1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
|
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2014 - 2015 The Linux Foundation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <arch/io.h>
#include <console/console.h>
#include <delay.h>
#include <soc/iomap.h>
#include <stdlib.h>
#include <soc/qup.h>
#define TIMEOUT_CNT 100000
//TODO: refactor the following array to iomap driver.
static unsigned gsbi_qup_base[] = {
(unsigned)GSBI_QUP1_BASE,
(unsigned)GSBI_QUP2_BASE,
(unsigned)GSBI_QUP3_BASE,
(unsigned)GSBI_QUP4_BASE,
(unsigned)GSBI_QUP5_BASE,
(unsigned)GSBI_QUP6_BASE,
(unsigned)GSBI_QUP7_BASE,
};
#define QUP_ADDR(gsbi_num, reg) ((void *)((gsbi_qup_base[gsbi_num-1]) + (reg)))
static qup_return_t qup_i2c_master_status(gsbi_id_t gsbi_id)
{
uint32_t reg_val = readl(QUP_ADDR(gsbi_id, QUP_I2C_MASTER_STATUS));
if (readl(QUP_ADDR(gsbi_id, QUP_ERROR_FLAGS)))
return QUP_ERR_XFER_FAIL;
if (reg_val & QUP_I2C_INVALID_READ_ADDR)
return QUP_ERR_I2C_INVALID_SLAVE_ADDR;
if (reg_val & QUP_I2C_FAILED_MASK)
return QUP_ERR_I2C_FAILED;
if (reg_val & QUP_I2C_ARB_LOST)
return QUP_ERR_I2C_ARB_LOST;
if (reg_val & QUP_I2C_BUS_ERROR)
return QUP_ERR_I2C_BUS_ERROR;
return QUP_SUCCESS;
}
static int check_bit_state(uint32_t *reg, int wait_for)
{
unsigned int count = TIMEOUT_CNT;
while ((readl(reg) & (QUP_STATE_VALID_MASK | QUP_STATE_MASK)) !=
(QUP_STATE_VALID | wait_for)) {
if (count == 0)
return QUP_ERR_TIMEOUT;
count--;
udelay(1);
}
return QUP_SUCCESS;
}
/*
* Check whether GSBIn_QUP State is valid
*/
static qup_return_t qup_wait_for_state(gsbi_id_t gsbi_id, unsigned wait_for)
{
return check_bit_state(QUP_ADDR(gsbi_id, QUP_STATE), wait_for);
}
qup_return_t qup_reset_i2c_master_status(gsbi_id_t gsbi_id)
{
/*
* Writing a one clears the status bits.
* Bit31-25, Bit1 and Bit0 are reserved.
*/
//TODO: Define each status bit. OR all status bits in a single macro.
writel(0x3FFFFFC, QUP_ADDR(gsbi_id, QUP_I2C_MASTER_STATUS));
return QUP_SUCCESS;
}
static qup_return_t qup_reset_master_status(gsbi_id_t gsbi_id)
{
writel(0x7C, QUP_ADDR(gsbi_id, QUP_ERROR_FLAGS));
writel(0x7C, QUP_ADDR(gsbi_id, QUP_ERROR_FLAGS_EN));
qup_reset_i2c_master_status(gsbi_id);
return QUP_SUCCESS;
}
static qup_return_t qup_fifo_wait_for(gsbi_id_t gsbi_id, uint32_t status)
{
qup_return_t ret = QUP_ERR_UNDEFINED;
unsigned int count = TIMEOUT_CNT;
while (!(readl(QUP_ADDR(gsbi_id, QUP_OPERATIONAL)) & status)) {
ret = qup_i2c_master_status(gsbi_id);
if (ret)
return ret;
if (count == 0)
return QUP_ERR_TIMEOUT;
count--;
}
return QUP_SUCCESS;
}
static qup_return_t qup_fifo_wait_while(gsbi_id_t gsbi_id, uint32_t status)
{
qup_return_t ret = QUP_ERR_UNDEFINED;
unsigned int count = TIMEOUT_CNT;
while (readl(QUP_ADDR(gsbi_id, QUP_OPERATIONAL)) & status) {
ret = qup_i2c_master_status(gsbi_id);
if (ret)
return ret;
if (count == 0)
return QUP_ERR_TIMEOUT;
count--;
}
return QUP_SUCCESS;
}
static qup_return_t qup_i2c_write_fifo(gsbi_id_t gsbi_id, qup_data_t *p_tx_obj,
