1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
|
/* SPDX-License-Identifier: GPL-2.0-only */
#include <acpi/acpi_pm.h>
#include <arch/io.h>
#include <assert.h>
#include <bootmode.h>
#include <device/mmio.h>
#include <device/pci.h>
#include <cbmem.h>
#include <cpu/x86/smm.h>
#include <console/console.h>
#include <halt.h>
#include <intelblocks/pmc_ipc.h>
#include <intelblocks/pmclib.h>
#include <intelblocks/gpio.h>
#include <intelblocks/tco.h>
#include <option.h>
#include <security/vboot/vboot_common.h>
#include <soc/pci_devs.h>
#include <soc/pm.h>
#include <stdint.h>
#include <string.h>
#include <timer.h>
#define PMC_IPC_BIOS_RST_COMPLETE 0xd0
#define PMC_IPC_BIOS_RST_SUBID_PCI_ENUM_DONE 0
#define PMC_IPC_BIOS_RST_CMPL_STS_PCI_ENUM BIT(0)
/* IPC command for accessing SoC registers */
#define PMC_IPC_CMD_SOC_REG_ACC 0xAA
#define PMC_IPC_CMD_SUBCMD_SOC_REG_RD 0x00
#define PMC_IPC_CMD_REGID_SOC_QDF 0x03
static struct chipset_power_state power_state;
/* List of Minimum Assertion durations in microseconds */
enum min_assert_dur {
MinAssertDur0s = 0,
MinAssertDur60us = 60,
MinAssertDur1ms = 1000,
MinAssertDur50ms = 50000,
MinAssertDur98ms = 98000,
MinAssertDur500ms = 500000,
MinAssertDur1s = 1000000,
MinAssertDur2s = 2000000,
MinAssertDur3s = 3000000,
MinAssertDur4s = 4000000,
};
/* Signal Assertion duration values */
struct cfg_assert_dur {
/* Minimum assertion duration of SLP_A signal */
enum min_assert_dur slp_a;
/* Minimum assertion duration of SLP_4 signal */
enum min_assert_dur slp_s4;
/* Minimum assertion duration of SLP_3 signal */
enum min_assert_dur slp_s3;
/* PCH PM Power Cycle duration */
enum min_assert_dur pm_pwr_cyc_dur;
};
/* Default value of PchPmPwrCycDur */
#define PCH_PM_PWR_CYC_DUR 0
struct chipset_power_state *pmc_get_power_state(void)
{
struct chipset_power_state *ptr = NULL;
if (ENV_HAS_CBMEM)
ptr = acpi_get_pm_state();
/* cbmem is online but ptr is not populated yet */
if (ptr == NULL && !(ENV_RAMSTAGE || ENV_POSTCAR))
return &power_state;
return ptr;
}
static void migrate_power_state(int is_recovery)
{
struct chipset_power_state *ps_cbmem;
ps_cbmem = cbmem_add(CBMEM_ID_POWER_STATE, sizeof(*ps_cbmem));
if (ps_cbmem == NULL) {
printk(BIOS_DEBUG, "Not adding power state to cbmem!\n");
return;
}
memcpy(ps_cbmem, &power_state, sizeof(*ps_cbmem));
}
CBMEM_CREATION_HOOK(migrate_power_state);
static void print_num_status_bits(int num_bits, uint32_t status,
const char *const *bit_names)
{
int i;
if (!status)
return;
for (i = num_bits - 1; i >= 0; i--) {
if (status & (1 << i)) {
if (bit_names[i])
printk(BIOS_DEBUG, "%s ", bit_names[i]);
else
printk(BIOS_DEBUG, "BIT%d ", i);
}
}
}
__weak uint32_t soc_get_smi_status(uint32_t generic_sts)
{
return generic_sts;
}
int acpi_get_sleep_type(void)
{
struct chipset_power_state *ps;
int prev_sleep_state = ACPI_S0;
ps = pmc_get_power_state();
if (ps)
prev_sleep_state = ps->prev_sleep_state;
return prev_sleep_state;
}
static uint32_t pmc_reset_smi_status(void)
{
uint32_t smi_sts = inl(ACPI_BASE_ADDRESS + SMI_STS);
outl(smi_sts, ACPI_BASE_ADDRESS + SMI_STS);
return soc_get_smi_status(smi_sts);
}
static uint32_t print_smi_status(uint32_t smi_sts)
{
size_t array_size;
const char *const *smi_arr;
if (!smi_sts)
return 0;
printk(BIOS_DEBUG, "SMI_STS: ");
smi_arr = soc_smi_sts_array(&array_size);
print_num_status_bits(array_size, smi_sts, smi_arr);
printk(BIOS_DEBUG, "\n");
return smi_sts;
}
/*
* Update supplied events in PM1_EN register. This does not disable any already
* set events.
