1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
|
/* SPDX-License-Identifier: GPL-2.0-only */
#include <console/console.h>
#include <device/mmio.h>
#include <soc/infracfg.h>
#include <soc/pll.h>
#include <soc/pmif_spi.h>
#include <soc/pmif_sw.h>
#include <timer.h>
/* PMIF, SPI_MODE_CTRL */
DEFINE_BIT(SPI_MODE_CTRL_VLD_SRCLK_EN_CTRL, 5)
DEFINE_BIT(SPI_MODE_CTRL_PMIF_RDY, 9)
DEFINE_BIT(SPI_MODE_CTRL_SRCLK_EN, 10)
DEFINE_BIT(SPI_MODE_CTRL_SRVOL_EN, 11)
/* PMIF, SLEEP_PROTECTION_CTRL */
DEFINE_BITFIELD(SPM_SLEEP_REQ_SEL, 1, 0)
DEFINE_BITFIELD(SCP_SLEEP_REQ_SEL, 10, 9)
/* PMIF, OTHER_INF_EN */
DEFINE_BITFIELD(INTGPSADCINF_EN, 5, 4)
/* PMIF, STAUPD_CTRL */
DEFINE_BITFIELD(STAUPD_CTRL_PRD, 3, 0)
DEFINE_BIT(STAUPD_CTRL_PMIC0_SIG_STA, 4)
DEFINE_BIT(STAUPD_CTRL_PMIC0_EINT_STA, 6)
/* SPIMST, Manual_Mode_Access */
DEFINE_BITFIELD(MAN_ACC_SPI_OP, 12, 8)
DEFINE_BIT(MAN_ACC_SPI_RW, 13)
static void pmif_spi_config(struct pmif *arb)
{
/* Set srclk_en always valid regardless of ulposc_sel_for_scp */
SET32_BITFIELDS(&arb->mtk_pmif->spi_mode_ctrl, SPI_MODE_CTRL_VLD_SRCLK_EN_CTRL, 0);
/* Set SPI mode controlled by srclk_en and srvol_en instead of pmif_rdy */
SET32_BITFIELDS(&arb->mtk_pmif->spi_mode_ctrl,
SPI_MODE_CTRL_SRCLK_EN, 1,
SPI_MODE_CTRL_SRVOL_EN, 1,
SPI_MODE_CTRL_PMIF_RDY, 0);
SET32_BITFIELDS(&arb->mtk_pmif->sleep_protection_ctrl, SPM_SLEEP_REQ_SEL, 0,
SCP_SLEEP_REQ_SEL, 0);
/* Enable SWINF for AP */
write32(&arb->mtk_pmif->inf_en, PMIF_SPI_AP);
/* Enable arbitration for SWINF for AP */
write32(&arb->mtk_pmif->arb_en, PMIF_SPI_AP);
/* Enable PMIF_SPI Command Issue */
write32(&arb->mtk_pmif->cmdissue_en, 1);
}
static int check_idle(void *addr, u32 expected)
{
u32 reg_rdata;
struct stopwatch sw;
stopwatch_init_usecs_expire(&sw, PMIF_WAIT_IDLE_US);
do {
reg_rdata = read32(addr);
if (stopwatch_expired(&sw))
return E_TIMEOUT;
} while ((reg_rdata & expected) != 0);
return 0;
}
static int reset_spislv(void)
{
u32 pmicspi_mst_dio_en_backup;
write32(&mtk_pmicspi_mst->wrap_en, 0);
write32(&mtk_pmicspi_mst->mux_sel, 1);
write32(&mtk_pmicspi_mst->man_en, 1);
pmicspi_mst_dio_en_backup = read32(&mtk_pmicspi_mst->dio_en);
write32(&mtk_pmicspi_mst->dio_en, 0);
SET32_BITFIELDS(&mtk_pmicspi_mst->man_acc, MAN_ACC_SPI_RW, OP_WR,
MAN_ACC_SPI_OP, OP_CSL);
/* Reset counter */
SET32_BITFIELDS(&mtk_pmicspi_mst->man_acc, MAN_ACC_SPI_RW, OP_WR,
MAN_ACC_SPI_OP, OP_OUTS);
SET32_BITFIELDS(&mtk_pmicspi_mst->man_acc, MAN_ACC_SPI_RW, OP_WR,
MAN_ACC_SPI_OP, OP_CSH);
/*
* In order to pull CSN signal to PMIC,
* PMIC will count it then reset spi slave
*/
SET32_BITFIELDS(&mtk_pmicspi_mst->man_acc, MAN_ACC_SPI_RW, OP_WR,
MAN_ACC_SPI_OP, OP_OUTS);
SET32_BITFIELDS(&mtk_pmicspi_mst->man_acc, MAN_ACC_SPI_RW, OP_WR,
MAN_ACC_SPI_OP, OP_OUTS);
SET32_BITFIELDS(&mtk_pmicspi_mst->man_acc, MAN_ACC_SPI_RW, OP_WR,
MAN_ACC_SPI_OP, OP_OUTS);
SET32_BITFIELDS(&mtk_pmicspi_mst->man_acc, MAN_ACC_SPI_RW, OP_WR,
MAN_ACC_SPI_OP, OP_OUTS);
