_CMD_ADDR2};
static struct ddr_data_regs *ddr_data_reg[2] = {(struct ddr_data_regs *)DDR_PHY_DATA_ADDR,
(struct ddr_data_regs *)DDR_PHY_DATA_ADDR2};
/**
* Base address for ddr io control instances
*/
static struct ddr_cmdtctrl *ioctrl_reg = {(struct ddr_cmdtctrl *)DDR_CONTROL_BASE_ADDR};
struct ctrl_stat *cstat = (struct ctrl_stat *)CTRL_BASE;
static struct ddr_ctrl *ddrctrl = (struct ddr_ctrl *)DDR_CTRL_ADDR;
static void config_vtp(int nr)
{
write32(&vtpreg[nr]->vtp0ctrlreg, read32(&vtpreg[nr]->vtp0ctrlreg) | VTP_CTRL_ENABLE);
write32(&vtpreg[nr]->vtp0ctrlreg,
read32(&vtpreg[nr]->vtp0ctrlreg) & (~VTP_CTRL_START_EN));
write32(&vtpreg[nr]->vtp0ctrlreg, read32(&vtpreg[nr]->vtp0ctrlreg) | VTP_CTRL_START_EN);
/* Poll for READY */
while ((read32(&vtpreg[nr]->vtp0ctrlreg) & VTP_CTRL_READY) != VTP_CTRL_READY)
;
}
/**
* Configure SDRAM
*/
static void config_sdram(const struct emif_regs *regs, int nr)
{
if (regs->zq_config) {
write32(&emif_reg[nr]->emif_zq_config, regs->zq_config);
write32(&cstat->secure_emif_sdram_config, regs->sdram_config);
write32(&emif_reg[nr]->emif_sdram_config, regs->sdram_config);
/* Trigger initialization */
write32(&emif_reg[nr]->emif_sdram_ref_ctrl, 0x00003100);
/* Wait 1ms because of L3 timeout error */
udelay(1000);
/* Write proper sdram_ref_cref_ctrl value */
write32(&emif_reg[nr]->emif_sdram_ref_ctrl, regs->ref_ctrl);
write32(&emif_reg[nr]->emif_sdram_ref_ctrl_shdw, regs->ref_ctrl);
}
write32(&emif_reg[nr]->emif_sdram_ref_ctrl, regs->ref_ctrl);
write32(&emif_reg[nr]->emif_sdram_ref_ctrl_shdw, regs->ref_ctrl);
write32(&emif_reg[nr]->emif_sdram_config, regs->sdram_config);
/* Write REG_COS_COUNT_1, REG_COS_COUNT_2, and REG_PR_OLD_COUNT. */
if (regs->ocp_config)
write32(&emif_reg[nr]->emif_l3_config, regs->ocp_config);
}
/**
* Configure DDR DATA registers
*/
static void config_ddr_data(const struct ddr_data *data, int nr)
{
int i;
if (!data)
return;
for (i = 0; i < DDR_DATA_REGS_NR; i++) {
write32(&(ddr_data_reg[nr] + i)->dt0rdsratio0, data->datardsratio0);
write32(&(ddr_data_reg[nr] + i)->dt0wdsratio0, data->datawdsratio0);
write32(&(ddr_data_reg[nr] + i)->dt0wiratio0, data->datawiratio0);
write32(&(ddr_data_reg[nr] + i)->dt0giratio0, data->datagiratio0);
write32(&(ddr_data_reg[nr] + i)->dt0fwsratio0, data->datafwsratio0);