*/
void pmc_update_pm1_enable(u16 events)
{
u16 pm1_en = pmc_read_pm1_enable();
pm1_en |= events;
pmc_enable_pm1(pm1_en);
}
/* Read events set in PM1_EN register. */
uint16_t pmc_read_pm1_enable(void)
{
return inw(ACPI_BASE_ADDRESS + PM1_EN);
}
uint32_t pmc_clear_smi_status(void)
{
uint32_t sts = pmc_reset_smi_status();
return print_smi_status(sts);
}
uint32_t pmc_get_smi_en(void)
{
return inl(ACPI_BASE_ADDRESS + SMI_EN);
}
void pmc_enable_smi(uint32_t mask)
{
uint32_t smi_en = inl(ACPI_BASE_ADDRESS + SMI_EN);
smi_en |= mask;
outl(smi_en, ACPI_BASE_ADDRESS + SMI_EN);
}
void pmc_disable_smi(uint32_t mask)
{
uint32_t smi_en = inl(ACPI_BASE_ADDRESS + SMI_EN);
smi_en &= ~mask;
outl(smi_en, ACPI_BASE_ADDRESS + SMI_EN);
}
/* PM1 */
void pmc_enable_pm1(uint16_t events)
{
outw(events, ACPI_BASE_ADDRESS + PM1_EN);
}
uint32_t pmc_read_pm1_control(void)
{
return inl(ACPI_BASE_ADDRESS + PM1_CNT);
}
void pmc_write_pm1_control(uint32_t pm1_cnt)
{
outl(pm1_cnt, ACPI_BASE_ADDRESS + PM1_CNT);
}
void pmc_enable_pm1_control(uint32_t mask)
{
uint32_t pm1_cnt = pmc_read_pm1_control();
pm1_cnt |= mask;
pmc_write_pm1_control(pm1_cnt);
}
void pmc_disable_pm1_control(uint32_t mask)
{
uint32_t pm1_cnt = pmc_read_pm1_control();
pm1_cnt &= ~mask;
pmc_write_pm1_control(pm1_cnt);
}
static uint16_t reset_pm1_status(void)
{
uint16_t pm1_sts = inw(ACPI_BASE_ADDRESS + PM1_STS);
outw(pm1_sts, ACPI_BASE_ADDRESS + PM1_STS);
return pm1_sts;
}
static uint16_t print_pm1_status(uint16_t pm1_sts)
{
static const char *const pm1_sts_bits[] = {
[0] = "TMROF",
[5] = "GBL",
[8] = "PWRBTN",
[10] = "RTC",
[11] = "PRBTNOR",
[13] = "USB",
[14] = "PCIEXPWAK",
[15] = "WAK",
};
if (!pm1_sts)
return 0;
printk(BIOS_DEBUG, "PM1_STS: ");
print_num_status_bits(ARRAY_SIZE(pm1_sts_bits), pm1_sts, pm1_sts_bits);
printk(BIOS_DEBUG, "\n");
return pm1_sts;
}
uint16_t pmc_clear_pm1_status(void)
{
return print_pm1_status(reset_pm1_status());
}
/* TCO */
static uint32_t print_tco_status(uint32_t tco_sts)
{
size_t array_size;
const char *const *tco_arr;
if (!tco_sts)
return 0;
printk(BIOS_DEBUG, "TCO_STS: ");
tco_arr = soc_tco_sts_array(&array_size);
print_num_status_bits(array_size, tco_sts, tco_arr);
printk(BIOS_DEBUG, "\n");
return tco_sts;
}
uint32_t pmc_clear_tco_status(void)
{
return print_tco_status(tco_reset_status());
}
/* GPE */
static void pmc_enable_gpe(int gpe, uint32_t mask)
