1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
|
/* SPDX-License-Identifier: GPL-2.0-only */
#include <arch/bert_storage.h>
#include <console/console.h>
#include <device/pci_ops.h>
#include <intelblocks/crashlog.h>
#include <intelblocks/pmc_ipc.h>
#include <soc/crashlog.h>
#include <soc/iomap.h>
#include <soc/pci_devs.h>
#include <string.h>
/* global crashLog info */
static bool m_pmc_crashLog_support;
static bool m_pmc_crashLog_present;
static bool m_cpu_crashLog_support;
static bool m_cpu_crashLog_present;
static bool m_ioe_crashLog_support;
static bool m_ioe_crashLog_present;
static u32 m_pmc_crashLog_size;
static u32 m_ioe_crashLog_size;
static u32 m_cpu_crashLog_size;
static u32 cpu_crash_version;
static pmc_ipc_discovery_buf_t discovery_buf;
static pmc_crashlog_desc_table_t descriptor_table;
static tel_crashlog_devsc_cap_t cpu_cl_devsc_cap;
static cpu_crashlog_discovery_table_t cpu_cl_disc_tab;
u32 __weak cl_get_cpu_mb_int_addr(void)
{
return CRASHLOG_MAILBOX_INTF_ADDRESS;
}
/* Get the SRAM BAR. */
static uintptr_t get_sram_bar(pci_devfn_t sram_devfn)
{
uintptr_t sram_bar;
const struct device *dev;
struct resource *res;
dev = pcidev_path_on_root(sram_devfn);
if (!dev) {
printk(BIOS_ERR, "device: 0x%x not found!\n", sram_devfn);
return 0;
}
res = probe_resource(dev, PCI_BASE_ADDRESS_0);
if (!res) {
printk(BIOS_ERR, "SOC SRAM device not found!\n");
return 0;
}
/* Get the base address of the resource */
sram_bar = res->base;
return sram_bar;
}
static void configure_sram(const struct device *sram_dev, u32 base_addr)
{
pci_update_config16(sram_dev, PCI_COMMAND, ~(PCI_COMMAND_IO | PCI_COMMAND_MEMORY), 0);
/* Program BAR 0 and enable command register memory space decoding */
pci_write_config32(sram_dev, PCI_BASE_ADDRESS_0, base_addr);
pci_or_config16(sram_dev, PCI_COMMAND, PCI_COMMAND_MEMORY);
}
void cl_get_pmc_sram_data(void)
{
u32 *soc_pmc_dest = NULL, *ioe_pmc_dest = NULL;
u32 pmc_sram_base = cl_get_cpu_tmp_bar();
u32 ioe_sram_base = get_sram_bar(PCI_DEVFN_IOE_SRAM);
u32 pmc_crashLog_size = cl_get_pmc_record_size();
u32 ioe_crashLog_size = 0;
if (!pmc_sram_base) {
printk(BIOS_ERR, "PMC SRAM base not valid\n");
return;
}
if (!pmc_crashLog_size) {
printk(BIOS_ERR, "No PMC crashlog records\n");
return;
}
if (!ioe_sram_base) {
printk(BIOS_ERR, "IOE SRAM base not valid\n");
return;
}
configure_sram(PCI_DEV_IOE_SRAM, ioe_sram_base);
if (!cl_pmc_sram_has_mmio_access())
return;
if (!cl_ioe_sram_has_mmio_access())
return;
printk(BIOS_DEBUG, "PMC crashLog size : 0x%x\n", pmc_crashLog_size);
/* allocate memory for the PMC crash records to be copied */
unsigned long pmc_cl_cbmem_addr;
pmc_cl_cbmem_addr = (unsigned long) cbmem_add(CBMEM_ID_PMC_CRASHLOG,
