1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
|
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2017-2018 Intel Corporation.
* Copyright (C) 2019 Siemens AG
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <device/pci_ops.h>
#include <cbmem.h>
#include <device/device.h>
#include <device/pci.h>
#include <device/pci_ids.h>
#include <intelblocks/acpi.h>
#include <intelblocks/systemagent.h>
#include <smbios.h>
#include <soc/iomap.h>
#include <soc/pci_devs.h>
#include <soc/systemagent.h>
#include "systemagent_def.h"
/* SoC override function */
__weak void soc_systemagent_init(struct device *dev)
{
/* no-op */
}
__weak void soc_add_fixed_mmio_resources(struct device *dev,
int *resource_cnt)
{
/* no-op */
}
__weak int soc_get_uncore_prmmr_base_and_mask(uint64_t *base,
uint64_t *mask)
{
/* return failure for this dummy API */
return -1;
}
__weak unsigned long sa_write_acpi_tables(struct device *dev,
unsigned long current,
struct acpi_rsdp *rsdp)
{
return current;
}
/*
* Add all known fixed MMIO ranges that hang off the host bridge/memory
* controller device.
*/
void sa_add_fixed_mmio_resources(struct device *dev, int *resource_cnt,
const struct sa_mmio_descriptor *sa_fixed_resources, size_t count)
{
int i;
int index = *resource_cnt;
for (i = 0; i < count; i++) {
uintptr_t base;
size_t size;
size = sa_fixed_resources[i].size;
base = sa_fixed_resources[i].base;
mmio_resource(dev, index++, base / KiB, size / KiB);
}
*resource_cnt = index;
}
/*
* DRAM memory mapped register
*
* TOUUD: This 64 bit register defines the Top of Upper Usable DRAM
* TOLUD: This 32 bit register defines the Top of Low Usable DRAM
* BGSM: This register contains the base address of stolen DRAM memory for GTT
* TSEG: This register contains the base address of TSEG DRAM memory
*/
static const struct sa_mem_map_descriptor sa_memory_map[MAX_MAP_ENTRIES] = {
{ TOUUD, true, "TOUUD" },
{ TOLUD, false, "TOLUD" },
{ BGSM, false, "BGSM" },
{ TSEG, false, "TSEG" },
};
/* Read DRAM memory map register value through PCI configuration space */
static void sa_read_map_entry(struct device *dev,
const struct sa_mem_map_descriptor *entry, uint64_t *result)
{
uint64_t value = 0;
if (entry->is_64_bit) {
value = pci_read_config32(dev, entry->reg + 4);
value <<= 32;
}
value |= pci_read_config32(dev, entry->reg);
/* All registers are on a 1MiB granularity. */
value = ALIGN_DOWN(value, 1 * MiB);
*result = value;
}
static void sa_get_mem_map(struct device *dev, uint64_t *values)
{
int i;
for (i = 0; i < MAX_MAP_ENTRIES; i++)
sa_read_map_entry(dev, &sa_memory_map[i], &values[i]);
}
/*
* These are the host memory ranges that should be added:
* - 0 -> 0xa0000: cacheable
* - 0xc0000 -> top_of_ram : cacheable
* - top_of_ram -> BGSM: cacheable with standard MTRRs and reserved
* - BGSM -> TOLUD: not cacheable with standard MTRRs and reserved
* - 4GiB -> TOUUD: cacheable
*
* The default SMRAM space is reserved so that the range doesn't
* have to be saved during S3 Resume. Once marked reserved the OS
* cannot use the memory. This is a bit of an odd place to reserve
* the region, but the CPU devices don't have dev_ops->read_resources()
* called on them.
*
* The range 0xa0000 -> 0xc0000 does not have any resources
* associated with it to handle legacy VGA memory. If this range
* is not omitted the mtrr code will setup the area as cacheable
* causing VGA access to not work.
*
* The TSEG region is mapped as cacheable so that one can perform
* SMRAM relocation faster. Once the SMRR is enabled the SMRR takes
* precedence over the existing MTRRs covering this region.
*
* It should be noted that cacheable entry types need to be added in
* order. The reason is that the current MTRR code assumes this and
* falls over itself if it isn't.
*
* The resource index starts low and should not meet or exceed
* PCI_BASE_ADDRESS_0.