write32(&(ddr_data_reg[nr] + i)->dt0wrsratio0, data->datawrsratio0);
}
}
static void config_io_ctrl(const struct ctrl_ioregs *ioregs)
{
if (!ioregs)
return;
write32(&ioctrl_reg->cm0ioctl, ioregs->cm0ioctl);
write32(&ioctrl_reg->cm1ioctl, ioregs->cm1ioctl);
write32(&ioctrl_reg->cm2ioctl, ioregs->cm2ioctl);
write32(&ioctrl_reg->dt0ioctl, ioregs->dt0ioctl);
write32(&ioctrl_reg->dt1ioctl, ioregs->dt1ioctl);
}
/**
* Configure DDR CMD control registers
*/
static void config_cmd_ctrl(const struct cmd_control *cmd, int nr)
{
if (!cmd)
return;
write32(&ddr_cmd_reg[nr]->cm0csratio, cmd->cmd0csratio);
write32(&ddr_cmd_reg[nr]->cm0iclkout, cmd->cmd0iclkout);
write32(&ddr_cmd_reg[nr]->cm1csratio, cmd->cmd1csratio);
write32(&ddr_cmd_reg[nr]->cm1iclkout, cmd->cmd1iclkout);
write32(&ddr_cmd_reg[nr]->cm2csratio, cmd->cmd2csratio);
write32(&ddr_cmd_reg[nr]->cm2iclkout, cmd->cmd2iclkout);
}
static inline uint32_t get_emif_rev(uint32_t base)
{
struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
return (read32(&emif->emif_mod_id_rev) & EMIF_REG_MAJOR_REVISION_MASK)
>> EMIF_REG_MAJOR_REVISION_SHIFT;
}
/*
* Get SDRAM type connected to EMIF.
* Assuming similar SDRAM parts are connected to both EMIF's
* which is typically the case. So it is sufficient to get
* SDRAM type from EMIF1.
*/
static inline uint32_t emif_sdram_type(uint32_t sdram_config)
{
return (sdram_config & EMIF_REG_SDRAM_TYPE_MASK) >> EMIF_REG_SDRAM_TYPE_SHIFT;
}
/*
* Configure EXT PHY registers for software leveling
*/
static void ext_phy_settings_swlvl(const struct emif_regs *regs, int nr)
{
uint32_t *ext_phy_ctrl_base = 0;
uint32_t *emif_ext_phy_ctrl_base = 0;
uint32_t i = 0;
ext_phy_ctrl_base = (uint32_t *)&(regs->emif_ddr_ext_phy_ctrl_1);
emif_ext_phy_ctrl_base = (uint32_t *)&(emif_reg[nr]->emif_ddr_ext_phy_ctrl_1);
/* Configure external phy control timing registers */
for (i = 0; i < EMIF_EXT_PHY_CTRL_TIMING_REG; i++) {
write32(emif_ext_phy_ctrl_base++, *ext_phy_ctrl_base);
/* Update shadow registers */
write32(emif_ext_phy_ctrl_base++, *ext_phy_ctrl_base++);
}
}
/*
* Configure EXT PHY registers for hardware leveling
*/
static void ext_phy_settings_hwlvl(const struct emif_regs *regs, int nr)
{
/*
* Enable hardware leveling on the EMIF. For details about these
* magic values please see the EMIF registers section of the TRM.