pmc_crashLog_size);
if (!pmc_cl_cbmem_addr) {
printk(BIOS_ERR, "Unable to allocate CBMEM PMC crashLog entry.\n");
return;
}
memset((void *)pmc_cl_cbmem_addr, 0, pmc_crashLog_size);
soc_pmc_dest = (u32 *)(uintptr_t) pmc_cl_cbmem_addr;
bool pmc_sram = true;
/* process crashlog records for SOC PMC SRAM */
for (int i = 0; i < descriptor_table.numb_regions + 1; i++) {
printk(BIOS_DEBUG, "Region[0x%x].Tag=0x%x offset=0x%x, size=0x%x\n",
i,
descriptor_table.regions[i].bits.assign_tag,
descriptor_table.regions[i].bits.offset,
descriptor_table.regions[i].bits.size);
if (!descriptor_table.regions[i].bits.size)
continue;
if (descriptor_table.regions[i].bits.assign_tag ==
CRASHLOG_DESCRIPTOR_TABLE_TAG_SOC) {
if (cl_copy_data_from_sram(pmc_sram_base,
descriptor_table.regions[i].bits.offset,
descriptor_table.regions[i].bits.size,
soc_pmc_dest,
i,
pmc_sram)) {
soc_pmc_dest = (u32 *)((u32)soc_pmc_dest +
(descriptor_table.regions[i].bits.size
* sizeof(u32)));
} else {
pmc_crashLog_size -= descriptor_table.regions[i].bits.size *
sizeof(u32);
printk(BIOS_DEBUG, "PMC crashlog size adjusted to: 0x%x\n",
pmc_crashLog_size);
}
} else if (descriptor_table.regions[i].bits.assign_tag ==
CRASHLOG_DESCRIPTOR_TABLE_TAG_IOE) {
/*
* SOC PMC crashlog records contains information about IOE SRAM
* records as well. Calculate IOE records size while parsing SOC
* PME SRAM.
*/
ioe_crashLog_size += descriptor_table.regions[i].bits.size * sizeof(u32);
}
}
pmc_crashLog_size -= ioe_crashLog_size;
update_new_pmc_crashlog_size(&pmc_crashLog_size);
if (ioe_crashLog_size)
m_ioe_crashLog_present = true;
else
goto pmc_send_re_arm_after_reset;
/* allocate memory for the IOE crashlog records to be copied */
unsigned long ioe_cl_cbmem_addr;
ioe_cl_cbmem_addr = (unsigned long) cbmem_add(CBMEM_ID_IOE_CRASHLOG,
ioe_crashLog_size);
if (!ioe_cl_cbmem_addr) {
printk(BIOS_ERR, "Unable to allocate CBMEM IOE crashLog entry.\n");
return;
}
memset((void *)ioe_cl_cbmem_addr, 0, ioe_crashLog_size);
ioe_pmc_dest = (u32 *)(uintptr_t) ioe_cl_cbmem_addr;
/* process crashlog records for IOE SRAM */
for (int i = 0; i < descriptor_table.numb_regions + 1; i++) {
printk(BIOS_DEBUG, "Region[0x%x].Tag=0x%x offset=0x%x, size=0x%x\n",
i,
descriptor_table.regions[i].bits.assign_tag,
descriptor_table.regions[i].bits.offset,
descriptor_table.regions[i].bits.size);
if (!descriptor_table.regions[i].bits.size)
continue;
if (descriptor_table.regions[i].bits.assign_tag ==
CRASHLOG_DESCRIPTOR_TABLE_TAG_IOE) {
if (cl_copy_data_from_sram(ioe_sram_base,
descriptor_table.regions[i].bits.offset,
descriptor_table.regions[i].bits.size,
ioe_pmc_dest,
i,
pmc_sram)) {
ioe_pmc_dest = (u32 *)((u32)ioe_pmc_dest +