*/
static void sa_add_dram_resources(struct device *dev, int *resource_count)
{
uintptr_t base_k, touud_k;
size_t size_k;
uint64_t sa_map_values[MAX_MAP_ENTRIES];
uintptr_t top_of_ram;
int index = *resource_count;
top_of_ram = (uintptr_t)cbmem_top();
/* 0 - > 0xa0000 */
base_k = 0;
size_k = (0xa0000 / KiB) - base_k;
ram_resource(dev, index++, base_k, size_k);
/* 0xc0000 -> top_of_ram */
base_k = 0xc0000 / KiB;
size_k = (top_of_ram / KiB) - base_k;
ram_resource(dev, index++, base_k, size_k);
sa_get_mem_map(dev, &sa_map_values[0]);
/* top_of_ram -> BGSM */
base_k = top_of_ram;
size_k = sa_map_values[SA_BGSM_REG] - base_k;
reserved_ram_resource(dev, index++, base_k / KiB, size_k / KiB);
/* BGSM -> TOLUD */
base_k = sa_map_values[SA_BGSM_REG];
size_k = sa_map_values[SA_TOLUD_REG] - base_k;
mmio_resource(dev, index++, base_k / KiB, size_k / KiB);
/* 4GiB -> TOUUD */
base_k = 4 * (GiB / KiB); /* 4GiB */
touud_k = sa_map_values[SA_TOUUD_REG] / KiB;
size_k = touud_k - base_k;
if (touud_k > base_k)
ram_resource(dev, index++, base_k, size_k);
/*
* Reserve everything between A segment and 1MB:
*
* 0xa0000 - 0xbffff: legacy VGA
* 0xc0000 - 0xfffff: RAM
*/
mmio_resource(dev, index++, 0xa0000 / KiB, (0xc0000 - 0xa0000) / KiB);
reserved_ram_resource(dev, index++, 0xc0000 / KiB,
(1*MiB - 0xc0000) / KiB);
*resource_count = index;
}
static bool is_imr_enabled(uint32_t imr_base_reg)
{
return !!(imr_base_reg & (1 << 31));
}
static void imr_resource(struct device *dev, int idx, uint32_t base,
uint32_t mask)
{
uint32_t base_k, size_k;
/* Bits 28:0 encode the base address bits 38:10, hence the KiB unit. */
base_k = (base & 0x0fffffff);
/* Bits 28:0 encode the AND mask used for comparison, in KiB. */
size_k = ((~mask & 0x0fffffff) + 1);
/*
* IMRs sit in lower DRAM. Mark them cacheable, otherwise we run
* out of MTRRs. Memory reserved by IMRs is not usable for host
* so mark it reserved.
*/
reserved_ram_resource(dev, idx, base_k, size_k);
}
/*
* Add IMR ranges that hang off the host bridge/memory
* controller device in case CONFIG_SA_ENABLE_IMR is selected by SoC.
*/
static void sa_add_imr_resources(struct device *dev, int *resource_cnt)
{
size_t i, imr_offset;
uint32_t base, mask;
int index = *resource_cnt;
for (i = 0; i < MCH_NUM_IMRS; i++) {
imr_offset = i * MCH_IMR_PITCH;
base = MCHBAR32(imr_offset + MCH_IMR0_BASE);
mask = MCHBAR32(imr_offset + MCH_IMR0_MASK);
if (is_imr_enabled(base))
imr_resource(dev, index++, base, mask);
}
*resource_cnt = index;
}
static void systemagent_read_resources(struct device *dev)
{
int index = 0;
/* Read standard PCI resources. */
pci_dev_read_resources(dev);
/* Add all fixed MMIO resources. */
soc_add_fixed_mmio_resources(dev, &index);
/* Calculate and add DRAM resources. */
sa_add_dram_resources(dev, &index);
if (CONFIG(SA_ENABLE_IMR))
/* Add the isolated memory ranges (IMRs). */
sa_add_imr_resources(dev, &index);
}
#if CONFIG(GENERATE_SMBIOS_TABLES)
static int sa_smbios_write_type_16(struct device *dev, int *handle,
unsigned long *current)
{
struct smbios_type16 *t = (struct smbios_type16 *)*current;
int len = sizeof(struct smbios_type16);
struct memory_info *meminfo;
meminfo = cbmem_find(CBMEM_ID_MEMINFO);
