1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
|
/* SPDX-License-Identifier: GPL-2.0-only */
#include <console/console.h>
#include <delay.h>
#include <device/mmio.h>
#include <edid.h>
#include <lib.h>
#include <soc/clock.h>
#include <soc/display/dsi_phy.h>
#include <soc/display/mdssreg.h>
#include <soc/display/display_resources.h>
#include <string.h>
#include <timer.h>
#define HAL_DSI_PHY_PLL_READY_TIMEOUT_MS 150 /* ~15 ms */
#define HAL_DSI_PHY_REFGEN_TIMEOUT_MS 150 /* ~15 ms */
#define DSI_MAX_REFRESH_RATE 95
#define DSI_MIN_REFRESH_RATE 15
#define HAL_DSI_PLL_VCO_MIN_MHZ_2_2_0 1000
#define S_DIV_ROUND_UP(n, d) \
(((n) >= 0) ? (((n) + (d) - 1) / (d)) : (((n) - (d) + 1) / (d)))
#define mult_frac(x, numer, denom)( \
{ \
typeof(x) quot = (x) / (denom); \
typeof(x) rem = (x) % (denom); \
(quot * (numer)) + ((rem * (numer)) / (denom)); \
} \
)
struct dsi_phy_divider_lut_entry_type {
uint16_t pll_post_div;
uint16_t phy_post_div;
};
/* PLL divider LUTs */
static struct dsi_phy_divider_lut_entry_type pll_dividerlut_dphy[] = {
/* pll post div will always be power of 2 */
{ 2, 11 },
{ 4, 5 },
{ 2, 9 },
{ 8, 2 },
{ 1, 15 },
{ 2, 7 },
{ 1, 13 },
{ 4, 3 },
{ 1, 11 },
{ 2, 5 },
{ 1, 9 },
{ 8, 1 },
{ 1, 7 },
{ 2, 3 },
{ 1, 5 },
{ 4, 1 },
{ 1, 3 },
{ 2, 1 },
{ 1, 1 }
};
enum dsi_laneid_type {
DSI_LANEID_0 = 0,
DSI_LANEID_1,
DSI_LANEID_2,
DSI_LANEID_3,
DSI_LANEID_CLK,
DSI_LANEID_MAX,
DSI_LANEID_FORCE_32BIT = 0x7FFFFFFF
};
struct dsi_phy_configtype {
uint32_t desired_bitclk_freq;
uint32_t bits_per_pixel;
uint32_t num_data_lanes;
uint32_t pclk_divnumerator;
uint32_t pclk_divdenominator;
/* pixel clk source select */
uint32_t phy_post_div;
uint32_t pll_post_div;
};
static inline s32 linear_inter(s32 tmax, s32 tmin, s32 percent,
s32 min_result, bool even)
{
s32 v;
v = (tmax - tmin) * percent;
v = S_DIV_ROUND_UP(v, 100) + tmin;
if (even && (v & 0x1))
return MAX(min_result, v - 1);
return MAX(min_result, v);
}
static void mdss_dsi_phy_reset(void)
{
write32(&dsi0_phy->phy_cmn_ctrl1, 0x40);
udelay(100);
write32(&dsi0_phy->phy_cmn_ctrl1, 0x0);
}
static void mdss_dsi_power_down(void)
{
/* power up DIGTOP & PLL */
write32(&dsi0_phy->phy_cmn_ctrl0, 0x60);
/* Disable PLL */
write32(&dsi0_phy->phy_cmn_pll_ctrl, 0x0);
/* Resync re-time FIFO OFF*/
write32(&dsi0_phy->phy_cmn_rbuf_ctrl, 0x0);
}
static void mdss_dsi_phy_setup_lanephy(enum dsi_laneid_type lane)
{
uint32_t reg_val = 0;
uint32_t lprx_ctrl = 0;
uint32_t hstx_strength = 0x88;
uint32_t data_strength_lp_n = 0x5;
