1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
|
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2014 Siemens AG
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <device/pci.h>
#include <soc/baytrail.h>
#include <soc/pci_devs.h>
#include <soc/iosf.h>
#include <delay.h>
#include <soc/i2c.h>
/* Wait for the transmit FIFO till there is at least one slot empty.
* FIFO stall due to transmit abort will be checked and resolved
*/
static int wait_tx_fifo(char *base_adr) {
int i;
if (read32(base_adr + I2C_ABORT_SOURCE) & 0x1ffff) {
/* Reading back I2C_CLR_TX_ABRT resets abort lock on TX FIFO */
i = *((volatile unsigned int *)(base_adr + I2C_CLR_TX_ABRT));
return I2C_ERR_ABORT |
(*((unsigned int *)(base_adr + I2C_ABORT_SOURCE)) & 0x1ffff);
}
/* Wait here for a free slot in TX-FIFO */
i = I2C_TIMEOUT_US;
while ((!(*((volatile unsigned int *)(base_adr + I2C_STATUS)) & I2C_TFNF))) {
udelay(1);
if (!--i)
return I2C_ERR_TIMEOUT;
}
return I2C_SUCCESS;
}
/* Wait for the receive FIFO till there is at least one valid entry to read.
* FIFO stall due to transmit abort will be checked and resolved
*/
static int wait_rx_fifo(char *base_adr) {
int i;
if (read32(base_adr + I2C_ABORT_SOURCE) & 0x1ffff) {
/* Reading back I2C_CLR_TX_ABRT resets abort lock on TX FIFO */
i = *((volatile unsigned int *)(base_adr + I2C_CLR_TX_ABRT));
return I2C_ERR_ABORT |
(*((unsigned int *)(base_adr + I2C_ABORT_SOURCE)) & 0x1ffff);
}
/* Wait here for a received entry in RX-FIFO */
i = I2C_TIMEOUT_US;
while ((!(*((volatile unsigned int *)(base_adr + I2C_STATUS)) & I2C_RFNE))) {
udelay(1);
if (!--i)
return I2C_ERR_TIMEOUT;
}
return I2C_SUCCESS;
}
/* When there will be a fast switch between send and receive, one have
* to wait until the first operation is completely finished
* before starting the second operation
*/
static int wait_for_idle(char *base_adr)
{
int i;
volatile int status;
/* For IDLE, increase timeout by ten times */
i = I2C_TIMEOUT_US * 10;
status = *((volatile unsigned int *)(base_adr + I2C_STATUS));
while (((status & I2C_MST_ACTIVITY) || (!(status & I2C_TFE)))) {
status = *((volatile unsigned int *)(base_adr + I2C_STATUS));
udelay(1);
if (!--i)
return I2C_ERR_TIMEOUT;
}
return I2C_SUCCESS;
}
/** \brief Enables I2C-controller, sets up BAR and timing parameters
* @param bus Number of the I2C-controller to use (0...6)
* @return I2C_SUCCESS on success, otherwise error code
*/
int i2c_init(unsigned bus)
{
device_t dev;
int base_adr[7] = {I2C0_MEM_BASE, I2C1_MEM_BASE, I2C2_MEM_BASE,
I2C3_MEM_BASE, I2C4_MEM_BASE, I2C5_MEM_BASE,
I2C6_MEM_BASE};
char *base_ptr;
/* Ensure the desired device is valid */
if (bus >= ARRAY_SIZE(base_adr)) {
printk(BIOS_ERR, "I2C: Only I2C controllers 0...6 are available.\n");
return I2C_ERR;
}
base_ptr = (char*)base_adr[bus];
/* Set the I2C-device the user wants to use */
dev = dev_find_slot(0, PCI_DEVFN(I2C1_DEV, bus + 1));
/* Ensure we have the right PCI device */
if ((pci_read_config16(dev, 0x0) != I2C_PCI_VENDOR_ID) ||
(pci_read_config16(dev, 0x2) != (I2C0_PCI_DEV_ID + bus))) {
printk(BIOS_ERR, "I2C: Controller %d not found!\n", bus);
return I2C_ERR;
}
/* Set memory base */
pci_write_config32(dev, PCI_BASE_ADDRESS_0, (int)base_ptr);
/* Enable memory space */
pci_write_config32(dev, PCI_COMMAND,
(pci_read_config32(dev, PCI_COMMAND) | 0x2));
/* Set up some settings of I2C controller */
*((unsigned int *)(base_ptr + I2C_CTRL)) = (I2C_RESTART_EN |
(I2C_STANDARD_MODE << 1) |
I2C_MASTER_ENABLE);
/* Adjust frequency for standard mode to 100 kHz */
/* The counter value can be computed by N=100MHz/2/I2C_CLK */
/* Thus, for 100 kHz I2C_CLK, N is 0x1F4 */
*((unsigned int *)(base_ptr + I2C_SS_SCL_HCNT)) = 0x1f4;
*((unsigned int *)(base_ptr + I2C_SS_SCL_LCNT)) = 0x1f4;
/* For 400 kHz, the counter value is 0x7d */
*((unsigned int *)(base_ptr + I2C_FS_SCL_HCNT)) = 0x7d;
*((unsigned int *)(base_ptr + I2C_FS_SCL_LCNT)) = 0x7d;
/* Enable the I2C controller for operation */
*((unsigned int *)(base_ptr + I2C_ENABLE)) = 0x1;
printk(BIOS_INFO, "I2C: Controller %d enabled.\n", bus);
return I2C_SUCCESS;
}
/** \brief Read bytes over I2C-Bus from a slave. This function tries only one
* time to transmit data. In case of an error (abort) error code is
* returned. Retransmission has to be done from caller!
