1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
|
/*
* This file is part of the coreboot project.
*
* Copyright 2015 MediaTek Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <assert.h>
#include <delay.h>
#include <device/i2c_simple.h>
#include <string.h>
#include <symbols.h>
#include <timer.h>
#include <arch/io.h>
#include <soc/addressmap.h>
#include <soc/i2c.h>
#include <soc/pll.h>
#define I2C_CLK_HZ (AXI_HZ / 16)
static struct mtk_i2c i2c[7] = {
/* i2c0 setting */
{
.i2c_regs = (void *)I2C_BASE,
.i2c_dma_regs = (void *)(I2C_DMA_BASE + 0x80),
},
/* i2c1 setting */
{
.i2c_regs = (void *)(I2C_BASE + 0x1000),
.i2c_dma_regs = (void *)(I2C_DMA_BASE + 0x100),
},
/* i2c2 setting */
{
.i2c_regs = (void *)(I2C_BASE + 0x2000),
.i2c_dma_regs = (void *)(I2C_DMA_BASE + 0x180),
},
/* i2c3 setting */
{
.i2c_regs = (void *)(I2C_BASE + 0x9000),
.i2c_dma_regs = (void *)(I2C_DMA_BASE + 0x200),
},
/* i2c4 setting */
{
.i2c_regs = (void *)(I2C_BASE + 0xa000),
.i2c_dma_regs = (void *)(I2C_DMA_BASE + 0x280),
},
/* i2c5 is reserved for internal use. */
{
},
/* i2c6 setting */
{
.i2c_regs = (void *)(I2C_BASE + 0xc000),
.i2c_dma_regs = (void *)I2C_DMA_BASE,
}
};
#define I2CTAG "[I2C][PL] "
#if IS_ENABLED(CONFIG_DEBUG_I2C)
#define I2CLOG(fmt, arg...) printk(BIOS_INFO, I2CTAG fmt, ##arg)
#else
#define I2CLOG(fmt, arg...)
#endif /* CONFIG_DEBUG_I2C */
#define I2CERR(fmt, arg...) printk(BIOS_ERR, I2CTAG fmt, ##arg)
static inline void i2c_dma_reset(struct mt8173_i2c_dma_regs *dma_regs)
{
write32(&dma_regs->dma_rst, 0x1);
udelay(50);
write32(&dma_regs->dma_rst, 0x2);
udelay(50);
write32(&dma_regs->dma_rst, 0x0);
udelay(50);
}
void mtk_i2c_bus_init(uint8_t bus)
{
uint8_t sample_div;
uint8_t step_div;
uint32_t i2c_freq;
assert(bus < ARRAY_SIZE(i2c));
/* Calculate i2c frequency */
sample_div = 1;
step_div = div_round_up(I2C_CLK_HZ, (400 * KHz * sample_div * 2));
i2c_freq = I2C_CLK_HZ / (step_div * sample_div * 2);
assert(sample_div < 8 && step_div < 64 && i2c_freq < 400 * KHz &&
i2c_freq >= 380 * KHz);
/* Init i2c bus Timing register */
write32(&i2c[bus].i2c_regs->timing, (sample_div - 1) << 8 |
(step_div - 1));
}
static inline void mtk_i2c_dump_info(uint8_t bus)
{
struct mt8173_i2c_regs *regs;
regs = i2c[bus].i2c_regs;
I2CLOG("I2C register:\nSLAVE_ADDR %x\nINTR_MASK %x\nINTR_STAT %x\n"
"CONTROL %x\nTRANSFER_LEN %x\nTRANSAC_LEN %x\nDELAY_LEN %x\n"
"TIMING %x\nSTART %x\nFIFO_STAT %x\nIO_CONFIG %x\nHS %x\n"
"DEBUGSTAT %x\nEXT_CONF %x\n",
(read32(®s->salve_addr)),
(read32(®s->intr_mask)),
(read32(®s->intr_stat)),
(read32(®s->control)),
(read32(®s->transfer_len)),
(read32(®s->transac_len)),
(read32(®s->delay_len)),
(read32(®s->timing)),
(read32(®s->start)),
(read32(®s->fifo_stat)),
(read32(®s->io_config)),
(read32(®s->hs)),
(read32(®s->debug_stat)),
(read32(®s->ext_conf)));
I2CLOG("addr address %x\n", (uint32_t)regs);
}
static uint32_t mtk_i2c_transfer(uint8_t bus, struct i2c_msg *seg,
enum i2c_modes read)
{
uint32_t ret_code = I2C_OK;
uint16_t status;
uint32_t time_out_val = 0;
uint8_t addr;
uint32_t write_len = 0;
uint32_t read_len = 0;
uint8_t *write_buffer = NULL;
uint8_t *read_buffer = NULL;
struct mt8173_i2c_regs *regs;
struct mt8173_i2c_dma_regs *dma_regs;
struct stopwatch sw;
regs = i2c[bus].i2c_regs;
dma_regs = i2c[bus].i2c_dma_regs;
addr = seg[0].slave;
switch (read) {
case I2C_WRITE_MODE:
assert(seg[0].len > 0 && seg[0].len <= 255);
write_len = seg[0].len;
write_buffer = seg[0].buf;
break;
case I2C_READ_MODE:
assert(seg[0].len > 0 && seg[0].len <= 255);
read_len = seg[0].len;
read_buffer = seg[0].buf;
break;
/* Must use special write-then-read mode for repeated starts. */
case I2C_WRITE_READ_MODE:
assert(seg[0].len > 0 && seg[0].len <= 255);
assert(seg[1].len > 0 && seg[1].len <= 255);
write_len = seg[0].len;
read_len = seg[1].len;
write_buffer = seg[0].buf;
read_buffer = seg[1].buf;
break;
}
