1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
|
/* This file is part of the coreboot project. */
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* Designware High-Definition Multimedia Interface (HDMI) driveG
*/
#include <device/mmio.h>
#include <console/console.h>
#include <delay.h>
#include <edid.h>
#include <gpio.h>
#include <stdint.h>
#include <soc/addressmap.h>
#include <soc/hdmi.h>
#include <soc/grf.h>
#include <soc/vop.h>
#include <timer.h>
#include "chip.h"
#define AUDIO_SAMPLERATE_DEFAULT (48*KHz)
#define hdmi_debug(x...) do { if (0) printk(BIOS_DEBUG, x); } while (0)
struct rk3288_hdmi_regs * const hdmi_regs = (void *)HDMI_TX_BASE;
struct tmds_n_cts {
u32 tmds;
u32 cts;
u32 n;
};
static const struct tmds_n_cts n_cts_table[] = {
{
.tmds = 25175, .n = 6144, .cts = 25175,
}, {
.tmds = 25200, .n = 6144, .cts = 25200,
}, {
.tmds = 27000, .n = 6144, .cts = 27000,
}, {
.tmds = 27027, .n = 6144, .cts = 27027,
}, {
.tmds = 40000, .n = 6144, .cts = 40000,
}, {
.tmds = 54000, .n = 6144, .cts = 54000,
}, {
.tmds = 54054, .n = 6144, .cts = 54054,
}, {
.tmds = 65000, .n = 6144, .cts = 65000,
}, {
.tmds = 74176, .n = 11648, .cts = 140625,
}, {
.tmds = 74250, .n = 6144, .cts = 74250,
}, {
.tmds = 83500, .n = 6144, .cts = 83500,
}, {
.tmds = 106500, .n = 6144, .cts = 106500,
}, {
.tmds = 108000, .n = 6144, .cts = 108000,
}, {
.tmds = 148352, .n = 5824, .cts = 140625,
}, {
.tmds = 148500, .n = 6144, .cts = 148500,
}, {
.tmds = 297000, .n = 5120, .cts = 247500,
}
};
struct hdmi_mpll_config {
u64 mpixelclock;
/* Mode of Operation and PLL Dividers Control Register */
u32 cpce;
/* PLL Gmp Control Register */
u32 gmp;
/* PLL Current COntrol Register */
u32 curr;
};
struct hdmi_phy_config {
u64 mpixelclock;
u32 sym_ctr; /* clock symbol and transmitter control */
u32 term; /* transmission termination value */
u32 vlev_ctr; /* voltage level control */
};
static const struct hdmi_phy_config rockchip_phy_config[] = {
{
.mpixelclock = 74250,
.sym_ctr = 0x8009, .term = 0x0004, .vlev_ctr = 0x0272,
}, {
.mpixelclock = 148500,
.sym_ctr = 0x802b, .term = 0x0004, .vlev_ctr = 0x028d,
}, {
.mpixelclock = 297000,
.sym_ctr = 0x8039, .term = 0x0005, .vlev_ctr = 0x028d,
}, {
.mpixelclock = ~0ul,
.sym_ctr = 0x0000, .term = 0x0000, .vlev_ctr = 0x0000,
}
};
static const struct hdmi_mpll_config rockchip_mpll_cfg[] = {
{
.mpixelclock = 40000,
.cpce = 0x00b3, .gmp = 0x0000, .curr = 0x0018,
}, {
.mpixelclock = 65000,
.cpce = 0x0072, .gmp = 0x0001, .curr = 0x0028,
}, {
.mpixelclock = 66000,