(descriptor_table.regions[i].bits.size
* sizeof(u32)));
} else {
ioe_crashLog_size -= descriptor_table.regions[i].bits.size *
sizeof(u32);
printk(BIOS_DEBUG, "IOE crashlog size adjusted to: 0x%x\n",
ioe_crashLog_size);
}
}
}
update_new_ioe_crashlog_size(&ioe_crashLog_size);
pmc_send_re_arm_after_reset:
/* when bit 7 of discov cmd resp is set -> bit 2 of size field */
cl_pmc_re_arm_after_reset();
/* Clear the SSRAM region after copying the error log */
cl_pmc_clear();
}
bool pmc_cl_discovery(void)
{
u32 bar_addr = 0, desc_table_addr = 0;
const struct pmc_ipc_buffer req = { 0 };
struct pmc_ipc_buffer res;
uint32_t cmd_reg;
int r;
cmd_reg = pmc_make_ipc_cmd(PMC_IPC_CMD_CRASHLOG,
PMC_IPC_CMD_ID_CRASHLOG_DISCOVERY,
PMC_IPC_CMD_SIZE_SHIFT);
printk(BIOS_DEBUG, "cmd_reg from pmc_make_ipc_cmd %d in %s\n", cmd_reg, __func__);
r = pmc_send_ipc_cmd(cmd_reg, &req, &res);
if (r < 0) {
printk(BIOS_ERR, "pmc_send_ipc_cmd failed in %s\n", __func__);
return false;
}
discovery_buf.conv_val_64_bits = ((u64)res.buf[1] << 32) | res.buf[0];
if ((discovery_buf.conv_bits64.supported != 1) ||
(discovery_buf.conv_bits64.discov_mechanism == 0) ||
(discovery_buf.conv_bits64.crash_dis_sts == 1)) {
printk(BIOS_INFO, "PCH crashlog feature not supported.\n");
m_pmc_crashLog_support = false;
m_ioe_crashLog_support = false;
m_pmc_crashLog_size = 0;
m_ioe_crashLog_size = 0;
printk(BIOS_DEBUG, "discovery_buf supported: %d, mechanism: %d, CrashDisSts: %d\n",
discovery_buf.conv_bits64.supported,
discovery_buf.conv_bits64.discov_mechanism,
discovery_buf.conv_bits64.crash_dis_sts);
return false;
}
printk(BIOS_INFO, "PMC crashlog feature is supported.\n");
m_pmc_crashLog_support = true;
/* Program BAR 0 and enable command register memory space decoding */
bar_addr = get_sram_bar(PCI_DEVFN_SRAM);
if (bar_addr == 0) {
printk(BIOS_ERR, "PCH SRAM not available, crashlog feature can't be enabled.\n");
return false;
}
configure_sram(PCI_DEV_SRAM, bar_addr);
desc_table_addr = bar_addr + discovery_buf.conv_bits64.desc_tabl_offset;
m_pmc_crashLog_size = pmc_cl_gen_descriptor_table(desc_table_addr,
&descriptor_table);
printk(BIOS_DEBUG, "PMC CrashLog size in discovery mode: 0x%X\n",
m_pmc_crashLog_size);
m_pmc_crashLog_present = m_pmc_crashLog_size > 0;
return true;
}
u32 cl_get_cpu_bar_addr(void)
{
u32 base_addr = 0;
if (cpu_cl_devsc_cap.discovery_data.fields.t_bir_q == TEL_DVSEC_TBIR_BAR0) {
base_addr = pci_read_config32(PCI_DEV_TELEMETRY, PCI_BASE_ADDRESS_0) &
~PCI_BASE_ADDRESS_MEM_ATTR_MASK;
} else if (cpu_cl_devsc_cap.discovery_data.fields.t_bir_q == TEL_DVSEC_TBIR_BAR1) {
base_addr = pci_read_config32(PCI_DEV_TELEMETRY, PCI_BASE_ADDRESS_1) &
