1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
|
/*
* Copyright (C) 2014 Google Inc.
* Copyright (C) 2015 Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/* This file is derived from the flashrom project. */
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <bootstate.h>
#include <spi_flash.h>
#include <timer.h>
#include <soc/flash_controller.h>
#include <soc/pci_devs.h>
#include <soc/spi.h>
static inline uint16_t spi_read_hsfs(pch_spi_regs * const regs)
{
return readw_(®s->hsfs);
}
static inline void spi_clear_status(pch_spi_regs * const regs)
{
/* clear FDONE, FCERR, AEL by writing 1 to them (if they are set) */
writew_(spi_read_hsfs(regs), ®s->hsfs);
}
static inline uint16_t spi_read_hsfc(pch_spi_regs * const regs)
{
return readw_(®s->hsfc);
}
static inline uint32_t spi_read_faddr(pch_spi_regs * const regs)
{
return readl_(®s->faddr) & SPIBAR_FADDR_MASK;
}
/*
* Polls for Cycle Done Status, Flash Cycle Error
* Resets all error flags in HSFS.
* Returns 0 if the cycle completes successfully without errors within
* timeout, 1 on errors.
*/
static int wait_for_completion(pch_spi_regs * const regs, int timeout_ms,
size_t len)
{
uint16_t hsfs;
uint16_t hsfc;
uint32_t addr;
struct stopwatch sw;
int timeout = 0;
stopwatch_init_msecs_expire(&sw, timeout_ms);
do {
hsfs = spi_read_hsfs(regs);
if ((hsfs & (HSFS_FDONE | HSFS_FCERR)))
break;
} while (!(timeout = stopwatch_expired(&sw)));
if (timeout) {
addr = spi_read_faddr(regs);
hsfc = spi_read_hsfc(regs);
printk(BIOS_ERR, "%ld ms Transaction timeout between offset "
"0x%08x and 0x%08zx (= 0x%08x + %zd) HSFC=%x HSFS=%x!\n",
stopwatch_duration_msecs(&sw), addr, addr + len - 1,
addr, len - 1, hsfc, hsfs);
return 1;
}
if (hsfs & HSFS_FCERR) {
addr = spi_read_faddr(regs);
hsfc = spi_read_hsfc(regs);
printk(BIOS_ERR, "Transaction error between offset 0x%08x and "
"0x%08zx (= 0x%08x + %zd) HSFC=%x HSFS=%x!\n",
addr, addr + len - 1, addr, len - 1,
hsfc, hsfs);
return 1;
}
return 0;
}
/* Start operation returning 0 on success, non-zero on error or timeout. */
static int spi_do_operation(int op, size_t offset, size_t size, int timeout_ms)
{
uint16_t hsfc;
pch_spi_regs * const regs = get_spi_bar();
/* Clear status prior to operation. */
spi_clear_status(regs);
/* Set the FADDR */
writel_(offset & SPIBAR_FADDR_MASK, ®s->faddr);
hsfc = readw_(®s->hsfc);
/* Clear then set the correct op. */
hsfc &= ~HSFC_FCYCLE_MASK;
hsfc |= op;
/* Set the size field */
hsfc &= ~HSFC_FDBC_MASK;
/* Check for sizes of confirming operations. */
if (size && size <= SPI_FDATA_BYTES)
hsfc |= ((size - 1) << HSFC_FDBC_SHIFT) & HSFC_FDBC_MASK;
/* start operation */
hsfc |= HSFC_FGO;
writew_(hsfc, ®s->hsfc);
return wait_for_completion(regs, timeout_ms, size);
}
unsigned int spi_crop_chunk(unsigned int cmd_len, unsigned int buf_len)
{