.cpce = 0x013e, .gmp = 0x0003, .curr = 0x0038,
}, {
.mpixelclock = 83500,
.cpce = 0x0072, .gmp = 0x0001, .curr = 0x0028,
}, {
.mpixelclock = 146250,
.cpce = 0x0051, .gmp = 0x0002, .curr = 0x0038,
}, {
.mpixelclock = 148500,
.cpce = 0x0051, .gmp = 0x0003, .curr = 0x0000,
}, {
.mpixelclock = ~0ul,
.cpce = 0x0051, .gmp = 0x0003, .curr = 0x0000,
}
};
static const u32 csc_coeff_default[3][4] = {
{ 0x2000, 0x0000, 0x0000, 0x0000 },
{ 0x0000, 0x2000, 0x0000, 0x0000 },
{ 0x0000, 0x0000, 0x2000, 0x0000 }
};
static void hdmi_set_clock_regenerator(u32 n, u32 cts)
{
u8 cts3;
u8 n3;
/* first set ncts_atomic_write (if present) */
n3 = HDMI_AUD_N3_NCTS_ATOMIC_WRITE;
write32(&hdmi_regs->aud_n3, n3);
/* set cts_manual (if present) */
cts3 = HDMI_AUD_CTS3_CTS_MANUAL;
cts3 |= HDMI_AUD_CTS3_N_SHIFT_1 << HDMI_AUD_CTS3_N_SHIFT_OFFSET;
cts3 |= (cts >> 16) & HDMI_AUD_CTS3_AUDCTS19_16_MASK;
/* write cts values; cts3 must be written first */
write32(&hdmi_regs->aud_cts3, cts3);
write32(&hdmi_regs->aud_cts2, (cts >> 8) & 0xff);
write32(&hdmi_regs->aud_cts1, cts & 0xff);
/* write n values; n1 must be written last */
n3 |= (n >> 16) & HDMI_AUD_N3_AUDN19_16_MASK;
write32(&hdmi_regs->aud_n3, n3);
write32(&hdmi_regs->aud_n2, (n >> 8) & 0xff);
write32(&hdmi_regs->aud_n1, n & 0xff);
write32(&hdmi_regs->aud_inputclkfs, HDMI_AUD_INPUTCLKFS_128);
}
static int hdmi_lookup_n_cts(u32 pixel_clk)
{
int i;
for (i = 0; i < ARRAY_SIZE(n_cts_table); i++)
if (pixel_clk <= n_cts_table[i].tmds)
break;
if (i >= ARRAY_SIZE(n_cts_table))
return -1;
return i;
}
static void hdmi_audio_set_samplerate(u32 pixel_clk)
{
u32 clk_n, clk_cts;
int index;
index = hdmi_lookup_n_cts(pixel_clk);
if (index == -1) {
hdmi_debug("audio not supported for pixel clk %d\n", pixel_clk);
return;
}
clk_n = n_cts_table[index].n;
clk_cts = n_cts_table[index].cts;
hdmi_set_clock_regenerator(clk_n, clk_cts);
}
/*
* this submodule is responsible for the video data synchronization.
* for example, for rgb 4:4:4 input, the data map is defined as
* pin{47~40} <==> r[7:0]
* pin{31~24} <==> g[7:0]
* pin{15~8} <==> b[7:0]
*/
static void hdmi_video_sample(void)
{
u32 color_format = 0x01;
u8 val;
val = HDMI_TX_INVID0_INTERNAL_DE_GENERATOR_DISABLE |
((color_format << HDMI_TX_INVID0_VIDEO_MAPPING_OFFSET) &
HDMI_TX_INVID0_VIDEO_MAPPING_MASK);
write32(&hdmi_regs->tx_invid0, val);
/* enable tx stuffing: when de is inactive, fix the output data to 0 */
val = HDMI_TX_INSTUFFING_BDBDATA_STUFFING_ENABLE |
HDMI_TX_INSTUFFING_RCRDATA_STUFFING_ENABLE |