uint8_t stop_seq)
{
qup_return_t ret = QUP_ERR_UNDEFINED;
uint8_t addr = p_tx_obj->p.iic.addr;
uint8_t *data_ptr = p_tx_obj->p.iic.data;
unsigned data_len = p_tx_obj->p.iic.data_len;
unsigned idx = 0;
qup_reset_master_status(gsbi_id);
qup_set_state(gsbi_id, QUP_STATE_RUN);
writel((QUP_I2C_START_SEQ | QUP_I2C_ADDR(addr)),
QUP_ADDR(gsbi_id, QUP_OUTPUT_FIFO));
while (data_len) {
if (data_len == 1 && stop_seq) {
writel((QUP_I2C_STOP_SEQ | QUP_I2C_DATA(data_ptr[idx])),
QUP_ADDR(gsbi_id, QUP_OUTPUT_FIFO));
} else {
writel((QUP_I2C_DATA_SEQ | QUP_I2C_DATA(data_ptr[idx])),
QUP_ADDR(gsbi_id, QUP_OUTPUT_FIFO));
}
data_len--;
idx++;
if (data_len) {
ret = qup_fifo_wait_while(gsbi_id, OUTPUT_FIFO_FULL);
if (ret)
return ret;
}
/* Hardware sets the OUTPUT_SERVICE_FLAG flag to 1 when
OUTPUT_FIFO_NOT_EMPTY flag in the QUP_OPERATIONAL
register changes from 1 to 0, indicating that software
can write more data to the output FIFO. Software should
set OUTPUT_SERVICE_FLAG to 1 to clear it to 0, which
means that software knows to return to fill the output
FIFO with data.
*/
if (readl(QUP_ADDR(gsbi_id, QUP_OPERATIONAL)) &
OUTPUT_SERVICE_FLAG) {
writel(OUTPUT_SERVICE_FLAG,
QUP_ADDR(gsbi_id, QUP_OPERATIONAL));
}
}
ret = qup_fifo_wait_while(gsbi_id, OUTPUT_FIFO_NOT_EMPTY);
if (ret)
return ret;
qup_set_state(gsbi_id, QUP_STATE_PAUSE);
return QUP_SUCCESS;
}
static qup_return_t qup_i2c_write(gsbi_id_t gsbi_id, uint8_t mode,
qup_data_t *p_tx_obj, uint8_t stop_seq)
{
qup_return_t ret = QUP_ERR_UNDEFINED;
switch (mode) {
case QUP_MODE_FIFO:
ret = qup_i2c_write_fifo(gsbi_id, p_tx_obj, stop_seq);
break;
default:
ret = QUP_ERR_UNSUPPORTED;
}
if (ret) {
qup_set_state(gsbi_id, QUP_STATE_RESET);
printk(BIOS_ERR, "%s() failed (%d)\n", __func__, ret);
}
return ret;
}
static qup_return_t qup_i2c_read_fifo(gsbi_id_t gsbi_id, qup_data_t *p_tx_obj)
{
qup_return_t ret = QUP_ERR_UNDEFINED;
uint8_t addr = p_tx_obj->p.iic.addr;
uint8_t *data_ptr = p_tx_obj->p.iic.data;
unsigned data_len = p_tx_obj->p.iic.data_len;
unsigned idx = 0;
qup_reset_master_status(gsbi_id);
qup_set_state(gsbi_id, QUP_STATE_RUN);
writel((QUP_I2C_START_SEQ | (QUP_I2C_ADDR(addr) | QUP_I2C_SLAVE_READ)),
QUP_ADDR(gsbi_id, QUP_OUTPUT_FIFO));
writel((QUP_I2C_RECV_SEQ | data_len),
QUP_ADDR(gsbi_id, QUP_OUTPUT_FIFO));
ret = qup_fifo_wait_while(gsbi_id, OUTPUT_FIFO_NOT_EMPTY);
if (ret)
return ret;
writel(OUTPUT_SERVICE_FLAG, QUP_ADDR(gsbi_id, QUP_OPERATIONAL));
while (data_len) {
uint32_t data;
ret = qup_fifo_wait_for(gsbi_id, INPUT_SERVICE_FLAG);
if (ret)
return ret;
data = readl(QUP_ADDR(gsbi_id, QUP_INPUT_FIFO));
/*
* Process tag and corresponding data value. For I2C master
* mini-core, data in FIFO is composed of 16 bits and is divided
* into an 8-bit tag for the upper bits and 8-bit data for the
* lower bits. The 8-bit tag indicates whether the byte is the
* last byte, or if a bus error happened during the receipt of
* the byte.