{
uint32_t gpe0_en = inl(ACPI_BASE_ADDRESS + GPE0_EN(gpe));
gpe0_en |= mask;
outl(gpe0_en, ACPI_BASE_ADDRESS + GPE0_EN(gpe));
}
static void pmc_disable_gpe(int gpe, uint32_t mask)
{
uint32_t gpe0_en = inl(ACPI_BASE_ADDRESS + GPE0_EN(gpe));
gpe0_en &= ~mask;
outl(gpe0_en, ACPI_BASE_ADDRESS + GPE0_EN(gpe));
}
void pmc_enable_std_gpe(uint32_t mask)
{
pmc_enable_gpe(GPE_STD, mask);
}
void pmc_disable_std_gpe(uint32_t mask)
{
pmc_disable_gpe(GPE_STD, mask);
}
void pmc_disable_all_gpe(void)
{
int i;
for (i = 0; i < GPE0_REG_MAX; i++)
pmc_disable_gpe(i, ~0);
}
/* Clear the gpio gpe0 status bits in ACPI registers */
static void pmc_clear_gpi_gpe_status(void)
{
int i;
for (i = 0; i < GPE0_REG_MAX; i++) {
/* This is reserved GPE block and specific to chipset */
if (i == GPE_STD)
continue;
uint32_t gpe_sts = inl(ACPI_BASE_ADDRESS + GPE0_STS(i));
outl(gpe_sts, ACPI_BASE_ADDRESS + GPE0_STS(i));
}
}
static uint32_t reset_std_gpe_status(void)
{
uint32_t gpe_sts = inl(ACPI_BASE_ADDRESS + GPE0_STS(GPE_STD));
outl(gpe_sts, ACPI_BASE_ADDRESS + GPE0_STS(GPE_STD));
return gpe_sts;
}
static uint32_t print_std_gpe_sts(uint32_t gpe_sts)
{
size_t array_size;
const char *const *sts_arr;
if (!gpe_sts)
return gpe_sts;
printk(BIOS_DEBUG, "GPE0 STD STS: ");
sts_arr = soc_std_gpe_sts_array(&array_size);
print_num_status_bits(array_size, gpe_sts, sts_arr);
printk(BIOS_DEBUG, "\n");
return gpe_sts;
}
static void pmc_clear_std_gpe_status(void)
{
print_std_gpe_sts(reset_std_gpe_status());
}
void pmc_clear_all_gpe_status(void)
{
pmc_clear_std_gpe_status();
pmc_clear_gpi_gpe_status();
}
__weak
void soc_clear_pm_registers(uintptr_t pmc_bar)
{
}
void pmc_or_mmio32(uint32_t offset, uint32_t ormask)
{
uint32_t reg;
uintptr_t pmc_bar;
pmc_bar = soc_read_pmc_base();
reg = read32p(pmc_bar + offset);
reg |= ormask;
write32p(pmc_bar + offset, reg);
}
void pmc_clear_prsts(void)
{
uint32_t prsts;
uintptr_t pmc_bar;
/* Read PMC base address from soc */
pmc_bar = soc_read_pmc_base();
prsts = read32p(pmc_bar + PRSTS);
write32p(pmc_bar + PRSTS, prsts);
soc_clear_pm_registers(pmc_bar);
}
__weak
int soc_prev_sleep_state(const struct chipset_power_state *ps,
int prev_sleep_state)
{
return prev_sleep_state;
}
/*
* Returns prev_sleep_state and also prints all power management registers.
* Calls soc_prev_sleep_state which may be implemented by SOC.