*/
if (regs->emif_ddr_phy_ctlr_1 & 0x00040000) {
/* PHY_INVERT_CLKOUT = 1 */
write32(&emif_reg[nr]->emif_ddr_ext_phy_ctrl_1, 0x00040100);
write32(&emif_reg[nr]->emif_ddr_ext_phy_ctrl_1_shdw, 0x00040100);
} else {
/* PHY_INVERT_CLKOUT = 0 */
write32(&emif_reg[nr]->emif_ddr_ext_phy_ctrl_1, 0x08020080);
write32(&emif_reg[nr]->emif_ddr_ext_phy_ctrl_1_shdw, 0x08020080);
}
write32(&emif_reg[nr]->emif_ddr_ext_phy_ctrl_22, 0x00000000);
write32(&emif_reg[nr]->emif_ddr_ext_phy_ctrl_22_shdw, 0x00000000);
write32(&emif_reg[nr]->emif_ddr_ext_phy_ctrl_23, 0x00600020);
write32(&emif_reg[nr]->emif_ddr_ext_phy_ctrl_23_shdw, 0x00600020);
write32(&emif_reg[nr]->emif_ddr_ext_phy_ctrl_24, 0x40010080);
write32(&emif_reg[nr]->emif_ddr_ext_phy_ctrl_24_shdw, 0x40010080);
write32(&emif_reg[nr]->emif_ddr_ext_phy_ctrl_25, 0x08102040);
write32(&emif_reg[nr]->emif_ddr_ext_phy_ctrl_25_shdw, 0x08102040);
write32(&emif_reg[nr]->emif_ddr_ext_phy_ctrl_26, 0x00200020);
write32(&emif_reg[nr]->emif_ddr_ext_phy_ctrl_26_shdw, 0x00200020);
write32(&emif_reg[nr]->emif_ddr_ext_phy_ctrl_27, 0x00200020);
write32(&emif_reg[nr]->emif_ddr_ext_phy_ctrl_27_shdw, 0x00200020);
write32(&emif_reg[nr]->emif_ddr_ext_phy_ctrl_28, 0x00200020);
write32(&emif_reg[nr]->emif_ddr_ext_phy_ctrl_28_shdw, 0x00200020);
write32(&emif_reg[nr]->emif_ddr_ext_phy_ctrl_29, 0x00200020);
write32(&emif_reg[nr]->emif_ddr_ext_phy_ctrl_29_shdw, 0x00200020);
write32(&emif_reg[nr]->emif_ddr_ext_phy_ctrl_30, 0x00200020);
write32(&emif_reg[nr]->emif_ddr_ext_phy_ctrl_30_shdw, 0x00200020);
write32(&emif_reg[nr]->emif_ddr_ext_phy_ctrl_31, 0x00000000);
write32(&emif_reg[nr]->emif_ddr_ext_phy_ctrl_31_shdw, 0x00000000);
write32(&emif_reg[nr]->emif_ddr_ext_phy_ctrl_32, 0x00000000);
write32(&emif_reg[nr]->emif_ddr_ext_phy_ctrl_32_shdw, 0x00000000);
write32(&emif_reg[nr]->emif_ddr_ext_phy_ctrl_33, 0x00000000);
write32(&emif_reg[nr]->emif_ddr_ext_phy_ctrl_33_shdw, 0x00000000);
write32(&emif_reg[nr]->emif_ddr_ext_phy_ctrl_34, 0x00000000);
write32(&emif_reg[nr]->emif_ddr_ext_phy_ctrl_34_shdw, 0x00000000);
write32(&emif_reg[nr]->emif_ddr_ext_phy_ctrl_35, 0x00000000);
write32(&emif_reg[nr]->emif_ddr_ext_phy_ctrl_35_shdw, 0x00000000);
write32(&emif_reg[nr]->emif_ddr_ext_phy_ctrl_36, 0x00000077);
write32(&emif_reg[nr]->emif_ddr_ext_phy_ctrl_36_shdw, 0x00000077);
/*
* Sequence to ensure that the PHY is again in a known state after
* hardware leveling.
*/
write32(&emif_reg[nr]->emif_iodft_tlgc, 0x2011);
write32(&emif_reg[nr]->emif_iodft_tlgc, 0x2411);
write32(&emif_reg[nr]->emif_iodft_tlgc, 0x2011);
}
/**
* Configure DDR PHY
*/
static void config_ddr_phy(const struct emif_regs *regs, int nr)
{
/*
* Disable initialization and refreshes for now until we finish
* programming EMIF regs and set time between rising edge of
* DDR_RESET to rising edge of DDR_CKE to > 500us per memory spec.
* We currently hardcode a value based on a max expected frequency
* of 400MHz.
