1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
|
/* SPDX-License-Identifier: GPL-2.0-or-later */
#include <console/console.h>
#include <fsp/util.h>
#include <soc/meminit.h>
#include <string.h>
#define LPX_PHYSICAL_CH_WIDTH 16
#define LPX_CHANNELS CHANNEL_COUNT(LPX_PHYSICAL_CH_WIDTH)
#define DDR5_PHYSICAL_CH_WIDTH 32
#define DDR5_CHANNELS CHANNEL_COUNT(DDR5_PHYSICAL_CH_WIDTH)
static void set_rcomp_config(FSP_M_CONFIG *mem_cfg, const struct mb_cfg *mb_cfg)
{
if (mb_cfg->rcomp.resistor != 0)
mem_cfg->RcompResistor = mb_cfg->rcomp.resistor;
for (size_t i = 0; i < ARRAY_SIZE(mem_cfg->RcompTarget); i++) {
if (mb_cfg->rcomp.targets[i] != 0)
mem_cfg->RcompTarget[i] = mb_cfg->rcomp.targets[i];
}
}
static void meminit_lp5x(FSP_M_CONFIG *mem_cfg, const struct mem_lp5x_config *lp5x_config)
{
mem_cfg->DqPinsInterleaved = 0;
mem_cfg->Lp5CccConfig = lp5x_config->ccc_config;
}
static void meminit_ddr(FSP_M_CONFIG *mem_cfg, const struct mem_ddr_config *ddr_config)
{
mem_cfg->DqPinsInterleaved = ddr_config->dq_pins_interleaved;
}
static const struct soc_mem_cfg soc_mem_cfg[] = {
[MEM_TYPE_DDR5] = {
.num_phys_channels = DDR5_CHANNELS,
.phys_to_mrc_map = {
[0] = 0,
[1] = 1,
[2] = 4,
[3] = 5,
},
.md_phy_masks = {
/*
* Physical channels 0 and 1 are populated in case of
* half-populated configurations.
*/
.half_channel = BIT(0) | BIT(1),
/* In mixed topologies, channels 2 and 3 are always memory-down. */
.mixed_topo = BIT(2) | BIT(3),
},
},
[MEM_TYPE_LP5X] = {
.num_phys_channels = LPX_CHANNELS,
.phys_to_mrc_map = {
[0] = 0,
[1] = 1,
[2] = 2,
[3] = 3,
[4] = 4,
[5] = 5,
[6] = 6,
[7] = 7,
},
.md_phy_masks = {
/*
* Physical channels 0, 1, 2 and 3 are populated in case of
* half-populated configurations.
*/
.half_channel = BIT(0) | BIT(1) | BIT(2) | BIT(3),
/* LP5x does not support mixed topologies. */
},
},
};
static void mem_init_spd_upds(FSP_M_CONFIG *mem_cfg, const struct mem_channel_data *data)
{
uint32_t *spd_upds[MRC_CHANNELS][CONFIG_DIMMS_PER_CHANNEL] = {
[0] = { &mem_cfg->MemorySpdPtr000, &mem_cfg->MemorySpdPtr001, },
[1] = { &mem_cfg->MemorySpdPtr010, &mem_cfg->MemorySpdPtr011, },
[2] = { &mem_cfg->MemorySpdPtr020, &mem_cfg->MemorySpdPtr021, },
[3] = { &mem_cfg->MemorySpdPtr030, &mem_cfg->MemorySpdPtr031, },
[4] = { &mem_cfg->MemorySpdPtr100, &mem_cfg->MemorySpdPtr101, },
[5] = { &mem_cfg->MemorySpdPtr110, &mem_cfg->MemorySpdPtr111, },
[6] = { &mem_cfg->MemorySpdPtr120, &mem_cfg->MemorySpdPtr121, },
[7] = { &mem_cfg->MemorySpdPtr130, &mem_cfg->MemorySpdPtr131, },
};
uint8_t *disable_channel_upds[MRC_CHANNELS] = {
&mem_cfg->DisableMc0Ch0,
&mem_cfg->DisableMc0Ch1,
&mem_cfg->DisableMc0Ch2,
&mem_cfg->DisableMc0Ch3,
&mem_cfg->DisableMc1Ch0,
&mem_cfg->DisableMc1Ch1,
&mem_cfg->DisableMc1Ch2,
&mem_cfg->DisableMc1Ch3,
};
size_t ch, dimm;
mem_cfg->MemorySpdDataLen = data->spd_len;
for (ch = 0; ch < MRC_CHANNELS; ch++) {
uint8_t *disable_channel_ptr = disable_channel_upds[ch];
bool enable_channel = 0;
for (dimm = 0; dimm < CONFIG_DIMMS_PER_CHANNEL; dimm++) {
uint32_t *spd_ptr = spd_upds[ch][dimm];
*spd_ptr = data->spd[ch][dimm];
if (*spd_ptr)
enable_channel = 1;
}
*disable_channel_ptr = !enable_channel;
}
}
static void mem_init_dq_dqs_upds(void *upds[MRC_CHANNELS], const void *map, size_t upd_size,
const struct mem_channel_data *data, bool auto_detect)