*/
static int pmc_prev_sleep_state(const struct chipset_power_state *ps)
{
/* Default to S0. */
int prev_sleep_state = ACPI_S0;
if (ps->pm1_sts & WAK_STS) {
switch (acpi_sleep_from_pm1(ps->pm1_cnt)) {
case ACPI_S3:
if (CONFIG(HAVE_ACPI_RESUME))
prev_sleep_state = ACPI_S3;
break;
case ACPI_S4:
prev_sleep_state = ACPI_S4;
break;
case ACPI_S5:
prev_sleep_state = ACPI_S5;
break;
}
/* Clear SLP_TYP. */
pmc_write_pm1_control(ps->pm1_cnt & ~(SLP_TYP));
}
prev_sleep_state = soc_prev_sleep_state(ps, prev_sleep_state);
/* Clear PMC PMCON_x register power failure status bits. */
pmc_clear_pmcon_pwr_failure_sts();
return prev_sleep_state;
}
void pmc_fill_pm_reg_info(struct chipset_power_state *ps)
{
int i;
memset(ps, 0, sizeof(*ps));
ps->pm1_sts = inw(ACPI_BASE_ADDRESS + PM1_STS);
ps->pm1_en = inw(ACPI_BASE_ADDRESS + PM1_EN);
ps->pm1_cnt = pmc_read_pm1_control();
printk(BIOS_DEBUG, "pm1_sts: %04x pm1_en: %04x pm1_cnt: %08x\n",
ps->pm1_sts, ps->pm1_en, ps->pm1_cnt);
for (i = 0; i < GPE0_REG_MAX; i++) {
ps->gpe0_sts[i] = inl(ACPI_BASE_ADDRESS + GPE0_STS(i));
ps->gpe0_en[i] = inl(ACPI_BASE_ADDRESS + GPE0_EN(i));
printk(BIOS_DEBUG, "gpe0_sts[%d]: %08x gpe0_en[%d]: %08x\n",
i, ps->gpe0_sts[i], i, ps->gpe0_en[i]);
}
soc_fill_power_state(ps);
}
/* Reads and prints ACPI specific PM registers */
int pmc_fill_power_state(struct chipset_power_state *ps)
{
/* Define the sleep state string */
static const char * const acpi_sleep_states[] = {
[ACPI_S0] = "S0",
[ACPI_S1] = "S1",
[ACPI_S3] = "S3",
[ACPI_S4] = "S4",
[ACPI_S5] = "S5",
};
pmc_fill_pm_reg_info(ps);
ps->prev_sleep_state = pmc_prev_sleep_state(ps);
if (ps->prev_sleep_state < ARRAY_SIZE(acpi_sleep_states) &&
acpi_sleep_states[ps->prev_sleep_state] != NULL)
printk(BIOS_DEBUG, "prev_sleep_state %d (%s)\n", ps->prev_sleep_state,
acpi_sleep_states[ps->prev_sleep_state]);
else
printk(BIOS_DEBUG, "prev_sleep_state %d (unknown state)\n", ps->prev_sleep_state);
return ps->prev_sleep_state;
}
#if CONFIG(PMC_GLOBAL_RESET_ENABLE_LOCK)
void pmc_global_reset_disable_and_lock(void)
{
uint32_t *etr = soc_pmc_etr_addr();
uint32_t reg;
reg = read32(etr);
reg = (reg & ~CF9_GLB_RST) | CF9_LOCK;
write32(etr, reg);
}
void pmc_global_reset_enable(bool enable)
{
uint32_t *etr = soc_pmc_etr_addr();
uint32_t reg;
reg = read32(etr);
reg = enable ? reg | CF9_GLB_RST : reg & ~CF9_GLB_RST;
write32(etr, reg);
}
#endif // CONFIG_PMC_GLOBAL_RESET_ENABLE_LOCK
int platform_is_resuming(void)
{
/* Read power state from PMC data structure */
if (ENV_RAMSTAGE)
return acpi_get_sleep_type() == ACPI_S3;
/* Read power state from PMC ABASE */
if (!(inw(ACPI_BASE_ADDRESS + PM1_STS) & WAK_STS))
return 0;
return acpi_sleep_from_pm1(pmc_read_pm1_control()) == ACPI_S3;
}
/* Read and clear GPE status (defined in acpi/acpi.h) */
int acpi_get_gpe(int gpe)
{
int bank;
uint32_t mask, sts;
struct stopwatch sw;
int rc = 0;
if (gpe < 0 || gpe > GPE_MAX)
return -1;
bank = gpe / 32;
mask = 1 << (gpe % 32);
/* Wait up to 1ms for GPE status to clear */
stopwatch_init_msecs_expire(&sw, 1);
do {
if (stopwatch_expired(&sw))
return rc;
sts = inl(ACPI_BASE_ADDRESS + GPE0_STS(bank));
if (sts & mask) {
outl(mask, ACPI_BASE_ADDRESS + GPE0_STS(bank));
rc = 1;
}
} while (sts & mask);
return rc;
}
/*
* The PM1 control is set to S5 when vboot requests a reboot because the power
* state code above may not have collected its data yet. Therefore, set it to
* S5 when vboot requests a reboot. That's necessary if vboot fails in the
* resume path and requests a reboot. This prevents a reboot loop where the
* error is continually hit on the failing vboot resume path.