uint32_t data_strength_lp_p = 0x5;
uint32_t pemph_bottom = 0;
uint32_t pemph_top = 0;
uint32_t strength_override = 0;
uint32_t clk_lane = 0;
if (lane == DSI_LANEID_CLK)
clk_lane = 1;
else
clk_lane = 0;
if (lane == DSI_LANEID_0)
lprx_ctrl = 3;
/*
* DSIPHY_STR_LP_N
* DSIPHY_STR_LP_P
*/
reg_val = ((data_strength_lp_n << 0x4) & 0xf0) |
(data_strength_lp_p & 0x0f);
write32(&dsi0_phy->phy_ln_regs[lane].dln0_lptx_str_ctrl, reg_val);
/*
* DSIPHY_LPRX_EN
* DSIPHY_CDRX_EN
* Transition from 0 to 1 for DLN0-3 CLKLN stays 0
*/
write32(&dsi0_phy->phy_ln_regs[lane].dln0_lprx_ctrl, 0x0);
write32(&dsi0_phy->phy_ln_regs[lane].dln0_lprx_ctrl, lprx_ctrl);
/* Pin Swap */
write32(&dsi0_phy->phy_ln_regs[lane].dln0_pin_swap, 0x0);
/*
* DSIPHY_HSTX_STR_HSTOP
* DSIPHY_HSTX_STR_HSBOT
*/
write32(&dsi0_phy->phy_ln_regs[lane].dln0_hstx_str_ctrl, hstx_strength);
/* PGM Delay */
write32(&dsi0_phy->phy_ln_regs[lane].dln0_cfg[0], 0x0);
/* DLN0_CFG1 */
reg_val = (strength_override << 0x5) & 0x20;
write32(&dsi0_phy->phy_ln_regs[lane].dln0_cfg[1], reg_val);
/* DLN0_CFG2 */
reg_val = ((pemph_bottom << 0x04) & 0xf0) |
(pemph_top & 0x0f);
write32(&dsi0_phy->phy_ln_regs[lane].dln0_cfg[2], reg_val);
write32(&dsi0_phy->phy_ln_regs[lane].dln0_offset_top_ctrl, 0x0);
write32(&dsi0_phy->phy_ln_regs[lane].dln0_offset_bot_ctrl, 0x0);
/*
* DSIPHY_LPRX_DLY
* IS_CKLANE
*/
reg_val = (clk_lane << 0x07) & 0x80;
write32(&dsi0_phy->phy_ln_regs[lane].dln0_cfg[3], reg_val);
reg_val = 0;
if (lane == DSI_LANEID_CLK)
reg_val = 1;
write32(&dsi0_phy->phy_ln_regs[lane].dln0_tx_dctrl, reg_val);
}
static void mdss_dsi_calculate_phy_timings(struct msm_dsi_phy_ctrl *timing,
struct dsi_phy_configtype *phy_cfg)
{
const unsigned long bit_rate = phy_cfg->desired_bitclk_freq;
s32 ui, ui_x8;
s32 tmax, tmin;
s32 pcnt0 = 50;
s32 pcnt1 = 50;
s32 pcnt2 = 10;
s32 pcnt3 = 30;
s32 pcnt4 = 10;
s32 pcnt5 = 2;
s32 coeff = 1000; /* Precision, should avoid overflow */
s32 hb_en, hb_en_ckln;
s32 temp;
if (!bit_rate)
return;
hb_en = 0;
timing->half_byte_clk_en = 0;
hb_en_ckln = 0;
ui = mult_frac(1000000, coeff, bit_rate / 1000);
ui_x8 = ui << 3;
temp = S_DIV_ROUND_UP(38 * coeff, ui_x8);
tmin = MAX(temp, 0);
temp = (95 * coeff) / ui_x8;
tmax = MAX(temp, 0);
timing->clk_prepare = linear_inter(tmax, tmin, pcnt0, 0, false);
temp = 300 * coeff - (timing->clk_prepare << 3) * ui;
tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1;
tmax = (tmin > 255) ? 511 : 255;
timing->clk_zero = linear_inter(tmax, tmin, pcnt5, 0, false);
tmin = DIV_ROUND_UP(60 * coeff + 3 * ui, ui_x8);