/* Wait for PMIC SPI Master to be idle */
if (check_idle(&mtk_pmicspi_mst->other_busy_sta_0, SPIMST_STA)) {
printk(BIOS_ERR, "[%s] spi master busy, timeout\n", __func__);
return E_TIMEOUT;
}
write32(&mtk_pmicspi_mst->man_en, 0);
write32(&mtk_pmicspi_mst->mux_sel, 0);
write32(&mtk_pmicspi_mst->wrap_en, 1);
write32(&mtk_pmicspi_mst->dio_en, pmicspi_mst_dio_en_backup);
return 0;
}
static void init_reg_clock(struct pmif *arb)
{
pmif_spi_iocfg();
/* Configure SPI protocol */
write32(&mtk_pmicspi_mst->ext_ck_write, 1);
write32(&mtk_pmicspi_mst->ext_ck_read, 0);
write32(&mtk_pmicspi_mst->cshext_write, 0);
write32(&mtk_pmicspi_mst->cshext_read, 0);
write32(&mtk_pmicspi_mst->cslext_write, 0);
write32(&mtk_pmicspi_mst->cslext_read, 0x100);
/* Set Read Dummy Cycle Number (Slave Clock is 18MHz) */
arb->write(arb, DEFAULT_SLVID, PMIC_DEW_RDDMY_NO, DUMMY_READ_CYCLES);
write32(&mtk_pmicspi_mst->rddmy, DUMMY_READ_CYCLES);
/* Enable DIO mode */
arb->write(arb, DEFAULT_SLVID, PMIC_DEW_DIO_EN, 0x1);
/* Wait for completion of sending the commands */
if (check_idle(&arb->mtk_pmif->inf_busy_sta, PMIF_SPI_AP)) {
printk(BIOS_ERR, "[%s] pmif channel busy, timeout\n", __func__);
return;
}
if (check_idle(&arb->mtk_pmif->other_busy_sta_0, PMIF_CMD_STA)) {
printk(BIOS_ERR, "[%s] pmif cmd busy, timeout\n", __func__);
return;
}
if (check_idle(&mtk_pmicspi_mst->other_busy_sta_0, SPIMST_STA)) {
printk(BIOS_ERR, "[%s] spi master busy, timeout\n", __func__);
return;
}
write32(&mtk_pmicspi_mst->dio_en, 1);
}
static void init_spislv(struct pmif *arb)
{
/* Turn on SPI IO filter function */
arb->write(arb, DEFAULT_SLVID, PMIC_FILTER_CON0, SPI_FILTER);
/* Turn on SPI IO SMT function to improve noise immunity */
arb->write(arb, DEFAULT_SLVID, PMIC_SMT_CON1, SPI_SMT);
/* Turn off SPI IO pull function for power saving */
arb->write(arb, DEFAULT_SLVID, PMIC_GPIO_PULLEN0_CLR, SPI_PULL_DISABLE);
/* Enable SPI access in SODI-3.0 and Suspend modes */
arb->write(arb, DEFAULT_SLVID, PMIC_RG_SPI_CON0, 0x2);
/* Set SPI IO driving strength to 4 mA */
arb->write(arb, DEFAULT_SLVID, PMIC_DRV_CON1, SPI_DRIVING);
}
static int init_sistrobe(struct pmif *arb)
{
u32 rdata = 0;
int si_sample_ctrl;
/* Random data for testing */
const u32 test_data[30] = {
0x6996, 0x9669, 0x6996, 0x9669, 0x6996, 0x9669, 0x6996,
0x9669, 0x6996, 0x9669, 0x5AA5, 0xA55A, 0x5AA5, 0xA55A,
0x5AA5, 0xA55A, 0x5AA5, 0xA55A, 0x5AA5, 0xA55A, 0x1B27,
0x1B27, 0x1B27, 0x1B27, 0x1B27, 0x1B27, 0x1B27, 0x1B27,
0x1B27, 0x1B27
};
for (si_sample_ctrl = 0; si_sample_ctrl < 16; si_sample_ctrl++) {
write32(&mtk_pmicspi_mst->si_sampling_ctrl, si_sample_ctrl << 5);
arb->read(arb, DEFAULT_SLVID, PMIC_DEW_READ_TEST, &rdata);
if (rdata == DEFAULT_VALUE_READ_TEST)
break;
}
if (si_sample_ctrl == 16)
return E_CLK_EDGE;
if (si_sample_ctrl == 15)
return E_CLK_LAST_SETTING;
/*
* Add the delay time of SPI data from PMIC to align the start boundary
* to current sampling clock edge.