*/
void vboot_platform_prepare_reboot(void)
{
uint32_t pm1_cnt;
pm1_cnt = (pmc_read_pm1_control() & ~(SLP_TYP)) |
(SLP_TYP_S5 << SLP_TYP_SHIFT);
pmc_write_pm1_control(pm1_cnt);
}
void poweroff(void)
{
pmc_enable_pm1_control(SLP_EN | (SLP_TYP_S5 << SLP_TYP_SHIFT));
/*
* Setting SLP_TYP_S5 in PM1 triggers SLP_SMI, which is handled by SMM
* to transition to S5 state. If halt is called in SMM, then it prevents
* the SMI handler from being triggered and system never enters S5.
*/
if (!ENV_SMM)
halt();
}
void pmc_gpe_init(void)
{
uint32_t gpio_cfg = 0;
uint32_t gpio_cfg_reg;
uint8_t dw0 = 0, dw1 = 0, dw2 = 0;
/* Read PMC base address from soc. This is implemented in soc */
uintptr_t pmc_bar = soc_read_pmc_base();
/*
* Get the dwX values for pmc gpe settings.
*/
soc_get_gpi_gpe_configs(&dw0, &dw1, &dw2);
const uint32_t gpio_cfg_mask =
(GPE0_DWX_MASK << GPE0_DW_SHIFT(0)) |
(GPE0_DWX_MASK << GPE0_DW_SHIFT(1)) |
(GPE0_DWX_MASK << GPE0_DW_SHIFT(2));
/* Making sure that bad values don't bleed into the other fields */
dw0 &= GPE0_DWX_MASK;
dw1 &= GPE0_DWX_MASK;
dw2 &= GPE0_DWX_MASK;
/*
* Route the GPIOs to the GPE0 block. Determine that all values
* are different, and if they aren't use the reset values.
*/
if (dw0 == dw1 || dw1 == dw2) {
printk(BIOS_INFO, "PMC: Using default GPE route.\n");
gpio_cfg = read32p(pmc_bar + GPIO_GPE_CFG);
dw0 = (gpio_cfg >> GPE0_DW_SHIFT(0)) & GPE0_DWX_MASK;
dw1 = (gpio_cfg >> GPE0_DW_SHIFT(1)) & GPE0_DWX_MASK;
dw2 = (gpio_cfg >> GPE0_DW_SHIFT(2)) & GPE0_DWX_MASK;
} else {
gpio_cfg |= (uint32_t)dw0 << GPE0_DW_SHIFT(0);
gpio_cfg |= (uint32_t)dw1 << GPE0_DW_SHIFT(1);
gpio_cfg |= (uint32_t)dw2 << GPE0_DW_SHIFT(2);
}
gpio_cfg_reg = read32p(pmc_bar + GPIO_GPE_CFG) & ~gpio_cfg_mask;
gpio_cfg_reg |= gpio_cfg & gpio_cfg_mask;
write32p(pmc_bar + GPIO_GPE_CFG, gpio_cfg_reg);
/* Set the routes in the GPIO communities as well. */
gpio_route_gpe(dw0, dw1, dw2);
}
static void pmc_clear_pmcon_pwr_failure_sts_mmio(void)
{
uint8_t *addr = pmc_mmio_regs();
/*
* Clear PMC GEN_PMCON_A register power failure status bits:
* SUS_PWR_FLR, PWR_FLR bits
* while retaining MS4V write-1-to-clear bit
*
* Note: clearing `GBL_RST_STS` bit earlier than FSP-M/MRC having an adverse effect
* on the PMC sleep type register which results in calculating wrong
* `prev_sleep_state` post a global reset, hence, just clearing the power failure
* status bits rather than clearing the complete PMC PMCON_A register.
