1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
|
/* SPDX-License-Identifier: GPL-2.0-only */
#include <assert.h>
#include <cbfs.h>
#include <cbmem.h>
#include <commonlib/bsd/mem_chip_info.h>
#include <console/console.h>
#include <fmap_config.h>
#include <soc/dramc_common.h>
#include <mrc_cache.h>
#include <soc/dramc_param.h>
#include <soc/emi.h>
#include <soc/mmu_operations.h>
#include <symbols.h>
#include <timer.h>
_Static_assert(sizeof(struct dramc_param) <= FMAP_SECTION_RW_MRC_CACHE_SIZE,
"sizeof(struct dramc_param) exceeds RW_MRC_CACHE size");
const char *get_dram_geometry_str(u32 ddr_geometry);
const char *get_dram_type_str(u32 ddr_type);
static const struct ddr_base_info *curr_ddr_info;
static int mt_mem_test(const struct dramc_data *dparam)
{
if (CONFIG(MEMORY_TEST)) {
u8 *addr = _dram;
const struct ddr_base_info *ddr_info = &dparam->ddr_info;
for (u8 rank = RANK_0; rank < ddr_info->support_ranks; rank++) {
int result = complex_mem_test(addr, 0x2000);
if (result != 0) {
printk(BIOS_ERR,
"[MEM] complex R/W mem test failed: %d\n", result);
return -1;
}
printk(BIOS_DEBUG, "[MEM] rank %u complex R/W mem test passed\n", rank);
addr += ddr_info->rank_size[rank];
}
}
return 0;
}
const char *get_dram_geometry_str(u32 ddr_geometry)
{
const char *s;
switch (ddr_geometry) {
case DDR_TYPE_2CH_2RK_4GB_2_2:
s = "2CH_2RK_4GB_2_2";
break;
case DDR_TYPE_2CH_2RK_6GB_3_3:
s = "2CH_2RK_6GB_3_3";
break;
case DDR_TYPE_2CH_2RK_8GB_4_4:
s = "2CH_2RK_8GB_4_4";
break;
case DDR_TYPE_2CH_2RK_8GB_4_4_BYTE:
s = "2CH_2RK_8GB_4_4_BYTE";
break;
case DDR_TYPE_2CH_1RK_4GB_4_0:
s = "2CH_1RK_4GB_4_0";
break;
case DDR_TYPE_2CH_2RK_6GB_2_4:
s = "2CH_2RK_6GB_2_4";
break;
default:
s = "";
break;
}
return s;
}
const char *get_dram_type_str(u32 ddr_type)
{
const char *s;
switch (ddr_type) {
case DDR_TYPE_DISCRETE:
s = "DSC";
break;
case DDR_TYPE_EMCP:
s = "EMCP";
break;
default:
s = "";
break;
}
return s;
}
size_t mtk_dram_size(void)
{
size_t size = 0;
if (!curr_ddr_info)
return 0;
for (unsigned int i = 0; i < RANK_MAX; ++i)
size += curr_ddr_info->mrr_info.mr8_density[i];
return size;
}
__weak enum mem_chip_type map_to_lpddr_dram_type(uint16_t lpddr_type)
{
return MEM_CHIP_LPDDR4X;
}
static void fill_dram_info(struct mem_chip_info *mc, const struct ddr_base_info *ddr)
{
unsigned int c, r;
mc->num_entries = CHANNEL_MAX * ddr->mrr_info.rank_nums;
mc->struct_version = MEM_CHIP_STRUCT_VERSION;
struct mem_chip_entry *entry = mc->entries;
for (c = 0; c < CHANNEL_MAX; c++) {
for (r = 0; r < ddr->mrr_info.rank_nums; r++) {
entry->channel = c;
entry->rank = r;
entry->type = map_to_lpddr_dram_type(ddr->lpddr_type);
entry->channel_io_width = DQ_DATA_WIDTH_LP4;
entry->density_mbits = ddr->mrr_info.mr8_density[r] / CHANNEL_MAX /
(MiB / 8);
entry->io_width = DQ_DATA_WIDTH_LP4;
entry->manufacturer_id = ddr->mrr_info.mr5_vendor_id;
entry->revision_id[0] = ddr->mrr_info.mr6_revision_id;
entry->revision_id[1] = ddr->mrr_info.mr7_revision_id;
entry++;
}
}
}
static void add_mem_chip_info(int unused)
{
struct mem_chip_info *mc;
size_t size;
if (!CONFIG(USE_CBMEM_DRAM_INFO)) {
printk(BIOS_DEBUG,
"DRAM-K: CBMEM DRAM info is unsupported (USE_CBMEM_DRAM_INFO)\n");
return;
}
size = mem_chip_info_size(CHANNEL_MAX * curr_ddr_info->mrr_info.rank_nums);
mc = cbmem_add(CBMEM_ID_MEM_CHIP_INFO, size);
assert(mc);
memset(mc, 0, size);
fill_dram_info(mc, curr_ddr_info);
}
CBMEM_CREATION_HOOK(add_mem_chip_info);
static int run_dram_blob(struct dramc_param *dparam)
{
/* Load and run the provided blob for full-calibration if available */
struct prog dram = PROG_INIT(PROG_REFCODE, CONFIG_CBFS_PREFIX "/dram");
dump_param_header(dparam);
if (cbfs_prog_stage_load(&dram)) {
printk(BIOS_ERR, "DRAM-K: CBFS load program failed\n");
return -2;
}
dparam->do_putc = do_putchar;
prog_set_entry(&dram, prog_entry(&dram), dparam);
prog_run(&dram);
if (dparam->header.status != DRAMC_SUCCESS) {
printk(BIOS_ERR, "DRAM-K: calibration failed: status = %d\n",
dparam->header.status);
return -3;
}
if (!(dparam->header.config & DRAMC_CONFIG_FAST_K)
&& !(dparam->header.flags & DRAMC_FLAG_HAS_SAVED_DATA)) {
printk(BIOS_ERR,
"DRAM-K: Full calibration executed without saving parameters. "
"Please ensure the blob is built properly.\n");
return -4;
}
return 0;
}
static int dram_run_fast_calibration(struct dramc_param *dparam)
{
const u16 config = CONFIG(MEDIATEK_DRAM_DVFS) ? DRAMC_ENABLE_DVFS : DRAMC_DISABLE_DVFS;
if (dparam->dramc_datas.ddr_info.config_dvfs != config) {
printk(BIOS_WARNING,
"DRAM-K: Incompatible config for calibration data from flash "
"(expected: %#x, saved: %#x)\n",
config, dparam->dramc_datas.ddr_info.config_dvfs);
return -1;
}
printk(BIOS_INFO, "DRAM-K: DRAM calibration data valid pass\n");
if (CONFIG(MEDIATEK_DRAM_SCRAMBLE))
dparam->header.config |= DRAMC_CONFIG_SCRAMBLE;
if (CONFIG(MEDIATEK_DRAM_BLOB_FAST_INIT)) {
printk(BIOS_INFO, "DRAM-K: Run fast calibration run in blob mode\n");
/*
* The loaded config should not contain FAST_K (done in full calibration),
* so we have to set that now to indicate the blob taking the config instead
* of generating a new config.