return min(SPI_FDATA_BYTES, buf_len);
}
static size_t spi_get_flash_size(pch_spi_regs *spi_bar)
{
uint32_t flcomp;
size_t size;
writel_(SPIBAR_FDOC_COMPONENT, &spi_bar->fdoc);
flcomp = readl_(&spi_bar->fdod);
switch (flcomp & FLCOMP_C0DEN_MASK) {
case FLCOMP_C0DEN_8MB:
size = 8*MiB;
break;
case FLCOMP_C0DEN_16MB:
size = 16*MiB;
break;
case FLCOMP_C0DEN_32MB:
size = 32*MiB;
break;
default:
size = 16*MiB;
}
return size;
}
int spi_xfer(struct spi_slave *slave, const void *dout,
unsigned int bytesout, void *din, unsigned int bytesin)
{
/* TODO: Define xfer for hardware sequencing. */
return -1;
}
void spi_init(void)
{
uint8_t bios_cntl;
device_t dev = PCH_DEV_SPI;
/* Disable the BIOS write protect so write commands are allowed. */
pci_read_config_byte(dev, SPIBAR_BIOS_CNTL, &bios_cntl);
bios_cntl &= ~SPIBAR_BC_EISS;
bios_cntl |= SPIBAR_BC_WPD;
pci_write_config_byte(dev, SPIBAR_BIOS_CNTL, bios_cntl);
}
int spi_claim_bus(struct spi_slave *slave)
{
/* Handled by PCH automatically. */
return 0;
}
void spi_release_bus(struct spi_slave *slave)
{
/* Handled by PCH automatically. */
}
int pch_hwseq_erase(struct spi_flash *flash, u32 offset, size_t len)
{
u32 start, end, erase_size;
int ret = 0;
erase_size = flash->sector_size;
if (offset % erase_size || len % erase_size) {
printk(BIOS_ERR, "SF: Erase offset/length not multiple of erase size\n");
return -1;
}
flash->spi->rw = SPI_WRITE_FLAG;
start = offset;
end = start + len;
while (offset < end) {
if (spi_do_operation(HSFC_FCYCLE_4KE, offset, 0, 5000)) {
printk(BIOS_ERR, "SF: Erase failed at %x\n", offset);
ret = -1;
goto out;
}
offset += erase_size;
}
printk(BIOS_DEBUG, "SF: Successfully erased %zu bytes @ %#x\n",
len, start);
out:
spi_release_bus(flash->spi);
return ret;
}
static void pch_read_data(uint8_t *data, int len)
{
int i;
pch_spi_regs *spi_bar;
uint32_t temp32 = 0;
spi_bar = get_spi_bar();
for (i = 0; i < len; i++) {
if ((i % 4) == 0)
temp32 = readl_((uint8_t *)spi_bar->fdata + i);
data[i] = (temp32 >> ((i % 4) * 8)) & 0xff;
}
}
int pch_hwseq_read(struct spi_flash *flash, u32 addr, size_t len, void *buf)
{
uint8_t block_len;
if (addr + len > spi_get_flash_size(get_spi_bar())) {
printk(BIOS_ERR,
"Attempt to read %x-%x which is out of chip\n",
(unsigned) addr,
(unsigned) addr+(unsigned) len);
return -1;
}
while (len > 0) {
const int timeout_ms = 6;
block_len = min(len, SPI_FDATA_BYTES);
if (block_len > (~addr & 0xff))
block_len = (~addr & 0xff) + 1;
if (spi_do_operation(HSFC_FCYCLE_RD, addr, block_len,
timeout_ms))
return -1;
pch_read_data(buf, block_len);
addr += block_len;
buf += block_len;
len -= block_len;
}
return 0;
}
/* Fill len bytes from the data array into the fdata/spid registers.
*
* Note that using len > flash->pgm->spi.max_data_write will trash the registers
* following the data registers.