*/
clrbits32((addr + GEN_PMCON_A), (MS4V | GBL_RST_STS));
}
static void pmc_clear_pmcon_pwr_failure_sts_pci(void)
{
#if defined(__SIMPLE_DEVICE__)
pci_devfn_t dev = PCI_DEV(0, PCI_SLOT(PCH_DEVFN_PMC), PCI_FUNC(PCH_DEVFN_PMC));
#else
struct device *dev = pcidev_path_on_root(PCH_DEVFN_PMC);
if (!dev)
return;
#endif
pci_or_config32(dev, GEN_PMCON_B, (SUS_PWR_FLR | PWR_FLR));
}
/*
* Clear PMC GEN_PMCON_X register power failure status bits:
* SUS_PWR_FLR, PWR_FLR bits (keep the other bits intact)
*/
void pmc_clear_pmcon_pwr_failure_sts(void)
{
if (CONFIG(SOC_INTEL_MEM_MAPPED_PM_CONFIGURATION))
pmc_clear_pmcon_pwr_failure_sts_mmio();
else
pmc_clear_pmcon_pwr_failure_sts_pci();
}
#if ENV_RAMSTAGE
static void pmc_clear_pmcon_sts_mmio(void)
{
uint8_t *addr = pmc_mmio_regs();
clrbits32((addr + GEN_PMCON_A), MS4V);
}
static void pmc_clear_pmcon_sts_pci(void)
{
struct device *dev = pcidev_path_on_root(PCH_DEVFN_PMC);
if (!dev)
return;
pci_and_config32(dev, GEN_PMCON_A, ~MS4V);
}
/*
* Clear PMC GEN_PMCON_A register status bits:
* SUS_PWR_FLR, GBL_RST_STS, HOST_RST_STS, PWR_FLR bits
* while retaining MS4V write-1-to-clear bit
*/
void pmc_clear_pmcon_sts(void)
{
/*
* Accessing PMC GEN_PMCON_A register differs between different Intel chipsets.
* Typically, there are two possible ways to perform GEN_PMCON_A register programming
* (like `pmc_clear_pmcon_sts()`) as:
* 1. Using PCI configuration space when GEN_PMCON_A is a PCI configuration register.
* 2. Using MMIO access when GEN_PMCON_A is a memory mapped register.
*/
if (CONFIG(SOC_INTEL_MEM_MAPPED_PM_CONFIGURATION))
pmc_clear_pmcon_sts_mmio();
else
pmc_clear_pmcon_sts_pci();
}
#endif
void pmc_set_power_failure_state(const bool target_on)
{
const unsigned int state = get_uint_option("power_on_after_fail",
CONFIG_MAINBOARD_POWER_FAILURE_STATE);
/*
* On the shutdown path (target_on == false), we only need to
* update the register for MAINBOARD_POWER_STATE_PREVIOUS. For
* all other cases, we don't write the register to avoid clob-
* bering the value set on the boot path. This is necessary,
* for instance, when we can't access the option backend in SMM.