HDMI_TX_INSTUFFING_GYDATA_STUFFING_ENABLE;
write32(&hdmi_regs->tx_instuffing, val);
write32(&hdmi_regs->tx_gydata0, 0x0);
write32(&hdmi_regs->tx_gydata1, 0x0);
write32(&hdmi_regs->tx_rcrdata0, 0x0);
write32(&hdmi_regs->tx_rcrdata1, 0x0);
write32(&hdmi_regs->tx_bcbdata0, 0x0);
write32(&hdmi_regs->tx_bcbdata1, 0x0);
}
static void hdmi_update_csc_coeffs(void)
{
u32 i, j;
u32 csc_scale = 1;
/* the csc registers are sequential, alternating msb then lsb */
for (i = 0; i < ARRAY_SIZE(csc_coeff_default); i++) {
for (j = 0; j < ARRAY_SIZE(csc_coeff_default[0]); j++) {
u32 coeff = csc_coeff_default[i][j];
write32(&hdmi_regs->csc_coef[i][j].msb, coeff >> 8);
write32(&hdmi_regs->csc_coef[i][j].lsb, coeff & 0xff);
}
}
clrsetbits32(&hdmi_regs->csc_scale, HDMI_CSC_SCALE_CSCSCALE_MASK,
csc_scale);
}
static void hdmi_video_csc(void)
{
u32 color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_24BPP;
u32 interpolation = HDMI_CSC_CFG_INTMODE_DISABLE;
/* configure the csc registers */
write32(&hdmi_regs->csc_cfg, interpolation);
clrsetbits32(&hdmi_regs->csc_scale,
HDMI_CSC_SCALE_CSC_COLORDE_PTH_MASK, color_depth);
hdmi_update_csc_coeffs();
}
static void hdmi_video_packetize(void)
{
u32 output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS;
u32 remap_size = HDMI_VP_REMAP_YCC422_16BIT;
u32 color_depth = 0;
u8 val, vp_conf;
/* set the packetizer registers */
val = ((color_depth << HDMI_VP_PR_CD_COLOR_DEPTH_OFFSET) &
HDMI_VP_PR_CD_COLOR_DEPTH_MASK) |
((0 << HDMI_VP_PR_CD_DESIRED_PR_FACTOR_OFFSET) &
HDMI_VP_PR_CD_DESIRED_PR_FACTOR_MASK);
write32(&hdmi_regs->vp_pr_cd, val);
clrsetbits32(&hdmi_regs->vp_stuff, HDMI_VP_STUFF_PR_STUFFING_MASK,
HDMI_VP_STUFF_PR_STUFFING_STUFFING_MODE);
/* data from pixel repeater block */
vp_conf = HDMI_VP_CONF_PR_EN_DISABLE |
HDMI_VP_CONF_BYPASS_SELECT_VID_PACKETIZER;
clrsetbits32(&hdmi_regs->vp_conf, HDMI_VP_CONF_PR_EN_MASK |
HDMI_VP_CONF_BYPASS_SELECT_MASK, vp_conf);
clrsetbits32(&hdmi_regs->vp_stuff, HDMI_VP_STUFF_IDEFAULT_PHASE_MASK,
1 << HDMI_VP_STUFF_IDEFAULT_PHASE_OFFSET);
write32(&hdmi_regs->vp_remap, remap_size);
vp_conf = HDMI_VP_CONF_BYPASS_EN_ENABLE |
HDMI_VP_CONF_PP_EN_DISABLE |
HDMI_VP_CONF_YCC422_EN_DISABLE;
clrsetbits32(&hdmi_regs->vp_conf, HDMI_VP_CONF_BYPASS_EN_MASK |
HDMI_VP_CONF_PP_EN_ENMASK | HDMI_VP_CONF_YCC422_EN_MASK,
vp_conf);
clrsetbits32(&hdmi_regs->vp_stuff, HDMI_VP_STUFF_PP_STUFFING_MASK |
HDMI_VP_STUFF_YCC422_STUFFING_MASK,
HDMI_VP_STUFF_PP_STUFFING_STUFFING_MODE |
HDMI_VP_STUFF_YCC422_STUFFING_STUFFING_MODE);