temp = 105 * coeff + 12 * ui - 20 * coeff;
tmax = (temp + 3 * ui) / ui_x8;
timing->clk_trail = linear_inter(tmax, tmin, pcnt3, 0, false);
temp = S_DIV_ROUND_UP(40 * coeff + 4 * ui, ui_x8);
tmin = MAX(temp, 0);
temp = (85 * coeff + 6 * ui) / ui_x8;
tmax = MAX(temp, 0);
timing->hs_prepare = linear_inter(tmax, tmin, pcnt1, 0, false);
temp = 145 * coeff + 10 * ui - (timing->hs_prepare << 3) * ui;
tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1;
tmax = 255;
timing->hs_zero = linear_inter(tmax, tmin, pcnt4, 0, false);
tmin = DIV_ROUND_UP(60 * coeff + 4 * ui, ui_x8) - 1;
temp = 105 * coeff + 12 * ui - 20 * coeff;
tmax = (temp / ui_x8) - 1;
timing->hs_trail = linear_inter(tmax, tmin, pcnt3, 0, false);
temp = 50 * coeff + ((hb_en << 2) - 8) * ui;
timing->hs_rqst = S_DIV_ROUND_UP(temp, ui_x8);
tmin = DIV_ROUND_UP(100 * coeff, ui_x8) - 1;
tmax = 255;
timing->hs_exit = linear_inter(tmax, tmin, pcnt2, 0, false);
temp = 50 * coeff + ((hb_en_ckln << 2) - 8) * ui;
timing->hs_rqst = S_DIV_ROUND_UP(temp, ui_x8);
temp = 60 * coeff + 52 * ui - 43 * ui;
tmin = DIV_ROUND_UP(temp, ui_x8) - 1;
tmax = 63;
timing->clk_post = linear_inter(tmax, tmin, pcnt2, 0, false);
temp = 8 * ui + (timing->clk_prepare << 3) * ui;
temp += (((timing->clk_zero + 3) << 3) + 11) * ui;
temp += hb_en_ckln ? (((timing->hs_rqst << 3) + 4) * ui) :
(((timing->hs_rqst << 3) + 8) * ui);
tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1;
tmax = 63;
if (tmin > tmax) {
temp = linear_inter(tmax << 1, tmin, pcnt2, 0, false);
timing->clk_pre = temp >> 1;
timing->clk_pre_inc_by_2 = 1;
} else {
timing->clk_pre = linear_inter(tmax, tmin, pcnt2, 0, false);
timing->clk_pre_inc_by_2 = 0;
}
timing->ta_go = 3;
timing->ta_sure = 0;
timing->ta_get = 4;
printk(BIOS_INFO, "PHY timings: %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d\n",
timing->clk_pre, timing->clk_post,
timing->clk_pre_inc_by_2, timing->clk_zero,
timing->clk_trail, timing->clk_prepare, timing->hs_exit,
timing->hs_zero, timing->hs_prepare, timing->hs_trail,
timing->hs_rqst);
}
static enum cb_err mdss_dsi_phy_timings(struct msm_dsi_phy_ctrl *phy_timings)
{
uint32_t reg_val = 0;
/*
* Step 4 Common block including GlobalTiming Parameters
* BYTECLK_SEL
*/
reg_val = (0x02 << 3) & 0x18;
write32(&dsi0_phy->phy_cmn_glbl_ctrl, reg_val);
/* VREG_CTRL */
write32(&dsi0_phy->phy_cmn_vreg_ctrl, 0x59);
/*HALFBYTECLK_EN*/
write32(&dsi0_phy->phy_cmn_timing_ctrl[0], phy_timings->half_byte_clk_en);
/* T_CLK_ZERO */