*/
switch (state) {
case MAINBOARD_POWER_STATE_OFF:
if (!target_on)
break;
printk(BIOS_INFO, "Set power off after power failure.\n");
pmc_soc_set_afterg3_en(false);
break;
case MAINBOARD_POWER_STATE_ON:
if (!target_on)
break;
printk(BIOS_INFO, "Set power on after power failure.\n");
pmc_soc_set_afterg3_en(true);
break;
case MAINBOARD_POWER_STATE_PREVIOUS:
printk(BIOS_INFO, "Keep power state after power failure.\n");
pmc_soc_set_afterg3_en(target_on);
break;
default:
printk(BIOS_WARNING, "Unknown power-failure state: %d\n", state);
break;
}
}
/* This function returns the highest assertion duration of the SLP_Sx assertion widths */
static enum min_assert_dur get_high_assert_width(const struct cfg_assert_dur *cfg_assert_dur)
{
enum min_assert_dur max_assert_dur = cfg_assert_dur->slp_s4;
if (max_assert_dur < cfg_assert_dur->slp_s3)
max_assert_dur = cfg_assert_dur->slp_s3;
if (max_assert_dur < cfg_assert_dur->slp_a)
max_assert_dur = cfg_assert_dur->slp_a;
return max_assert_dur;
}
/* This function converts assertion durations from register-encoded to microseconds */
static void get_min_assert_dur(uint8_t slp_s4_min_assert, uint8_t slp_s3_min_assert,
uint8_t slp_a_min_assert, uint8_t pm_pwr_cyc_dur,
struct cfg_assert_dur *cfg_assert_dur)
{
/*
* Ensure slp_x_dur_list[] elements in the devicetree config are in sync with
* FSP encoded values.
*/
/* slp_s4_assert_dur_list : 1s, 1s(default), 2s, 3s, 4s */
const enum min_assert_dur slp_s4_assert_dur_list[] = {
MinAssertDur1s, MinAssertDur1s, MinAssertDur2s, MinAssertDur3s, MinAssertDur4s
};
/* slp_s3_assert_dur_list: 50ms, 60us, 1ms, 50ms (Default), 2s */
const enum min_assert_dur slp_s3_assert_dur_list[] = {
MinAssertDur50ms, MinAssertDur60us, MinAssertDur1ms, MinAssertDur50ms,
MinAssertDur2s
};
/* slp_a_assert_dur_list: 2s, 0s, 4s, 98ms, 2s(Default) */
const enum min_assert_dur slp_a_assert_dur_list[] = {
MinAssertDur2s, MinAssertDur0s, MinAssertDur4s, MinAssertDur98ms, MinAssertDur2s
};
/* pm_pwr_cyc_dur_list: 4s(Default), 1s, 2s, 3s, 4s */
const enum min_assert_dur pm_pwr_cyc_dur_list[] = {
MinAssertDur4s, MinAssertDur1s, MinAssertDur2s, MinAssertDur3s, MinAssertDur4s
};
/* Get signal assertion width */
if (slp_s4_min_assert < ARRAY_SIZE(slp_s4_assert_dur_list))
cfg_assert_dur->slp_s4 = slp_s4_assert_dur_list[slp_s4_min_assert];
if (slp_s3_min_assert < ARRAY_SIZE(slp_s3_assert_dur_list))
cfg_assert_dur->slp_s3 = slp_s3_assert_dur_list[slp_s3_min_assert];
if (slp_a_min_assert < ARRAY_SIZE(slp_a_assert_dur_list))
cfg_assert_dur->slp_a = slp_a_assert_dur_list[slp_a_min_assert];
if (pm_pwr_cyc_dur < ARRAY_SIZE(pm_pwr_cyc_dur_list))
cfg_assert_dur->pm_pwr_cyc_dur = pm_pwr_cyc_dur_list[pm_pwr_cyc_dur];
}
/*
* This function ensures that the duration programmed in the PchPmPwrCycDur will never be
* smaller than the SLP_Sx assertion widths.
* If the pm_pwr_cyc_dur is less than any of the SLP_Sx assertion widths then it returns the
* default value PCH_PM_PWR_CYC_DUR.