*/
dparam->header.config |= DRAMC_CONFIG_FAST_K;
if (run_dram_blob(dparam) < 0)
return -3;
} else {
init_dram_by_params(dparam);
}
if (mt_mem_test(&dparam->dramc_datas) < 0)
return -4;
return 0;
}
static int dram_run_full_calibration(struct dramc_param *dparam)
{
initialize_dramc_param(dparam);
return run_dram_blob(dparam);
}
static void mem_init_set_default_config(struct dramc_param *dparam,
const struct sdram_info *dram_info)
{
u32 type, geometry;
memset(dparam, 0, sizeof(*dparam));
type = dram_info->ddr_type;
geometry = dram_info->ddr_geometry;
dparam->dramc_datas.ddr_info.sdram.ddr_type = type;
if (CONFIG(MEDIATEK_DRAM_DVFS))
dparam->dramc_datas.ddr_info.config_dvfs = DRAMC_ENABLE_DVFS;
if (CONFIG(MEDIATEK_DRAM_SCRAMBLE))
dparam->header.config |= DRAMC_CONFIG_SCRAMBLE;
dparam->dramc_datas.ddr_info.sdram.ddr_geometry = geometry;
printk(BIOS_INFO, "DRAM-K: ddr_type: %s, config_dvfs: %d, ddr_geometry: %s\n",
get_dram_type_str(type),
dparam->dramc_datas.ddr_info.config_dvfs,
get_dram_geometry_str(geometry));
}
static void mt_mem_init_run(struct dramc_param *dparam,
const struct sdram_info *dram_info)
{
const ssize_t mrc_cache_size = sizeof(*dparam);
ssize_t data_size;
struct stopwatch sw;
int ret;
/* Load calibration params from flash and run fast calibration */
data_size = mrc_cache_load_current(MRC_TRAINING_DATA,
DRAMC_PARAM_HEADER_VERSION,
dparam, mrc_cache_size);
if (data_size == mrc_cache_size) {
printk(BIOS_INFO, "DRAM-K: Running fast calibration\n");
stopwatch_init(&sw);
ret = dram_run_fast_calibration(dparam);
if (ret != 0) {
printk(BIOS_ERR, "DRAM-K: Failed to run fast calibration "
"in %lld msecs, error: %d\n",
stopwatch_duration_msecs(&sw), ret);
/* Erase flash data after fast calibration failed */
memset(dparam, 0xa5, mrc_cache_size);
mrc_cache_stash_data(MRC_TRAINING_DATA,
DRAMC_PARAM_HEADER_VERSION,
dparam, mrc_cache_size);
} else {
printk(BIOS_INFO, "DRAM-K: Fast calibration passed in %lld msecs\n",
stopwatch_duration_msecs(&sw));
return;
}
} else {
printk(BIOS_WARNING, "DRAM-K: Invalid data in flash (size: %#zx, expected: %#zx)\n",
data_size, mrc_cache_size);
}
/* Run full calibration */
printk(BIOS_INFO, "DRAM-K: Running full calibration\n");
mem_init_set_default_config(dparam, dram_info);
stopwatch_init(&sw);
int err = dram_run_full_calibration(dparam);
if (err == 0) {
printk(BIOS_INFO, "DRAM-K: Full calibration passed in %lld msecs\n",
stopwatch_duration_msecs(&sw));
mrc_cache_stash_data(MRC_TRAINING_DATA,
DRAMC_PARAM_HEADER_VERSION,
dparam, mrc_cache_size);
} else {
printk(BIOS_ERR, "DRAM-K: Full calibration failed in %lld msecs\n",
stopwatch_duration_msecs(&sw));
}
}
void mt_mem_init(struct dramc_param *dparam)
{
const struct sdram_info *sdram_param = NULL;
static struct sdram_info fake_sdram_param;
if (CONFIG(MEDIATEK_DRAM_ADAPTIVE))
sdram_param = &fake_sdram_param;
else
sdram_param = get_sdram_config();
mt_mem_init_run(dparam, sdram_param);
}
void mtk_dram_init(void)
{
/* dramc_param is too large to fit in stack. */
static struct dramc_param dramc_parameter;
mt_mem_init(&dramc_parameter);
curr_ddr_info = &dramc_parameter.dramc_datas.ddr_info;
mtk_mmu_after_dram();
}
|