* @param bus Number of the I2C-controller to use (0...6)
* @param chip 7 Bit of the slave address on I2C bus
* @param addr Address inside slave where to read from
* @param *buf Pointer to the buffer where to store read data
* @param len Number of bytes to read
* @return I2C_SUCCESS when read was successful, otherwise error code
*/
int i2c_read(unsigned bus, unsigned chip, unsigned addr,
uint8_t *buf, unsigned len)
{
int i = 0;
char *base_ptr = NULL;
device_t dev;
unsigned int val;
int stat;
/* Get base address of desired I2C-controller */
dev = dev_find_slot(0, PCI_DEVFN(I2C1_DEV, bus + 1));
base_ptr = (char *)pci_read_config32(dev, PCI_BASE_ADDRESS_0);
if (base_ptr == NULL) {
printk(BIOS_INFO, "I2C: Invalid Base address\n");
return I2C_ERR_INVALID_ADR;
}
/* Ensure I2C controller is not active before setting slave address */
stat = wait_for_idle(base_ptr);
if (stat != I2C_SUCCESS)
return stat;
/* Now we can program the desired slave address and start transfer */
*((unsigned int *)(base_ptr + I2C_TARGET_ADR)) = (chip & 0xff);
/* Send address inside slave to read from */
*((unsigned int *)(base_ptr + I2C_DATA_CMD)) = (addr & 0xff);
/* For the next byte we need a repeated start condition */
val = I2C_RW_CMD | I2C_RESTART;
/* Now we can read desired amount of data over I2C */
for (i = 0; i < len; i++) {
/* A read is initiated by writing dummy data to the DATA-register */
*((unsigned int *)(base_ptr + I2C_DATA_CMD)) = val;
stat = wait_rx_fifo(base_ptr);
if (stat)
return stat;
buf[i] = (*((unsigned int *)(base_ptr + I2C_DATA_CMD))) & 0xff;
val = I2C_RW_CMD;
if (i == (len - 2)) {
/* For the last byte we need a stop condition to be generated */
val |= I2C_STOP;
}
}
return I2C_SUCCESS;
}
/** \brief Write bytes over I2C-Bus from a slave. This function tries only one
* time to transmit data. In case of an error (abort) error code is
* returned. Retransmission has to be done from caller!
* @param bus Number of the I2C-controller to use (0...6)
* @param chip 7 Bit of the slave address on I2C bus
* @param addr Address inside slave where to write to
* @param *buf Pointer to the buffer where data to write is stored
* @param len Number of bytes to write
* @return I2C_SUCCESS when read was successful, otherwise error code
*/
int i2c_write(unsigned bus, unsigned chip, unsigned addr,
const uint8_t *buf, unsigned len)
{
int i;
char *base_ptr;
device_t dev;
unsigned int val;
int stat;
/* Get base address of desired I2C-controller */
dev = dev_find_slot(0, PCI_DEVFN(I2C1_DEV, bus + 1));
base_ptr = (char *)pci_read_config32(dev, PCI_BASE_ADDRESS_0);
if (base_ptr == NULL) {
return I2C_ERR_INVALID_ADR;
}
/* Ensure I2C controller is not active yet */
stat = wait_for_idle(base_ptr);
if (stat) {
return stat;
}
/* Program slave address to use for this transfer */
*((unsigned int *)(base_ptr + I2C_TARGET_ADR)) = (chip & 0xff);
/* Send address inside slave to write data to */
*((unsigned int *)(base_ptr + I2C_DATA_CMD)) = (addr & 0xff);
for (i = 0; i < len; i++) {
val = (unsigned int)(buf[i] & 0xff); /* Take only 8 bits */
if (i == (len - 1)) {
/* For the last byte we need a stop condition */
val |= I2C_STOP;
}
stat = wait_tx_fifo(base_ptr);
if (stat) {
return stat;
}
*((unsigned int *)(base_ptr + I2C_DATA_CMD)) = val;
}
return I2C_SUCCESS;
}
|