~PCI_BASE_ADDRESS_MEM_ATTR_MASK;
} else {
printk(BIOS_ERR, "Invalid TEL_CFG_BAR value %d, discovery failure expected.\n",
cpu_cl_devsc_cap.discovery_data.fields.t_bir_q);
}
return base_addr;
}
u32 cl_get_cpu_tmp_bar(void)
{
return get_sram_bar(PCI_DEVFN_SRAM);
}
bool cl_pmc_sram_has_mmio_access(void)
{
if (pci_read_config16(PCI_DEV_SRAM, PCI_VENDOR_ID) == 0xFFFF) {
printk(BIOS_ERR, "PMC SSRAM PCI device disabled. Can be enabled in device tree.\n");
return false;
}
return true;
}
bool cl_ioe_sram_has_mmio_access(void)
{
if (pci_read_config16(PCI_DEV_IOE_SRAM, PCI_VENDOR_ID) == 0xFFFF) {
printk(BIOS_ERR, "IOE SSRAM PCI device disabled. Can be enabled in device tree.\n");
return false;
}
return true;
}
static bool cpu_cl_get_capability(tel_crashlog_devsc_cap_t *cl_devsc_cap)
{
cl_devsc_cap->cap_data.data = pci_read_config32(PCI_DEV_TELEMETRY,
TEL_DVSEC_OFFSET + TEL_DVSEC_PCIE_CAP_ID);
if (cl_devsc_cap->cap_data.fields.pcie_cap_id != TELEMETRY_EXTENDED_CAP_ID) {
printk(BIOS_DEBUG, "Read ID for Telemetry: 0x%x differs from expected: 0x%x\n",
cl_devsc_cap->cap_data.fields.pcie_cap_id, TELEMETRY_EXTENDED_CAP_ID);
return false;
}
/* walk through the entries until crashLog entry */
cl_devsc_cap->devsc_data.data_32[1] = pci_read_config32(PCI_DEV_TELEMETRY, TEL_DVSEV_ID);
int new_offset = 0;
while (cl_devsc_cap->devsc_data.fields.devsc_id != CRASHLOG_DVSEC_ID) {
if (cl_devsc_cap->cap_data.fields.next_cap_offset == 0
|| cl_devsc_cap->cap_data.fields.next_cap_offset == 0xFFFF) {
printk(BIOS_DEBUG, "Read invalid pcie_cap_id value: 0x%x\n",
cl_devsc_cap->cap_data.fields.pcie_cap_id);
return false;
}
new_offset = cl_devsc_cap->cap_data.fields.next_cap_offset;
cl_devsc_cap->cap_data.data = pci_read_config32(PCI_DEV_TELEMETRY,
new_offset + TEL_DVSEC_PCIE_CAP_ID);
cl_devsc_cap->devsc_data.data_32[1] = pci_read_config32(PCI_DEV_TELEMETRY,
new_offset + TEL_DVSEV_ID);
}
cpu_crash_version = cl_devsc_cap->devsc_data.fields.devsc_ver;
cl_devsc_cap->discovery_data.data = pci_read_config32(PCI_DEV_TELEMETRY, new_offset
+ TEL_DVSEV_DISCOVERY_TABLE_OFFSET);
return true;
}
static bool cpu_cl_gen_discovery_table(void)
{
u32 bar_addr = 0, disc_tab_addr = 0;
bar_addr = cl_get_cpu_bar_addr();
if (!bar_addr)
return false;
disc_tab_addr = bar_addr +
cpu_cl_devsc_cap.discovery_data.fields.discovery_table_offset;
memset(&cpu_cl_disc_tab, 0, sizeof(cpu_crashlog_discovery_table_t));
printk(BIOS_DEBUG, "cpu discovery table offset: 0x%x\n",
cpu_cl_devsc_cap.discovery_data.fields.discovery_table_offset);
cpu_cl_disc_tab.header.data = ((u64)read32((u32 *)disc_tab_addr) +
((u64)read32((u32 *)(disc_tab_addr + 4)) << 32));
printk(BIOS_DEBUG, "cpu_crashlog_discovery_table buffer count: 0x%x\n",