clrsetbits32(&hdmi_regs->vp_conf, HDMI_VP_CONF_OUTPUT_SELECTOR_MASK,
output_select);
}
static inline void hdmi_phy_test_clear(u8 bit)
{
clrsetbits32(&hdmi_regs->phy_tst0, HDMI_PHY_TST0_TSTCLR_MASK,
bit << HDMI_PHY_TST0_TSTCLR_OFFSET);
}
static int hdmi_phy_wait_i2c_done(u32 msec)
{
struct stopwatch phyi2c_done;
u32 val;
stopwatch_init_msecs_expire(&phyi2c_done, msec);
do {
val = read32(&hdmi_regs->ih_i2cmphy_stat0);
if (val & 0x3) {
write32(&hdmi_regs->ih_i2cmphy_stat0, val);
return 0;
}
udelay(100);
} while (!stopwatch_expired(&phyi2c_done));
return 1;
}
static void hdmi_phy_i2c_write(u16 data, u8 addr)
{
write32(&hdmi_regs->ih_i2cmphy_stat0, 0xff);
write32(&hdmi_regs->phy_i2cm_address_addr, addr);
write32(&hdmi_regs->phy_i2cm_datao_1_addr, (u8)(data >> 8));
write32(&hdmi_regs->phy_i2cm_datao_0_addr, (u8)(data >> 0));
write32(&hdmi_regs->phy_i2cm_operation_addr,
HDMI_PHY_I2CM_OPERATION_ADDR_WRITE);
hdmi_phy_wait_i2c_done(1000);
}
static void hdmi_phy_enable_power(u8 enable)
{
clrsetbits32(&hdmi_regs->phy_conf0, HDMI_PHY_CONF0_PDZ_MASK,
enable << HDMI_PHY_CONF0_PDZ_OFFSET);
}
static void hdmi_phy_enable_tmds(u8 enable)
{
clrsetbits32(&hdmi_regs->phy_conf0, HDMI_PHY_CONF0_ENTMDS_MASK,
enable << HDMI_PHY_CONF0_ENTMDS_OFFSET);
}
static void hdmi_phy_enable_spare(u8 enable)
{
clrsetbits32(&hdmi_regs->phy_conf0, HDMI_PHY_CONF0_SPARECTRL_MASK,
enable << HDMI_PHY_CONF0_SPARECTRL_OFFSET);
}
static void hdmi_phy_gen2_pddq(u8 enable)
{
clrsetbits32(&hdmi_regs->phy_conf0, HDMI_PHY_CONF0_GEN2_PDDQ_MASK,
enable << HDMI_PHY_CONF0_GEN2_PDDQ_OFFSET);
}
static void hdmi_phy_gen2_txpwron(u8 enable)
{
clrsetbits32(&hdmi_regs->phy_conf0,
HDMI_PHY_CONF0_GEN2_TXPWRON_MASK,
enable << HDMI_PHY_CONF0_GEN2_TXPWRON_OFFSET);
}
static void hdmi_phy_sel_data_en_pol(u8 enable)
{
clrsetbits32(&hdmi_regs->phy_conf0,
HDMI_PHY_CONF0_SELDATAENPOL_MASK,
enable << HDMI_PHY_CONF0_SELDATAENPOL_OFFSET);
}
static void hdmi_phy_sel_interface_control(u8 enable)
{
clrsetbits32(&hdmi_regs->phy_conf0, HDMI_PHY_CONF0_SELDIPIF_MASK,
enable << HDMI_PHY_CONF0_SELDIPIF_OFFSET);
}
static int hdmi_phy_configure(u32 mpixelclock)
{
struct stopwatch pll_ready;
u8 i, val;
write32(&hdmi_regs->mc_flowctrl,
HDMI_MC_FLOWCTRL_FEED_THROUGH_OFF_CSC_BYPASS);
/* gen2 tx power off */
hdmi_phy_gen2_txpwron(0);
/* gen2 pddq */
hdmi_phy_gen2_pddq(1);
/* phy reset */
write32(&hdmi_regs->mc_phyrstz, HDMI_MC_PHYRSTZ_DEASSERT);
write32(&hdmi_regs->mc_phyrstz, HDMI_MC_PHYRSTZ_ASSERT);
write32(&hdmi_regs->mc_heacphy_rst, HDMI_MC_HEACPHY_RST_ASSERT);