*/
write32(&emif_reg[nr]->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK | 0x3100);
write32(&emif_reg[nr]->emif_ddr_phy_ctrl_1, regs->emif_ddr_phy_ctlr_1);
write32(&emif_reg[nr]->emif_ddr_phy_ctrl_1_shdw, regs->emif_ddr_phy_ctlr_1);
if (get_emif_rev((uint32_t)emif_reg[nr]) == EMIF_4D5) {
if (emif_sdram_type(regs->sdram_config) == EMIF_SDRAM_TYPE_DDR3)
ext_phy_settings_hwlvl(regs, nr);
else
ext_phy_settings_swlvl(regs, nr);
}
}
/**
* Set SDRAM timings
*/
static void set_sdram_timings(const struct emif_regs *regs, int nr)
{
write32(&emif_reg[nr]->emif_sdram_tim_1, regs->sdram_tim1);
write32(&emif_reg[nr]->emif_sdram_tim_1_shdw, regs->sdram_tim1);
write32(&emif_reg[nr]->emif_sdram_tim_2, regs->sdram_tim2);
write32(&emif_reg[nr]->emif_sdram_tim_2_shdw, regs->sdram_tim2);
write32(&emif_reg[nr]->emif_sdram_tim_3, regs->sdram_tim3);
write32(&emif_reg[nr]->emif_sdram_tim_3_shdw, regs->sdram_tim3);
}
static void ddr_pll_config(uint32_t ddrpll_m)
{
uint32_t clkmode, clksel, div_m2;
clkmode = read32(&am335x_cm_wkup->clkmode_dpll_ddr);
clksel = read32(&am335x_cm_wkup->clksel_dpll_ddr);
div_m2 = read32(&am335x_cm_wkup->div_m2_dpll_ddr);
/* Set the PLL to bypass Mode */
clkmode = (clkmode & CLK_MODE_MASK) | PLL_BYPASS_MODE;
write32(&am335x_cm_wkup->clkmode_dpll_ddr, clkmode);
/* Wait till bypass mode is enabled */
while ((read32(&am335x_cm_wkup->idlest_dpll_ddr) & ST_MN_BYPASS) != ST_MN_BYPASS)
;
clksel = clksel & (~CLK_SEL_MASK);
clksel = clksel | ((ddrpll_m << CLK_SEL_SHIFT) | DDRPLL_N);
write32(&am335x_cm_wkup->clksel_dpll_ddr, clksel);
div_m2 = div_m2 & CLK_DIV_SEL;
div_m2 = div_m2 | DDRPLL_M2;
write32(&am335x_cm_wkup->div_m2_dpll_ddr, div_m2);
clkmode = (clkmode & CLK_MODE_MASK) | CLK_MODE_SEL;
write32(&am335x_cm_wkup->clkmode_dpll_ddr, clkmode);
/* Wait till dpll is locked */
while ((read32(&am335x_cm_wkup->idlest_dpll_ddr) & ST_DPLL_CLK) != ST_DPLL_CLK)
;
}
static void enable_emif_clocks(void)
{
/* Enable EMIF0 Clock */
write32(&am335x_cm_per->emif, CM_MODULEMODE_ENABLED);
/* Poll if module is functional */
while ((read32(&am335x_cm_per->emif)) != CM_MODULEMODE_ENABLED)
;
}
void config_ddr(uint32_t pll, const struct ctrl_ioregs *ioregs, const struct ddr_data *data,
const struct cmd_control *ctrl, const struct emif_regs *regs, int nr)
{
enable_emif_clocks();
ddr_pll_config(pll);
config_vtp(nr);
config_cmd_ctrl(ctrl, nr);
config_ddr_data(data, nr);
config_io_ctrl(ioregs);
/* Set CKE to be controlled by EMIF/DDR PHY */
write32(&ddrctrl->ddrckectrl, DDR_CKE_CTRL_NORMAL);
/* Program EMIF instance */
config_ddr_phy(regs, nr);
set_sdram_timings(regs, nr);
config_sdram(regs, nr);
}
|