*/
uint8_t get_pm_pwr_cyc_dur(uint8_t slp_s4_min_assert, uint8_t slp_s3_min_assert,
uint8_t slp_a_min_assert, uint8_t pm_pwr_cyc_dur)
{
/* Set default values for the minimum assertion duration */
struct cfg_assert_dur cfg_assert_dur = {
.slp_a = MinAssertDur2s,
.slp_s4 = MinAssertDur1s,
.slp_s3 = MinAssertDur50ms,
.pm_pwr_cyc_dur = MinAssertDur4s
};
enum min_assert_dur high_assert_width;
/* Convert assertion durations from register-encoded to microseconds */
get_min_assert_dur(slp_s4_min_assert, slp_s3_min_assert, slp_a_min_assert,
pm_pwr_cyc_dur, &cfg_assert_dur);
/* Get the highest assertion duration among PCH EDS specified signals for pwr_cyc_dur */
high_assert_width = get_high_assert_width(&cfg_assert_dur);
if (cfg_assert_dur.pm_pwr_cyc_dur >= high_assert_width)
return pm_pwr_cyc_dur;
printk(BIOS_DEBUG,
"Set PmPwrCycDur to 4s as configured PmPwrCycDur (%d) violates PCH EDS "
"spec\n", pm_pwr_cyc_dur);
return PCH_PM_PWR_CYC_DUR;
}
void pmc_set_acpi_mode(void)
{
if (!CONFIG(NO_SMM) && !acpi_is_wakeup_s3()) {
apm_control(APM_CNT_ACPI_DISABLE);
}
}
enum pch_pmc_xtal pmc_get_xtal_freq(void)
{
if (!CONFIG(SOC_INTEL_COMMON_BLOCK_PMC_EPOC))
dead_code();
uint32_t xtal_freq = 0;
const uint32_t epoc = read32p(soc_read_pmc_base() + PCH_PMC_EPOC);
/* XTAL frequency in bits 21, 20, 17 */
xtal_freq |= !!(epoc & (1 << 21)) << 2;
xtal_freq |= !!(epoc & (1 << 20)) << 1;
xtal_freq |= !!(epoc & (1 << 17)) << 0;
switch (xtal_freq) {
case 0:
return XTAL_24_MHZ;
case 1:
return XTAL_19_2_MHZ;
case 2:
return XTAL_38_4_MHZ;
default:
printk(BIOS_ERR, "Unknown EPOC XTAL frequency setting %u\n", xtal_freq);
return XTAL_UNKNOWN_FREQ;
}
}
void pmc_send_bios_reset_pci_enum_done(void)
{
struct pmc_ipc_buffer req = { 0 };
struct pmc_ipc_buffer rsp;
uint32_t cmd;
req.buf[0] = PMC_IPC_BIOS_RST_CMPL_STS_PCI_ENUM;
cmd = pmc_make_ipc_cmd(PMC_IPC_BIOS_RST_COMPLETE,
PMC_IPC_BIOS_RST_SUBID_PCI_ENUM_DONE, 0);
if (pmc_send_ipc_cmd(cmd, &req, &rsp) != CB_SUCCESS)
printk(BIOS_ERR, "PMC: Failed sending PCI Enumeration Done Command\n");
}
/*
* This function reads and prints SoC QDF information using PMC interface
* if SOC_QDF_DYNAMIC_READ_PMC config is enabled.
*/
void pmc_dump_soc_qdf_info(void)
{
struct pmc_ipc_buffer req = { 0 };
struct pmc_ipc_buffer rsp;
uint32_t cmd_reg;
int r;
char qdf_info[5];
if (!CONFIG(SOC_QDF_DYNAMIC_READ_PMC))
return;
req.buf[0] = PMC_IPC_CMD_REGID_SOC_QDF;
cmd_reg = pmc_make_ipc_cmd(PMC_IPC_CMD_SOC_REG_ACC,
PMC_IPC_CMD_SUBCMD_SOC_REG_RD,
PMC_IPC_BUF_COUNT);
r = pmc_send_ipc_cmd(cmd_reg, &req, &rsp);
if (r < 0 || rsp.buf[0] == 0) {
printk(BIOS_ERR, "%s: pmc_send_ipc_cmd failed or QDF not available.\n",
__func__);
return;
}
qdf_info[0] = ((rsp.buf[0] >> 24) & 0xFF);
qdf_info[1] = ((rsp.buf[0] >> 16) & 0xFF);
qdf_info[2] = ((rsp.buf[0] >> 8) & 0xFF);
qdf_info[3] = (rsp.buf[0] & 0xFF);
qdf_info[4] = '\0';
printk(BIOS_INFO, "SoC QDF: %s\n", qdf_info);
}
|