if (meminfo == NULL)
return 0; /* can't find mem info in cbmem */
memset(t, 0, sizeof(struct smbios_type16));
t->type = SMBIOS_PHYS_MEMORY_ARRAY;
t->handle = *handle;
t->length = len - 2;
t->location = MEMORY_ARRAY_LOCATION_SYSTEM_BOARD;
t->use = MEMORY_ARRAY_USE_SYSTEM;
/* TBD, meminfo hob have information about ECC */
t->memory_error_correction = MEMORY_ARRAY_ECC_NONE;
/* no error information handle available */
t->memory_error_information_handle = 0xFFFE;
t->maximum_capacity = 32 * (GiB / KiB); /* 32GB as default */
t->number_of_memory_devices = meminfo->dimm_cnt;
*current += len;
*handle += 1;
return len;
}
#endif
void enable_power_aware_intr(void)
{
uint8_t pair;
/* Enable Power Aware Interrupt Routing */
pair = MCHBAR8(MCH_PAIR);
pair &= ~0x7; /* Clear 2:0 */
pair |= 0x4; /* Fixed Priority */
MCHBAR8(MCH_PAIR) = pair;
}
static struct device_operations systemagent_ops = {
.read_resources = systemagent_read_resources,
.set_resources = pci_dev_set_resources,
.enable_resources = pci_dev_enable_resources,
.init = soc_systemagent_init,
.ops_pci = &pci_dev_ops_pci,
#if CONFIG(HAVE_ACPI_TABLES)
.write_acpi_tables = sa_write_acpi_tables,
#endif
#if CONFIG(GENERATE_SMBIOS_TABLES)
.get_smbios_data = sa_smbios_write_type_16,
#endif
};
static const unsigned short systemagent_ids[] = {
PCI_DEVICE_ID_INTEL_GLK_NB,
PCI_DEVICE_ID_INTEL_APL_NB,
PCI_DEVICE_ID_INTEL_CNL_ID_U,
PCI_DEVICE_ID_INTEL_CNL_ID_Y,
PCI_DEVICE_ID_INTEL_SKL_ID_U,
PCI_DEVICE_ID_INTEL_SKL_ID_Y,
PCI_DEVICE_ID_INTEL_SKL_ID_ULX,
PCI_DEVICE_ID_INTEL_SKL_ID_H_4,
PCI_DEVICE_ID_INTEL_SKL_ID_H_2,
PCI_DEVICE_ID_INTEL_SKL_ID_S_2,
PCI_DEVICE_ID_INTEL_SKL_ID_S_4,
PCI_DEVICE_ID_INTEL_WHL_ID_W_2,
PCI_DEVICE_ID_INTEL_WHL_ID_W_4,
PCI_DEVICE_ID_INTEL_KBL_ID_S,
PCI_DEVICE_ID_INTEL_SKL_ID_H_EM,
PCI_DEVICE_ID_INTEL_KBL_ID_U,
PCI_DEVICE_ID_INTEL_KBL_ID_Y,
PCI_DEVICE_ID_INTEL_KBL_ID_H,
PCI_DEVICE_ID_INTEL_KBL_U_R,
PCI_DEVICE_ID_INTEL_KBL_ID_DT,
PCI_DEVICE_ID_INTEL_KBL_ID_DT_2,
PCI_DEVICE_ID_INTEL_CFL_ID_U,
PCI_DEVICE_ID_INTEL_CFL_ID_U_2,
PCI_DEVICE_ID_INTEL_CFL_ID_H,
PCI_DEVICE_ID_INTEL_CFL_ID_H_4,
PCI_DEVICE_ID_INTEL_CFL_ID_H_8,
PCI_DEVICE_ID_INTEL_CFL_ID_S,
PCI_DEVICE_ID_INTEL_CFL_ID_S_DT_2,
PCI_DEVICE_ID_INTEL_CFL_ID_S_DT_4,
PCI_DEVICE_ID_INTEL_CFL_ID_S_DT_8,
PCI_DEVICE_ID_INTEL_CFL_ID_S_WS_4,
PCI_DEVICE_ID_INTEL_CFL_ID_S_WS_6,
PCI_DEVICE_ID_INTEL_CFL_ID_S_WS_8,
PCI_DEVICE_ID_INTEL_CFL_ID_S_S_4,
PCI_DEVICE_ID_INTEL_CFL_ID_S_S_6,
PCI_DEVICE_ID_INTEL_CFL_ID_S_S_8,
PCI_DEVICE_ID_INTEL_ICL_ID_U,
PCI_DEVICE_ID_INTEL_ICL_ID_U_2_2,
PCI_DEVICE_ID_INTEL_ICL_ID_Y,
PCI_DEVICE_ID_INTEL_ICL_ID_Y_2,
PCI_DEVICE_ID_INTEL_CML_ULT,
PCI_DEVICE_ID_INTEL_CML_ULT_2_2,
PCI_DEVICE_ID_INTEL_CML_ULT_6_2,
PCI_DEVICE_ID_INTEL_CML_ULX,
PCI_DEVICE_ID_INTEL_CML_S,
PCI_DEVICE_ID_INTEL_CML_S_G0G1_P0P1_6_2,
PCI_DEVICE_ID_INTEL_CML_S_P0P1_8_2,
PCI_DEVICE_ID_INTEL_CML_S_P0P1_10_2,
PCI_DEVICE_ID_INTEL_CML_H,
PCI_DEVICE_ID_INTEL_CML_H_8_2,
PCI_DEVICE_ID_INTEL_TGL_ID_U,
PCI_DEVICE_ID_INTEL_TGL_ID_U_1,
PCI_DEVICE_ID_INTEL_TGL_ID_Y,
PCI_DEVICE_ID_INTEL_JSL_PRE_PROD,
0
};
static const struct pci_driver systemagent_driver __pci_driver = {
.ops = &systemagent_ops,
.vendor = PCI_VENDOR_ID_INTEL,
.devices = systemagent_ids
};
|