hdmi_phy_test_clear(1);
write32(&hdmi_regs->phy_i2cm_slave_addr,
HDMI_PHY_I2CM_SLAVE_ADDR_PHY_GEN2);
hdmi_phy_test_clear(0);
/* pll/mpll cfg - always match on final entry */
for (i = 0; rockchip_mpll_cfg[i].mpixelclock != (~0ul); i++)
if (mpixelclock <= rockchip_mpll_cfg[i].mpixelclock)
break;
hdmi_phy_i2c_write(rockchip_mpll_cfg[i].cpce, PHY_OPMODE_PLLCFG);
hdmi_phy_i2c_write(rockchip_mpll_cfg[i].gmp, PHY_PLLGMPCTRL);
hdmi_phy_i2c_write(rockchip_mpll_cfg[i].curr, PHY_PLLCURRCTRL);
hdmi_phy_i2c_write(0x0000, PHY_PLLPHBYCTRL);
hdmi_phy_i2c_write(0x0006, PHY_PLLCLKBISTPHASE);
for (i = 0; rockchip_phy_config[i].mpixelclock != (~0ul); i++)
if (mpixelclock <= rockchip_phy_config[i].mpixelclock)
break;
/*
* resistance term 133ohm cfg
* preemp cgf 0.00
* tx/ck lvl 10
*/
hdmi_phy_i2c_write(rockchip_phy_config[i].term, PHY_TXTERM);
hdmi_phy_i2c_write(rockchip_phy_config[i].sym_ctr, PHY_CKSYMTXCTRL);
hdmi_phy_i2c_write(rockchip_phy_config[i].vlev_ctr, PHY_VLEVCTRL);
/* remove clk term */
hdmi_phy_i2c_write(0x8000, PHY_CKCALCTRL);
hdmi_phy_enable_power(1);
/* toggle tmds enable */
hdmi_phy_enable_tmds(0);
hdmi_phy_enable_tmds(1);
/* gen2 tx power on */
hdmi_phy_gen2_txpwron(1);
hdmi_phy_gen2_pddq(0);
hdmi_phy_enable_spare(1);
/* wait for phy pll lock */
stopwatch_init_msecs_expire(&pll_ready, 5);
do {
val = read32(&hdmi_regs->phy_stat0);
if (!(val & HDMI_PHY_TX_PHY_LOCK))
return 0;
udelay(100);
} while (!stopwatch_expired(&pll_ready));
return -1;
}
static int hdmi_phy_init(u32 mpixelclock)
{
int i, ret;
/* hdmi phy spec says to do the phy initialization sequence twice */
for (i = 0; i < 2; i++) {
hdmi_phy_sel_data_en_pol(1);
hdmi_phy_sel_interface_control(0);
hdmi_phy_enable_tmds(0);
hdmi_phy_enable_power(0);
/* enable csc */
ret = hdmi_phy_configure(mpixelclock);
if (ret) {
hdmi_debug("hdmi phy config failure %d\n", ret);
return ret;
}
}
return 0;
}
static void hdmi_av_composer(const struct edid *edid)
{
u8 mdataenablepolarity = 1;
u8 inv_val;
/* set up hdmi_fc_invidconf */
inv_val = HDMI_FC_INVIDCONF_HDCP_KEEPOUT_INACTIVE;
inv_val |= ((edid->mode.pvsync == '+') ?
HDMI_FC_INVIDCONF_VSYNC_IN_POLARITY_ACTIVE_HIGH :
HDMI_FC_INVIDCONF_VSYNC_IN_POLARITY_ACTIVE_LOW);
inv_val |= ((edid->mode.phsync == '+') ?
HDMI_FC_INVIDCONF_HSYNC_IN_POLARITY_ACTIVE_HIGH :
HDMI_FC_INVIDCONF_HSYNC_IN_POLARITY_ACTIVE_LOW);
inv_val |= (mdataenablepolarity ?
HDMI_FC_INVIDCONF_DE_IN_POLARITY_ACTIVE_HIGH :
HDMI_FC_INVIDCONF_DE_IN_POLARITY_ACTIVE_LOW);
inv_val |= (edid->hdmi_monitor_detected ?