write32(&dsi0_phy->phy_cmn_timing_ctrl[1], phy_timings->clk_zero);
/* T_CLK_PREPARE */
write32(&dsi0_phy->phy_cmn_timing_ctrl[2], phy_timings->clk_prepare);
/* T_CLK_TRAIL */
write32(&dsi0_phy->phy_cmn_timing_ctrl[3], phy_timings->clk_trail);
/* T_HS_EXIT */
write32(&dsi0_phy->phy_cmn_timing_ctrl[4], phy_timings->hs_exit);
/* T_HS_ZERO */
write32(&dsi0_phy->phy_cmn_timing_ctrl[5], phy_timings->hs_zero);
/* T_HS_PREPARE */
write32(&dsi0_phy->phy_cmn_timing_ctrl[6], phy_timings->hs_prepare);
/* T_HS_TRAIL */
write32(&dsi0_phy->phy_cmn_timing_ctrl[7], phy_timings->hs_trail);
/* T_HS_RQST */
write32(&dsi0_phy->phy_cmn_timing_ctrl[8], phy_timings->hs_rqst);
/* T_TA_GO & T_TA_SURE */
write32(&dsi0_phy->phy_cmn_timing_ctrl[9],
phy_timings->ta_sure << 3 | phy_timings->ta_go);
/* T_TA_GET */
write32(&dsi0_phy->phy_cmn_timing_ctrl[10], phy_timings->ta_get);
/*DSIPHY_TRIG3_CMD*/
write32(&dsi0_phy->phy_cmn_timing_ctrl[11], 0x0);
/* DSI clock out timing ctrl T_CLK_PRE & T_CLK_POST*/
reg_val = ((phy_timings->clk_post << 8) | phy_timings->clk_pre);
write32(&dsi0->clkout_timing_ctrl, reg_val);
/* DCTRL */
write32(&dsi0_phy->phy_cmn_ctrl2, 0x40);
return CB_SUCCESS;
}
static enum cb_err dsi_phy_waitforrefgen(void)
{
uint32_t timeout = HAL_DSI_PHY_REFGEN_TIMEOUT_MS;
uint32_t refgen = 0;
enum cb_err ret = CB_SUCCESS;
while (!refgen) {
refgen = (read32(&dsi0_phy->phy_cmn_phy_status) & 0x1);
if (!refgen) {
udelay(100);
timeout--;
if (!timeout) {
/* timeout while polling the lock status */
ret = CB_ERR;
break;
}
}
}
return ret;
}
static enum cb_err mdss_dsi_phy_commit(void)
{
enum cb_err ret = CB_SUCCESS;
ret = dsi_phy_waitforrefgen();
if (ret) {
printk(BIOS_ERR, "%s: waitforrefgen error\n", __func__);
return ret;
}
mdss_dsi_power_down();
/* Remove PLL, DIG and all lanes from pwrdn */
write32(&dsi0_phy->phy_cmn_ctrl0, 0x7F);
/* Lane enable */
write32(&dsi0_phy->phy_cmn_dsi_lane_ctrl0, 0x1F);
mdss_dsi_phy_setup_lanephy(DSI_LANEID_0);
mdss_dsi_phy_setup_lanephy(DSI_LANEID_1);
mdss_dsi_phy_setup_lanephy(DSI_LANEID_2);
mdss_dsi_phy_setup_lanephy(DSI_LANEID_3);
mdss_dsi_phy_setup_lanephy(DSI_LANEID_CLK);
return ret;
}
static void mdss_dsi_phy_setup(void)
{
/* First reset phy */
mdss_dsi_phy_reset();
/* commit phy settings */
mdss_dsi_phy_commit();
}
static void dsi_phy_resync_fifo(void)
{
/* Resync FIFO*/
write32(&dsi0_phy->phy_cmn_rbuf_ctrl, 0x1);
}
static void dsi_phy_pll_global_clk_enable(bool enable)
{
uint32_t clk_cfg = read32(&dsi0_phy->phy_cmn_clk_cfg1);
uint32_t clk_enable = 0;
/* Set CLK_EN */