*/
for (int si_dly = 0; si_dly < 10; si_dly++) {
arb->write(arb, DEFAULT_SLVID, PMIC_RG_SPI_CON2, si_dly);
int start_boundary_found = 0;
for (int i = 0; i < ARRAY_SIZE(test_data); i++) {
arb->write(arb, DEFAULT_SLVID, PMIC_DEW_WRITE_TEST, test_data[i]);
arb->read(arb, DEFAULT_SLVID, PMIC_DEW_WRITE_TEST, &rdata);
if ((rdata & 0x7fff) != (test_data[i] & 0x7fff)) {
start_boundary_found = 1;
break;
}
}
if (start_boundary_found == 1)
break;
}
/*
* Change the sampling clock edge to the next one which is the middle
* of SPI data window.
*/
write32(&mtk_pmicspi_mst->si_sampling_ctrl, ++si_sample_ctrl << 5);
/* Read Test */
arb->read(arb, DEFAULT_SLVID, PMIC_DEW_READ_TEST, &rdata);
if (rdata != DEFAULT_VALUE_READ_TEST) {
printk(BIOS_ERR, "[%s] Failed for read test, data = %#x.\n",
__func__, rdata);
return E_READ_TEST_FAIL;
}
return 0;
}
static void init_staupd(struct pmif *arb)
{
/* Unlock SPI Slave registers */
arb->write(arb, DEFAULT_SLVID, PMIC_SPISLV_KEY, 0xbade);
/* Enable CRC of PMIC 0 */
arb->write(arb, DEFAULT_SLVID, PMIC_DEW_CRC_EN, 0x1);
/* Wait for completion of sending the commands */
if (check_idle(&arb->mtk_pmif->inf_busy_sta, PMIF_SPI_AP)) {
printk(BIOS_ERR, "[%s] pmif channel busy, timeout\n", __func__);
return;
}
if (check_idle(&arb->mtk_pmif->other_busy_sta_0, PMIF_CMD_STA)) {
printk(BIOS_ERR, "[%s] pmif cmd busy, timeout\n", __func__);
return;
}
if (check_idle(&mtk_pmicspi_mst->other_busy_sta_0, SPIMST_STA)) {
printk(BIOS_ERR, "[%s] spi master busy, timeout\n", __func__);
return;
}
/* Configure CRC of PMIC Interface */
write32(&arb->mtk_pmif->crc_ctrl, 0x1);
write32(&arb->mtk_pmif->sig_mode, 0x0);
/* Lock SPI Slave registers */
arb->write(arb, DEFAULT_SLVID, PMIC_SPISLV_KEY, 0x0);
/* Set up PMIC Siganature */
write32(&arb->mtk_pmif->pmic_sig_addr, PMIC_DEW_CRC_VAL);
/* Set up PMIC EINT */
write32(&arb->mtk_pmif->pmic_eint_sta_addr, PMIC_INT_STA);
SET32_BITFIELDS(&arb->mtk_pmif->staupd_ctrl,
STAUPD_CTRL_PRD, 5,
STAUPD_CTRL_PMIC0_SIG_STA, 1,
STAUPD_CTRL_PMIC0_EINT_STA, 1);
}
int pmif_spi_init(struct pmif *arb)
{
pmif_spi_config(arb);
/* Reset spislv */
if (reset_spislv())
return E_SPI_INIT_RESET_SPI;
/* Enable WRAP */
write32(&mtk_pmicspi_mst->wrap_en, 0x1);
/* SPI Waveform Configuration */
init_reg_clock(arb);
/* SPI Slave Configuration */
init_spislv(arb);
/* Input data calibration flow; */
if (init_sistrobe(arb)) {
printk(BIOS_ERR, "[%s] data calibration fail\n", __func__);
return E_SPI_INIT_SIDLY;
}
/* Lock SPISLV Registers */
arb->write(arb, DEFAULT_SLVID, PMIC_SPISLV_KEY, 0x0);
/*
* Status update function initialization
* 1. Check signature using CRC (CRC 0 only)
* 2. Update EINT
* 3. Read back AUXADC thermal data for GPS
*/
init_staupd(arb);
/* Configure PMIF Timer */
write32(&arb->mtk_pmif->timer_ctrl, 0x3);
/* Enable interfaces and arbitration */
write32(&arb->mtk_pmif->inf_en, PMIF_SPI_HW_INF | PMIF_SPI_MD |
PMIF_SPI_AP_SECURE | PMIF_SPI_AP);
write32(&arb->mtk_pmif->arb_en, PMIF_SPI_HW_INF | PMIF_SPI_MD | PMIF_SPI_AP_SECURE |
PMIF_SPI_AP | PMIF_SPI_STAUPD | PMIF_SPI_TSX_HW | PMIF_SPI_DCXO_HW);
/* Enable GPS AUXADC HW 0 and 1 */
SET32_BITFIELDS(&arb->mtk_pmif->other_inf_en, INTGPSADCINF_EN, 0x3);
/* Set INIT_DONE */
write32(&arb->mtk_pmif->init_done, 0x1);
return 0;
}
|