HDMI_FC_INVIDCONF_DVI_MODEZ_HDMI_MODE :
HDMI_FC_INVIDCONF_DVI_MODEZ_DVI_MODE);
inv_val |= HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_LOW;
inv_val |= HDMI_FC_INVIDCONF_IN_I_P_PROGRESSIVE;
write32(&hdmi_regs->fc_invidconf, inv_val);
/* set up horizontal active pixel width */
write32(&hdmi_regs->fc_inhactv1, edid->mode.ha >> 8);
write32(&hdmi_regs->fc_inhactv0, edid->mode.ha);
/* set up vertical active lines */
write32(&hdmi_regs->fc_invactv1, edid->mode.va >> 8);
write32(&hdmi_regs->fc_invactv0, edid->mode.va);
/* set up horizontal blanking pixel region width */
write32(&hdmi_regs->fc_inhblank1, edid->mode.hbl >> 8);
write32(&hdmi_regs->fc_inhblank0, edid->mode.hbl);
/* set up vertical blanking pixel region width */
write32(&hdmi_regs->fc_invblank, edid->mode.vbl);
/* set up hsync active edge delay width (in pixel clks) */
write32(&hdmi_regs->fc_hsyncindelay1, edid->mode.hso >> 8);
write32(&hdmi_regs->fc_hsyncindelay0, edid->mode.hso);
/* set up vsync active edge delay (in lines) */
write32(&hdmi_regs->fc_vsyncindelay, edid->mode.vso);
/* set up hsync active pulse width (in pixel clks) */
write32(&hdmi_regs->fc_hsyncinwidth1, edid->mode.hspw >> 8);
write32(&hdmi_regs->fc_hsyncinwidth0, edid->mode.hspw);
/* set up vsync active edge delay (in lines) */
write32(&hdmi_regs->fc_vsyncinwidth, edid->mode.vspw);
}
/* hdmi initialization step b.4 */
static void hdmi_enable_video_path(void)
{
u8 clkdis;
/* control period minimum duration */
write32(&hdmi_regs->fc_ctrldur, 12);
write32(&hdmi_regs->fc_exctrldur, 32);
write32(&hdmi_regs->fc_exctrlspac, 1);
/* set to fill tmds data channels */
write32(&hdmi_regs->fc_ch0pream, 0x0b);
write32(&hdmi_regs->fc_ch1pream, 0x16);
write32(&hdmi_regs->fc_ch2pream, 0x21);
/* enable pixel clock and tmds data path */
clkdis = 0x7f;
clkdis &= ~HDMI_MC_CLKDIS_PIXELCLK_DISABLE;
write32(&hdmi_regs->mc_clkdis, clkdis);
clkdis &= ~HDMI_MC_CLKDIS_TMDSCLK_DISABLE;
write32(&hdmi_regs->mc_clkdis, clkdis);
clkdis &= ~HDMI_MC_CLKDIS_AUDCLK_DISABLE;
write32(&hdmi_regs->mc_clkdis, clkdis);
}
/* workaround to clear the overflow condition */
static void hdmi_clear_overflow(void)
{
u8 val, count;
/* tmds software reset */
write32(&hdmi_regs->mc_swrstz, (u8)~HDMI_MC_SWRSTZ_TMDSSWRST_REQ);
val = read32(&hdmi_regs->fc_invidconf);
for (count = 0; count < 4; count++)
write32(&hdmi_regs->fc_invidconf, val);
}
static void hdmi_audio_set_format(void)
{
write32(&hdmi_regs->aud_conf0,
HDMI_AUD_CONF0_I2S_SELECT | HDMI_AUD_CONF0_I2S_IN_EN_0);
write32(&hdmi_regs->aud_conf1,
HDMI_AUD_CONF1_I2S_MODE_STANDARD_MODE |
HDMI_AUD_CONF1_I2S_WIDTH_16BIT);
write32(&hdmi_regs->aud_conf2, 0x00);