if (enable)
clk_enable = 1;
clk_cfg &= ~0x20;
clk_cfg |= ((clk_enable << 0x5) & 0x20);
/* clk cfg1 */
write32(&dsi0_phy->phy_cmn_clk_cfg1, clk_cfg);
}
static enum cb_err dsi_phy_pll_lock_detect(void)
{
enum cb_err ret = CB_SUCCESS;
/* Enable PLL */
write32(&dsi0_phy->phy_cmn_pll_ctrl, 0x1);
/* Wait for Lock */
if (!wait_us(15000, read32(&phy_pll_qlink->pll_common_status_one) & 0x1)) {
/* timeout while polling the lock status */
ret = CB_ERR;
printk(BIOS_ERR, "dsi pll lock detect timedout, error.\n");
}
return ret;
}
static void dsi_phy_toggle_dln3_tx_dctrl(void)
{
uint32_t reg_val = 0;
reg_val = read32(&dsi0_phy->phy_ln_regs[DSI_LANEID_3].dln0_tx_dctrl);
/* clear bit 0 and keep all other bits including bit 2 */
reg_val &= ~0x01;
/* toggle bit 0 */
write32(&dsi0_phy->phy_ln_regs[DSI_LANEID_3].dln0_tx_dctrl, (0x01 | reg_val));
write32(&dsi0_phy->phy_ln_regs[DSI_LANEID_3].dln0_tx_dctrl, 0x4);
}
static void dsi_phy_pll_set_source(void)
{
uint32_t clk_cfg = read32(&dsi0_phy->phy_cmn_clk_cfg1);
uint32_t dsi_clksel = 1;
clk_cfg &= ~0x03;
clk_cfg |= ((dsi_clksel) & 0x3);
/* clk cfg1 */
write32(&dsi0_phy->phy_cmn_clk_cfg1, clk_cfg);
}
static void dsi_phy_pll_bias_enable(bool enable)
{
uint32_t reg_val = 0;
/* Set BIAS_EN_MUX, BIAS_EN */
if (enable)
reg_val = (0x01 << 6) | (0x01 << 7);
/* pll system muxes */
write32(&phy_pll_qlink->pll_system_muxes, reg_val);
}
static void dsi_phy_mnd_divider(struct dsi_phy_configtype *phy_cfg)
{
uint32_t m_val = 1;
uint32_t n_val = 1;
if (phy_cfg->bits_per_pixel == 18) {
switch (phy_cfg->num_data_lanes) {
case 1:
case 2:
m_val = 2;
n_val = 3;
break;
case 4:
m_val = 4;
n_val = 9;
break;
default:
break;
}
} else if ((phy_cfg->bits_per_pixel == 16) &&
(phy_cfg->num_data_lanes == 3)) {
m_val = 3;
n_val = 8;
} else if ((phy_cfg->bits_per_pixel == 30) &&
(phy_cfg->num_data_lanes == 4)) {
m_val = 2;
n_val = 3;
}
/*Save M/N info */
phy_cfg->pclk_divnumerator = m_val;
phy_cfg->pclk_divdenominator = n_val;
}
static uint32_t dsi_phy_dsiclk_divider(struct dsi_phy_configtype *phy_cfg)
{
uint32_t m_val = phy_cfg->pclk_divnumerator;
uint32_t n_val = phy_cfg->pclk_divdenominator;
uint32_t div_ctrl = 0;
div_ctrl = (m_val * phy_cfg->bits_per_pixel) /
(n_val * phy_cfg->num_data_lanes * 2);
return div_ctrl;
}
static unsigned long dsi_phy_calc_clk_divider(struct dsi_phy_configtype *phy_cfg)
{
bool div_found = false;
uint32_t div_ctrl = 0;
uint32_t reg_val = 0;
uint32_t pll_post_div = 0;
uint32_t phy_post_div = 0;
uint64_t vco_freq_hz = 0;
uint64_t fval = 0;