/* Clear interrupt status */
write32(®s->intr_stat, I2C_TRANSAC_COMP | I2C_ACKERR |
I2C_HS_NACKERR);
write32(®s->fifo_addr_clr, 0x1);
/* Enable interrupt */
write32(®s->intr_mask, I2C_HS_NACKERR | I2C_ACKERR |
I2C_TRANSAC_COMP);
switch (read) {
case I2C_WRITE_MODE:
memcpy(_dma_coherent, write_buffer, write_len);
/* control registers */
write32(®s->control, ACK_ERR_DET_EN | DMA_EN | CLK_EXT |
REPEATED_START_FLAG);
/* Set transfer and transaction len */
write32(®s->transac_len, 1);
write32(®s->transfer_len, write_len);
/* set i2c write slave address*/
write32(®s->slave_addr, addr << 1);
/* Prepare buffer data to start transfer */
write32(&dma_regs->dma_con, I2C_DMA_CON_TX);
write32(&dma_regs->dma_tx_mem_addr, (uintptr_t)_dma_coherent);
write32(&dma_regs->dma_tx_len, write_len);
break;
case I2C_READ_MODE:
/* control registers */
write32(®s->control, ACK_ERR_DET_EN | DMA_EN | CLK_EXT |
REPEATED_START_FLAG);
/* Set transfer and transaction len */
write32(®s->transac_len, 1);
write32(®s->transfer_len, read_len);
/* set i2c read slave address*/
write32(®s->slave_addr, (addr << 1 | 0x1));
/* Prepare buffer data to start transfer */
write32(&dma_regs->dma_con, I2C_DMA_CON_RX);
write32(&dma_regs->dma_rx_mem_addr, (uintptr_t)_dma_coherent);
write32(&dma_regs->dma_rx_len, read_len);
break;
case I2C_WRITE_READ_MODE:
memcpy(_dma_coherent, write_buffer, write_len);
/* control registers */
write32(®s->control, DIR_CHG | ACK_ERR_DET_EN | DMA_EN |
CLK_EXT | REPEATED_START_FLAG);
/* Set transfer and transaction len */
write32(®s->transfer_len, write_len);
write32(®s->transfer_aux_len, read_len);
write32(®s->transac_len, 2);
/* set i2c write slave address*/
write32(®s->slave_addr, addr << 1);
/* Prepare buffer data to start transfer */
write32(&dma_regs->dma_con, I2C_DMA_CLR_FLAG);
write32(&dma_regs->dma_tx_mem_addr, (uintptr_t)_dma_coherent);
write32(&dma_regs->dma_tx_len, write_len);
write32(&dma_regs->dma_rx_mem_addr, (uintptr_t)_dma_coherent);
write32(&dma_regs->dma_rx_len, read_len);
break;
}
write32(&dma_regs->dma_int_flag, I2C_DMA_CLR_FLAG);
write32(&dma_regs->dma_en, I2C_DMA_START_EN);
/* start transfer transaction */
write32(®s->start, 0x1);
stopwatch_init_msecs_expire(&sw, 100);
/* polling mode : see if transaction complete */
while (1) {
status = read32(®s->intr_stat);
if (status & I2C_HS_NACKERR) {
ret_code = I2C_TRANSFER_FAIL_HS_NACKERR;
I2CERR("[i2c%d transfer] transaction NACK error\n",
bus);
mtk_i2c_dump_info(bus);
break;
} else if (status & I2C_ACKERR) {
ret_code = I2C_TRANSFER_FAIL_ACKERR;
I2CERR("[i2c%d transfer] transaction ACK error\n", bus);
mtk_i2c_dump_info(bus);
break;
} else if (status & I2C_TRANSAC_COMP) {
ret_code = I2C_OK;
memcpy(read_buffer, _dma_coherent, read_len);
break;
}
if (stopwatch_expired(&sw)) {
ret_code = I2C_TRANSFER_FAIL_TIMEOUT;
I2CERR("[i2c%d transfer] transaction timeout:%d\n", bus,
time_out_val);
mtk_i2c_dump_info(bus);
break;
}
}
write32(®s->intr_stat, I2C_TRANSAC_COMP | I2C_ACKERR |
I2C_HS_NACKERR);
/* clear bit mask */
write32(®s->intr_mask, I2C_HS_NACKERR | I2C_ACKERR |
I2C_TRANSAC_COMP);
/* reset the i2c controller for next i2c transfer. */
write32(®s->softreset, 0x1);
i2c_dma_reset(dma_regs);
return ret_code;
}
static uint8_t mtk_i2c_should_combine(struct i2c_msg *seg, int left_count)
{
if (left_count >= 2 &&
!(seg[0].flags & I2C_M_RD) &&
(seg[1].flags & I2C_M_RD) &&
seg[0].slave == seg[1].slave)
return 1;
else
return 0;
}
int platform_i2c_transfer(unsigned bus, struct i2c_msg *segments,
int seg_count)
{
int ret = 0;
int i;
int read;
for (i = 0; i < seg_count; i++) {
if (mtk_i2c_should_combine(&segments[i], seg_count - i)) {
read = I2C_WRITE_READ_MODE;
} else {
read = (segments[i].flags & I2C_M_RD) ?
I2C_READ_MODE : I2C_WRITE_MODE;
}
ret = mtk_i2c_transfer(bus, &segments[i], read);
if (ret)
break;
if (read == I2C_WRITE_READ_MODE)
i++;
}
return ret;
}
|