}
static void hdmi_audio_fifo_reset(void)
{
write32(&hdmi_regs->mc_swrstz, (u8)~HDMI_MC_SWRSTZ_II2SSWRST_REQ);
write32(&hdmi_regs->aud_conf0, HDMI_AUD_CONF0_SW_AUDIO_FIFO_RST);
write32(&hdmi_regs->aud_int, 0x00);
write32(&hdmi_regs->aud_int1, 0x00);
}
static int hdmi_setup(const struct edid *edid)
{
int ret;
hdmi_debug("hdmi, mode info : clock %d hdis %d vdis %d\n",
edid->mode.pixel_clock, edid->mode.ha, edid->mode.va);
hdmi_av_composer(edid);
ret = hdmi_phy_init(edid->mode.pixel_clock);
if (ret)
return ret;
hdmi_enable_video_path();
hdmi_audio_fifo_reset();
hdmi_audio_set_format();
hdmi_audio_set_samplerate(edid->mode.pixel_clock);
hdmi_video_packetize();
hdmi_video_csc();
hdmi_video_sample();
hdmi_clear_overflow();
return 0;
}
static void hdmi_init_interrupt(void)
{
u8 ih_mute;
/*
* boot up defaults are:
* hdmi_ih_mute = 0x03 (disabled)
* hdmi_ih_mute_* = 0x00 (enabled)
*
* disable top level interrupt bits in hdmi block
*/
ih_mute = read32(&hdmi_regs->ih_mute) |
HDMI_IH_MUTE_MUTE_WAKEUP_INTERRUPT |
HDMI_IH_MUTE_MUTE_ALL_INTERRUPT;
write32(&hdmi_regs->ih_mute, ih_mute);
/* enable i2c master done irq */
write32(&hdmi_regs->i2cm_int, ~0x04);
/* enable i2c client nack % arbitration error irq */
write32(&hdmi_regs->i2cm_ctlint, ~0x44);
/* enable phy i2cm done irq */
write32(&hdmi_regs->phy_i2cm_int_addr, HDMI_PHY_I2CM_INT_ADDR_DONE_POL);
/* enable phy i2cm nack & arbitration error irq */
write32(&hdmi_regs->phy_i2cm_ctlint_addr,
HDMI_PHY_I2CM_CTLINT_ADDR_NAC_POL |
HDMI_PHY_I2CM_CTLINT_ADDR_ARBITRATION_POL);
/* enable cable hot plug irq */
write32(&hdmi_regs->phy_mask0, (u8)~HDMI_PHY_HPD);
/* clear hotplug interrupts */
write32(&hdmi_regs->ih_phy_stat0, HDMI_IH_PHY_STAT0_HPD);
}
static u8 hdmi_get_plug_in_status(void)
{
u8 val = read32(&hdmi_regs->phy_stat0) & HDMI_PHY_HPD;
return !!(val);
}
static int hdmi_wait_for_hpd(void)
{
struct stopwatch hpd;
stopwatch_init_msecs_expire(&hpd, 30000);
do {
if (hdmi_get_plug_in_status())
return 0;
udelay(100);
} while (!stopwatch_expired(&hpd));
return -1;
}
static int hdmi_ddc_wait_i2c_done(int msec)
{
struct stopwatch ddci2c_done;
u32 val;
stopwatch_init_msecs_expire(&ddci2c_done, msec);
do {
val = read32(&hdmi_regs->ih_i2cm_stat0);
if (val & 0x2) {
write32(&hdmi_regs->ih_i2cm_stat0, val);
return 0;
}
udelay(100);
} while (!stopwatch_expired(&ddci2c_done));
return 1;
}
static void hdmi_ddc_reset(void)
{
clrsetbits32(&hdmi_regs->i2cm_softrstz, HDMI_I2CM_SOFTRSTZ,
HDMI_I2CM_SOFTRSTZ);
}
static int hdmi_read_edid(int block, u8 *buff)
{
int shift = (block % 2) * 0x80;
int edid_read_err = 0;
u32 trytime = 5;
u32 n, j, val;