*/
static void pch_fill_data(const uint8_t *data, int len)
{
uint32_t temp32 = 0;
int i;
pch_spi_regs *spi_bar;
spi_bar = get_spi_bar();
if (len <= 0)
return;
for (i = 0; i < len; i++) {
if ((i % 4) == 0)
temp32 = 0;
temp32 |= ((uint32_t) data[i]) << ((i % 4) * 8);
if ((i % 4) == 3) /* 32 bits are full, write them to regs. */
writel_(temp32,
(uint8_t *)spi_bar->fdata + (i - (i % 4)));
}
i--;
if ((i % 4) != 3) /* Write remaining data to regs. */
writel_(temp32, (uint8_t *)spi_bar->fdata + (i - (i % 4)));
}
int pch_hwseq_write(struct spi_flash *flash,
u32 addr, size_t len, const void *buf)
{
uint8_t block_len;
uint32_t start = addr;
pch_spi_regs *spi_bar;
spi_bar = get_spi_bar();
if (addr + len > spi_get_flash_size(spi_bar)) {
printk(BIOS_ERR,
"Attempt to write 0x%x-0x%x which is out of chip\n",
(unsigned)addr, (unsigned) (addr+len));
return -1;
}
while (len > 0) {
const int timeout_ms = 6;
block_len = min(len, sizeof(spi_bar->fdata));
if (block_len > (~addr & 0xff))
block_len = (~addr & 0xff) + 1;
pch_fill_data(buf, block_len);
if (spi_do_operation(HSFC_FCYCLE_WR, addr, block_len,
timeout_ms)) {
printk(BIOS_ERR, "SF: write failure at %x\n", addr);
return -1;
}
addr += block_len;
buf += block_len;
len -= block_len;
}
printk(BIOS_DEBUG, "SF: Successfully written %u bytes @ %#x\n",
(unsigned) (addr - start), start);
return 0;
}
int pch_hwseq_read_status(struct spi_flash *flash, u8 *reg)
{
size_t block_len = SPI_READ_STATUS_LENGTH;
const int timeout_ms = 6;
if (spi_do_operation(HSFC_FCYCLE_RS, 0, block_len, timeout_ms))
return -1;
pch_read_data(reg, block_len);
return 0;
}
static struct spi_flash *spi_flash_hwseq_probe(struct spi_slave *spi)
{
struct spi_flash *flash;
flash = malloc(sizeof(*flash));
if (!flash) {
printk(BIOS_WARNING, "SF: Failed to allocate memory\n");
return NULL;
}
flash->spi = spi;
flash->name = "Opaque HW-sequencing";
flash->write = pch_hwseq_write;
flash->erase = pch_hwseq_erase;
flash->read = pch_hwseq_read;
flash->status = pch_hwseq_read_status;
/* The hardware sequencing supports 4KiB or 64KiB erase. Use 4KiB. */
flash->sector_size = 4*KiB;
flash->size = spi_get_flash_size(get_spi_bar());
return flash;
}
struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs)
{
struct spi_slave *slave = malloc(sizeof(*slave));
if (!slave) {
printk(BIOS_DEBUG, "PCH SPI: Bad allocation\n");
return NULL;
}
memset(slave, 0, sizeof(*slave));
slave->bus = bus;
slave->cs = cs;
slave->force_programmer_specific = 1;
slave->programmer_specific_probe = spi_flash_hwseq_probe;
return slave;
}
int spi_flash_protect(u32 start, u32 size)
{
pch_spi_regs *spi_bar = get_spi_bar();
u32 end = start + size - 1;
u32 reg;
int prr;
if (!spi_bar)
return -1;
/* Find first empty PRR */
for (prr = 0; prr < SPI_PRR_MAX; prr++) {
reg = read32(&spi_bar->pr[prr]);
if (reg == 0)
break;
}
if (prr >= SPI_PRR_MAX) {
printk(BIOS_ERR, "ERROR: No SPI PRR free!\n");
return -1;
}
/* Set protected range base and limit */
reg = SPI_PRR(start, end) | SPI_PRR_WPE;
/* Set the PRR register and verify it is protected */
write32(&spi_bar->pr[prr], reg);
reg = read32(&spi_bar->pr[prr]);
if (!(reg & SPI_PRR_WPE)) {
printk(BIOS_ERR, "ERROR: Unable to set SPI PRR %d\n", prr);
return -1;
}
printk(BIOS_INFO, "%s: PRR %d is enabled for range 0x%08x-0x%08x\n",
__func__, prr, start, end);
return 0;
}
#if ENV_RAMSTAGE
/*
* spi_init() needs run unconditionally in every boot (including resume) to
* allow write protect to be disabled for eventlog and firmware updates.
*/
static void spi_init_cb(void *unused)
{
spi_init();
}
BOOT_STATE_INIT_ENTRY(BS_DEV_ENABLE, BS_ON_EXIT, spi_init_cb, NULL);
#endif
|