cpu_cl_disc_tab.header.fields.count);
int cur_offset = 0;
for (int i = 0; i < cpu_cl_disc_tab.header.fields.count; i++) {
cur_offset = 8 + 24*i;
cpu_cl_disc_tab.buffers[i].data = ((u64)read32((u32 *)(disc_tab_addr +
cur_offset)) + ((u64)read32((u32 *)
(disc_tab_addr + cur_offset + 4)) << 32));
printk(BIOS_DEBUG, "cpu_crashlog_discovery_table buffer: 0x%x size: "
"0x%x offset: 0x%x\n", i, cpu_cl_disc_tab.buffers[i].fields.size,
cpu_cl_disc_tab.buffers[i].fields.offset);
m_cpu_crashLog_size += cpu_cl_disc_tab.buffers[i].fields.size * sizeof(u32);
}
if (m_cpu_crashLog_size > 0)
m_cpu_crashLog_present = true;
else
m_cpu_crashLog_present = false;
return true;
}
bool cpu_cl_discovery(void)
{
memset(&cpu_cl_devsc_cap, 0, sizeof(tel_crashlog_devsc_cap_t));
if (!cpu_cl_get_capability(&cpu_cl_devsc_cap)) {
printk(BIOS_ERR, "CPU crashlog capability not found.\n");
m_cpu_crashLog_support = false;
return false;
}
m_cpu_crashLog_support = true;
if (!cpu_cl_gen_discovery_table()) {
printk(BIOS_ERR, "CPU crashlog discovery table not valid.\n");
m_cpu_crashLog_present = false;
return false;
}
return true;
}
void reset_discovery_buffers(void)
{
memset(&discovery_buf, 0, sizeof(pmc_ipc_discovery_buf_t));
memset(&descriptor_table, 0, sizeof(pmc_crashlog_desc_table_t));
memset(&cpu_cl_devsc_cap, 0, sizeof(tel_crashlog_devsc_cap_t));
}
int cl_get_total_data_size(void)
{
printk(BIOS_DEBUG, "crashlog size:pmc-0x%x, ioe-pmc-0x%x cpu-0x%x\n",
m_pmc_crashLog_size, m_ioe_crashLog_size, m_cpu_crashLog_size);
return m_pmc_crashLog_size + m_cpu_crashLog_size + m_ioe_crashLog_size;
}
pmc_ipc_discovery_buf_t cl_get_pmc_discovery_buf(void)
{
return discovery_buf;
}
pmc_crashlog_desc_table_t cl_get_pmc_descriptor_table(void)
{
return descriptor_table;
}
int cl_get_pmc_record_size(void)
{
return m_pmc_crashLog_size;
}
int cl_get_cpu_record_size(void)
{
return m_cpu_crashLog_size;
}
int cl_get_ioe_record_size(void)
{
return m_ioe_crashLog_size;
}
bool cl_cpu_data_present(void)
{
return m_cpu_crashLog_present;
}
bool cl_pmc_data_present(void)
{
return m_pmc_crashLog_present;
}
bool cl_ioe_data_present(void)
{
return m_ioe_crashLog_present;
}
bool cpu_crashlog_support(void)
{
return m_cpu_crashLog_support;
}
bool pmc_crashlog_support(void)
{
return m_pmc_crashLog_support;
}
void update_new_pmc_crashlog_size(u32 *pmc_crash_size)
{
m_pmc_crashLog_size = *pmc_crash_size;
}
void update_new_ioe_crashlog_size(u32 *ioe_crash_size)
{
m_ioe_crashLog_size = *ioe_crash_size;
}
cpu_crashlog_discovery_table_t cl_get_cpu_discovery_table(void)
{
return cpu_cl_disc_tab;
}
void update_new_cpu_crashlog_size(u32 *cpu_crash_size)
{
m_cpu_crashLog_size = *cpu_crash_size;
}
|