uint64_t pll_output_freq_hz;
uint64_t desired_bitclk_hz;
uint64_t min_vco_freq_hz = 0;
uint32_t lut_max;
int i;
struct dsi_phy_divider_lut_entry_type *lut;
/* use 1000Mhz */
min_vco_freq_hz = (HAL_DSI_PLL_VCO_MIN_MHZ_2_2_0 * 1000000);
dsi_phy_mnd_divider(phy_cfg);
/* Desired clock in MHz */
desired_bitclk_hz = (uint64_t)phy_cfg->desired_bitclk_freq;
/* D Phy */
lut = pll_dividerlut_dphy;
lut_max = ARRAY_SIZE(pll_dividerlut_dphy);
lut += (lut_max - 1);
/* PLL Post Div - from LUT
* Check the LUT in reverse order
*/
for (i = lut_max - 1; i >= 0; i--, lut--) {
fval = (uint64_t)lut->phy_post_div *
(uint64_t)lut->pll_post_div;
if (fval) {
if ((desired_bitclk_hz * fval) > min_vco_freq_hz) {
/* Range found */
pll_post_div = lut->pll_post_div;
phy_post_div = lut->phy_post_div;
div_found = true;
break;
}
}
}
if (div_found) {
phy_cfg->pll_post_div = pll_post_div;
phy_cfg->phy_post_div = phy_post_div;
/*div_ctrl_7_4 */
div_ctrl = dsi_phy_dsiclk_divider(phy_cfg);
/* DIV_CTRL_7_4 DIV_CTRL_3_0
* (DIV_CTRL_3_0 = PHY post divider ratio)
*/
reg_val = (div_ctrl << 0x04) & 0xf0;
reg_val |= (phy_post_div & 0x0f);
write32(&dsi0_phy->phy_cmn_clk_cfg0, reg_val);
/* PLL output frequency = desired_bitclk_hz * phy_post_div */
pll_output_freq_hz = desired_bitclk_hz * phy_post_div;
/* VCO output freq*/
vco_freq_hz = pll_output_freq_hz * pll_post_div;
}
return (unsigned long)vco_freq_hz;
}
static void dsi_phy_pll_outputdiv_rate(struct dsi_phy_configtype *pll_cfg)
{
/* Output divider */
uint32_t pll_post_div = 0;
uint32_t reg_val = 0;
pll_post_div = log2(pll_cfg->pll_post_div);
reg_val = pll_post_div & 0x3;
write32(&phy_pll_qlink->pll_outdiv_rate, reg_val);
}
static enum cb_err dsi_phy_pll_calcandcommit(struct dsi_phy_configtype *phy_cfg)
{
unsigned long vco_freq_hz;
enum cb_err ret = CB_SUCCESS;
/* validate input parameters */
if (!phy_cfg) {
return CB_ERR;
} else if ((phy_cfg->bits_per_pixel != 16) &&
(phy_cfg->bits_per_pixel != 18) &&
(phy_cfg->bits_per_pixel != 24)) {
/* Unsupported pixel bit depth */
return CB_ERR;
} else if ((phy_cfg->num_data_lanes == 0) ||
(phy_cfg->num_data_lanes > 4)) {
/* Illegal number of DSI data lanes */
return CB_ERR;
}
vco_freq_hz = dsi_phy_calc_clk_divider(phy_cfg);
if (!vco_freq_hz) {
/* bitclock too low - unsupported */
printk(BIOS_ERR, "vco_freq_hz is 0, unsupported\n");
return CB_ERR;
}
/* Enable PLL bias */
dsi_phy_pll_bias_enable(true);
/* Set byte clk source */
dsi_phy_pll_set_source();
dsi_phy_pll_outputdiv_rate(phy_cfg);
dsi_phy_pll_vco_10nm_set_rate(vco_freq_hz);