/* set ddc i2c clk which derived from ddc_clk to 100kHz */
write32(&hdmi_regs->i2cm_ss_scl_hcnt_0_addr, 0x7a);
write32(&hdmi_regs->i2cm_ss_scl_lcnt_0_addr, 0x8d);
clrsetbits32(&hdmi_regs->i2cm_div, HDMI_I2CM_DIV_FAST_STD_MODE,
HDMI_I2CM_DIV_STD_MODE);
write32(&hdmi_regs->i2cm_slave, HDMI_I2CM_SLAVE_DDC_ADDR);
write32(&hdmi_regs->i2cm_segaddr, HDMI_I2CM_SEGADDR_DDC);
write32(&hdmi_regs->i2cm_segptr, block >> 1);
while (trytime--) {
edid_read_err = 0;
for (n = 0; n < HDMI_EDID_BLOCK_SIZE/8; n++) {
write32(&hdmi_regs->i2cmess, shift + 8 * n);
if (block == 0)
clrsetbits32(&hdmi_regs->i2cm_operation,
HDMI_I2CM_OPT_RD8,
HDMI_I2CM_OPT_RD8);
else
clrsetbits32(&hdmi_regs->i2cm_operation,
HDMI_I2CM_OPT_RD8_EXT,
HDMI_I2CM_OPT_RD8_EXT);
if (hdmi_ddc_wait_i2c_done(10)) {
hdmi_ddc_reset();
edid_read_err = 1;
break;
}
for (j = 0; j < 8; j++) {
val = read32(&hdmi_regs->i2cm_buf0 + j);
buff[8 * n + j] = val;
}
}
if (!edid_read_err)
break;
}
return edid_read_err;
}
int rk_hdmi_get_edid(struct edid *edid)
{
u8 edid_buf[HDMI_EDID_BLOCK_SIZE * 2];
u32 edid_size = HDMI_EDID_BLOCK_SIZE;
gpio_t hdmi_i2c_sda = GPIO(7, C, 3);
gpio_t hdmi_i2c_scl = GPIO(7, C, 4);
int ret;
/* If SDA is low, try to clock once to fix it */
gpio_input_pullup(hdmi_i2c_sda);
if (gpio_get(hdmi_i2c_sda) == 0) {
gpio_output(hdmi_i2c_scl, 0);
udelay(1000);
gpio_input_pullup(hdmi_i2c_scl);
udelay(1000);
}
/* HDMI I2C */
write32(&rk3288_grf->iomux_i2c5sda, IOMUX_HDMI_EDP_I2C_SDA);
write32(&rk3288_grf->iomux_i2c5scl, IOMUX_HDMI_EDP_I2C_SCL);
ret = hdmi_read_edid(0, edid_buf);
if (ret) {
hdmi_debug("failed to read edid.\n");
return -1;
}
if (edid_buf[0x7e] != 0) {
hdmi_read_edid(1, edid_buf + HDMI_EDID_BLOCK_SIZE);
edid_size += HDMI_EDID_BLOCK_SIZE;
}
/* Assume usage of HDMI implies an external display in which case
* we should be lenient about errors that the EDID decoder finds. */
if (decode_edid(edid_buf, edid_size, edid) != EDID_CONFORMANT)
hdmi_debug("failed to decode edid.\n");
/* Try 480p for best compatibility. */
if (set_display_mode(edid, EDID_MODE_640x480_60Hz))
hdmi_debug("failed to set mode to 640x480@60Hz\n");
return 0;
}
int rk_hdmi_enable(const struct edid *edid)
{
hdmi_setup(edid);
return 0;
}
int rk_hdmi_init(u32 vop_id)
{
int ret;
u32 val;
/* hdmi source select hdmi controller */
write32(&rk3288_grf->soc_con6, RK_SETBITS(1 << 15));
/* hdmi data from vop id */
val = (vop_id == 1) ? RK_SETBITS(1 << 4) : RK_CLRBITS(1 << 4);
write32(&rk3288_grf->soc_con6, val);
ret = hdmi_wait_for_hpd();
if (ret < 0) {
hdmi_debug("hdmi can not get hpd signal\n");
return -1;
}
hdmi_init_interrupt();
hdmi_debug("hdmi init success\n");
return 0;
}
|