*/
if ((QUP_I2C_MI_TAG(data)) == QUP_I2C_MIDATA_SEQ) {
/* Tag: MIDATA = Master input data.*/
data_ptr[idx] = QUP_I2C_DATA(data);
idx++;
data_len--;
writel(INPUT_SERVICE_FLAG,
QUP_ADDR(gsbi_id, QUP_OPERATIONAL));
} else if (QUP_I2C_MI_TAG(data) == QUP_I2C_MISTOP_SEQ) {
/* Tag: MISTOP: Last byte of master input. */
data_ptr[idx] = QUP_I2C_DATA(data);
idx++;
data_len--;
break;
} else {
/* Tag: MINACK: Invalid master input data.*/
break;
}
}
writel(INPUT_SERVICE_FLAG, QUP_ADDR(gsbi_id, QUP_OPERATIONAL));
p_tx_obj->p.iic.data_len = idx;
qup_set_state(gsbi_id, QUP_STATE_PAUSE);
return QUP_SUCCESS;
}
static qup_return_t qup_i2c_read(gsbi_id_t gsbi_id, uint8_t mode,
qup_data_t *p_tx_obj)
{
qup_return_t ret = QUP_ERR_UNDEFINED;
switch (mode) {
case QUP_MODE_FIFO:
ret = qup_i2c_read_fifo(gsbi_id, p_tx_obj);
break;
default:
ret = QUP_ERR_UNSUPPORTED;
}
if (ret) {
qup_set_state(gsbi_id, QUP_STATE_RESET);
printk(BIOS_ERR, "%s() failed (%d)\n", __func__, ret);
}
return ret;
}
qup_return_t qup_init(gsbi_id_t gsbi_id, const qup_config_t *config_ptr)
{
qup_return_t ret = QUP_ERR_UNDEFINED;
uint32_t reg_val;
/* Reset the QUP core.*/
writel(0x1, QUP_ADDR(gsbi_id, QUP_SW_RESET));
/*Wait till the reset takes effect */
ret = qup_wait_for_state(gsbi_id, QUP_STATE_RESET);
if (ret)
goto bailout;
/* Reset the config */
writel(0, QUP_ADDR(gsbi_id, QUP_CONFIG));
/*Program the config register*/
/*Set N value*/
reg_val = 0x0F;
/*Set protocol*/
switch (config_ptr->protocol) {
case QUP_MINICORE_I2C_MASTER:
reg_val |= ((config_ptr->protocol &
QUP_MINI_CORE_PROTO_MASK) <<
QUP_MINI_CORE_PROTO_SHFT);
break;
default:
ret = QUP_ERR_UNSUPPORTED;
goto bailout;
}
writel(reg_val, QUP_ADDR(gsbi_id, QUP_CONFIG));
/*Reset i2c clk cntl register*/
writel(0, QUP_ADDR(gsbi_id, QUP_I2C_MASTER_CLK_CTL));
/*Set QUP IO Mode*/
switch (config_ptr->mode) {
case QUP_MODE_FIFO:
reg_val = QUP_OUTPUT_BIT_SHIFT_EN |
((config_ptr->mode & QUP_MODE_MASK) <<
QUP_OUTPUT_MODE_SHFT) |
((config_ptr->mode & QUP_MODE_MASK) <<
QUP_INPUT_MODE_SHFT);
break;
default:
ret = QUP_ERR_UNSUPPORTED;
goto bailout;
}
writel(reg_val, QUP_ADDR(gsbi_id, QUP_IO_MODES));
/*Set i2c clk cntl*/
reg_val = (QUP_DIVIDER_MIN_VAL << QUP_HS_DIVIDER_SHFT);
reg_val |= ((((config_ptr->src_frequency / config_ptr->clk_frequency)
/ 2) - QUP_DIVIDER_MIN_VAL) &
QUP_FS_DIVIDER_MASK);
writel(reg_val, QUP_ADDR(gsbi_id, QUP_I2C_MASTER_CLK_CTL));
bailout:
if (ret)
printk(BIOS_ERR, "failed to init qup (%d)\n", ret);
return ret;
}
qup_return_t qup_set_state(gsbi_id_t gsbi_id, uint32_t state)
{
qup_return_t ret = QUP_ERR_UNDEFINED;
unsigned curr_state = readl(QUP_ADDR(gsbi_id, QUP_STATE));
if ((state >= QUP_STATE_RESET && state <= QUP_STATE_PAUSE)
&& (curr_state & QUP_STATE_VALID_MASK)) {
/*
* For PAUSE_STATE to RESET_STATE transition,
* two writes of 10[binary]) are required for the
* transition to complete.