{
size_t i;
for (i = 0; i < MRC_CHANNELS; i++, map += upd_size) {
if (auto_detect ||
!channel_is_populated(i, MRC_CHANNELS, data->ch_population_flags))
memset(upds[i], 0, upd_size);
else
memcpy(upds[i], map, upd_size);
}
}
static void mem_init_dq_upds(FSP_M_CONFIG *mem_cfg, const struct mem_channel_data *data,
const struct mb_cfg *mb_cfg, bool auto_detect)
{
void *dq_upds[MRC_CHANNELS] = {
&mem_cfg->DqMapCpu2DramMc0Ch0,
&mem_cfg->DqMapCpu2DramMc0Ch1,
&mem_cfg->DqMapCpu2DramMc0Ch2,
&mem_cfg->DqMapCpu2DramMc0Ch3,
&mem_cfg->DqMapCpu2DramMc1Ch0,
&mem_cfg->DqMapCpu2DramMc1Ch1,
&mem_cfg->DqMapCpu2DramMc1Ch2,
&mem_cfg->DqMapCpu2DramMc1Ch3,
};
const size_t upd_size = sizeof(mem_cfg->DqMapCpu2DramMc0Ch0);
_Static_assert(sizeof(mem_cfg->DqMapCpu2DramMc0Ch0) == CONFIG_MRC_CHANNEL_WIDTH,
"Incorrect DQ UPD size!");
mem_init_dq_dqs_upds(dq_upds, mb_cfg->dq_map, upd_size, data, auto_detect);
}
static void mem_init_dqs_upds(FSP_M_CONFIG *mem_cfg, const struct mem_channel_data *data,
const struct mb_cfg *mb_cfg, bool auto_detect)
{
void *dqs_upds[MRC_CHANNELS] = {
&mem_cfg->DqsMapCpu2DramMc0Ch0,
&mem_cfg->DqsMapCpu2DramMc0Ch1,
&mem_cfg->DqsMapCpu2DramMc0Ch2,
&mem_cfg->DqsMapCpu2DramMc0Ch3,
&mem_cfg->DqsMapCpu2DramMc1Ch0,
&mem_cfg->DqsMapCpu2DramMc1Ch1,
&mem_cfg->DqsMapCpu2DramMc1Ch2,
&mem_cfg->DqsMapCpu2DramMc1Ch3,
};
const size_t upd_size = sizeof(mem_cfg->DqsMapCpu2DramMc0Ch0);
_Static_assert(sizeof(mem_cfg->DqsMapCpu2DramMc0Ch0) == CONFIG_MRC_CHANNEL_WIDTH / 8,
"Incorrect DQS UPD size!");
mem_init_dq_dqs_upds(dqs_upds, mb_cfg->dqs_map, upd_size, data, auto_detect);
}
#define DDR5_CH_DIMM_OFFSET(ch, dimm) ((ch) * CONFIG_DIMMS_PER_CHANNEL + (dimm))
static void ddr5_fill_dimm_module_info(FSP_M_CONFIG *mem_cfg, const struct mb_cfg *mb_cfg,
const struct mem_spd *spd_info)
{
for (size_t ch = 0; ch < soc_mem_cfg[MEM_TYPE_DDR5].num_phys_channels; ch++) {
for (size_t dimm = 0; dimm < CONFIG_DIMMS_PER_CHANNEL; dimm++) {
size_t mrc_ch = soc_mem_cfg[MEM_TYPE_DDR5].phys_to_mrc_map[ch];
mem_cfg->SpdAddressTable[DDR5_CH_DIMM_OFFSET(mrc_ch, dimm)] =
spd_info->smbus[ch].addr_dimm[dimm] << 1;
}
}
mem_init_dq_upds(mem_cfg, NULL, mb_cfg, true);
mem_init_dqs_upds(mem_cfg, NULL, mb_cfg, true);
}
void memcfg_init(FSPM_UPD *memupd, const struct mb_cfg *mb_cfg,
const struct mem_spd *spd_info, bool half_populated)
{
struct mem_channel_data data;
bool dq_dqs_auto_detect = false;
FSP_M_CONFIG *mem_cfg = &memupd->FspmConfig;
mem_cfg->ECT = mb_cfg->ect;
mem_cfg->UserBd = mb_cfg->UserBd;
set_rcomp_config(mem_cfg, mb_cfg);
switch (mb_cfg->type) {
case MEM_TYPE_DDR5:
meminit_ddr(mem_cfg, &mb_cfg->ddr_config);
dq_dqs_auto_detect = true;
/*
* TODO: Drop this workaround once SMBus driver in coreboot is updated to
* support DDR5 EEPROM reading.
*/
if (spd_info->topo == MEM_TOPO_DIMM_MODULE) {
ddr5_fill_dimm_module_info(mem_cfg, mb_cfg, spd_info);
return;
}
break;
case MEM_TYPE_LP5X:
meminit_lp5x(mem_cfg, &mb_cfg->lp5x_config);
break;
default:
die("Unsupported memory type(%d)\n", mb_cfg->type);
}
mem_populate_channel_data(memupd, &soc_mem_cfg[mb_cfg->type], spd_info,
half_populated, &data);
mem_init_spd_upds(mem_cfg, &data);
mem_init_dq_upds(mem_cfg, &data, mb_cfg, dq_dqs_auto_detect);
mem_init_dqs_upds(mem_cfg, &data, mb_cfg, dq_dqs_auto_detect);
}
|