dsi_phy_toggle_dln3_tx_dctrl();
/* Steps 6,7 Start PLL & Lock */
if (ret == CB_SUCCESS)
ret = dsi_phy_pll_lock_detect();
/* Step 8 - Resync Data Paths */
if (ret == CB_SUCCESS) {
/* Global clock enable */
dsi_phy_pll_global_clk_enable(true);
/* Resync FIFOs */
dsi_phy_resync_fifo();
}
return ret;
}
static uint32_t dsi_calc_desired_bitclk(struct edid *edid, uint32_t num_lines, uint32_t bpp)
{
uint64_t desired_bclk = 0;
uint32_t pixel_clock_in_hz;
pixel_clock_in_hz = edid->mode.pixel_clock * KHz;
if (num_lines) {
desired_bclk = pixel_clock_in_hz * (uint64_t)bpp;
desired_bclk = desired_bclk/(uint64_t)(num_lines);
}
printk(BIOS_INFO, "Desired bitclock: %uHz\n", (uint32_t)desired_bclk);
return (uint32_t)desired_bclk;
}
static enum cb_err mdss_dsi_phy_pll_setup(struct edid *edid,
uint32_t num_of_lanes, uint32_t bpp)
{
struct dsi_phy_configtype phy_cfg;
struct msm_dsi_phy_ctrl phy_timings;
enum cb_err ret;
/* Setup the PhyStructure */
memset(&phy_cfg, 0, sizeof(struct dsi_phy_configtype));
memset(&phy_timings, 0, sizeof(struct msm_dsi_phy_ctrl));
phy_cfg.bits_per_pixel = bpp;
phy_cfg.num_data_lanes = num_of_lanes;
/* desired DSI PLL bit clk freq in Hz */
phy_cfg.desired_bitclk_freq = dsi_calc_desired_bitclk(edid, num_of_lanes, bpp);
ret = dsi_phy_pll_calcandcommit(&phy_cfg);
if (ret)
return ret;
mdss_dsi_calculate_phy_timings(&phy_timings, &phy_cfg);
ret = mdss_dsi_phy_timings(&phy_timings);
return ret;
}
static enum cb_err enable_dsi_clk(void)
{
enum cb_err ret;
uint32_t i = 0;
struct mdp_external_clock_entry clks[] = {
{.clk_type = MDSS_CLK_ESC0, .clk_secondary_source = 1},
{.clk_type = MDSS_CLK_PCLK0, .clk_source = 1},
{.clk_type = MDSS_CLK_BYTE0, .clk_source = 1},
{.clk_type = MDSS_CLK_BYTE0_INTF, .clk_source = 1,
.clk_div = 1, .source_div = 2},
};
for (i = 0; i < ARRAY_SIZE(clks); i++) {
/* Set Ext Source */
ret = mdss_clock_configure(clks[i].clk_type,
clks[i].clk_source,
clks[i].clk_div,
clks[i].clk_pll_m,
clks[i].clk_pll_n,
clks[i].clk_pll_2d);
if (ret) {
printk(BIOS_ERR,
"mdss_clock_configure failed for %u\n",
clks[i].clk_type);
return CB_ERR;
}
ret = mdss_clock_enable(clks[i].clk_type);
if (ret) {
printk(BIOS_ERR,
"mdss_clock_enable failed for %u\n",
clks[i].clk_type);
return CB_ERR;
}
}
return ret;
}
enum cb_err mdss_dsi_phy_10nm_init(struct edid *edid, uint32_t num_of_lanes, uint32_t bpp)
{
enum cb_err ret;
/* Phy set up */
mdss_dsi_phy_setup();
ret = mdss_dsi_phy_pll_setup(edid, num_of_lanes, bpp);
enable_dsi_clk();
return ret;
}
|