*/
if (QUP_STATE_PAUSE == curr_state && QUP_STATE_RESET == state) {
writel(0x2, QUP_ADDR(gsbi_id, QUP_STATE));
writel(0x2, QUP_ADDR(gsbi_id, QUP_STATE));
} else {
writel(state, QUP_ADDR(gsbi_id, QUP_STATE));
}
ret = qup_wait_for_state(gsbi_id, state);
}
return ret;
}
static qup_return_t qup_i2c_send_data(gsbi_id_t gsbi_id, qup_data_t *p_tx_obj,
uint8_t stop_seq)
{
qup_return_t ret = QUP_ERR_UNDEFINED;
uint8_t mode = (readl(QUP_ADDR(gsbi_id, QUP_IO_MODES)) >>
QUP_OUTPUT_MODE_SHFT) & QUP_MODE_MASK;
ret = qup_i2c_write(gsbi_id, mode, p_tx_obj, stop_seq);
if (0) {
int i;
printk(BIOS_DEBUG, "i2c tx bus %d device %2.2x:",
gsbi_id, p_tx_obj->p.iic.addr);
for (i = 0; i < p_tx_obj->p.iic.data_len; i++)
printk(BIOS_DEBUG, " %2.2x", p_tx_obj->p.iic.data[i]);
printk(BIOS_DEBUG, "\n");
}
return ret;
}
qup_return_t qup_send_data(gsbi_id_t gsbi_id, qup_data_t *p_tx_obj,
uint8_t stop_seq)
{
qup_return_t ret = QUP_ERR_UNDEFINED;
if (p_tx_obj->protocol == ((readl(QUP_ADDR(gsbi_id, QUP_CONFIG)) >>
QUP_MINI_CORE_PROTO_SHFT) & QUP_MINI_CORE_PROTO_MASK)) {
switch (p_tx_obj->protocol) {
case QUP_MINICORE_I2C_MASTER:
ret = qup_i2c_send_data(gsbi_id, p_tx_obj, stop_seq);
break;
default:
ret = QUP_ERR_UNSUPPORTED;
}
}
return ret;
}
static qup_return_t qup_i2c_recv_data(gsbi_id_t gsbi_id, qup_data_t *p_rx_obj)
{
qup_return_t ret = QUP_ERR_UNDEFINED;
uint8_t mode = (readl(QUP_ADDR(gsbi_id, QUP_IO_MODES)) >>
QUP_INPUT_MODE_SHFT) & QUP_MODE_MASK;
ret = qup_i2c_read(gsbi_id, mode, p_rx_obj);
if (0) {
int i;
printk(BIOS_DEBUG, "i2c rxed on bus %d device %2.2x:",
gsbi_id, p_rx_obj->p.iic.addr);
for (i = 0; i < p_rx_obj->p.iic.data_len; i++)
printk(BIOS_DEBUG, " %2.2x", p_rx_obj->p.iic.data[i]);
printk(BIOS_DEBUG, "\n");
}
return ret;
}
qup_return_t qup_recv_data(gsbi_id_t gsbi_id, qup_data_t *p_rx_obj)
{
qup_return_t ret = QUP_ERR_UNDEFINED;
if (p_rx_obj->protocol == ((readl(QUP_ADDR(gsbi_id, QUP_CONFIG)) >>
QUP_MINI_CORE_PROTO_SHFT) & QUP_MINI_CORE_PROTO_MASK)) {
switch (p_rx_obj->protocol) {
case QUP_MINICORE_I2C_MASTER:
ret = qup_i2c_recv_data(gsbi_id, p_rx_obj);
break;
default:
ret = QUP_ERR_UNSUPPORTED;
}
}
return ret;
}
|