1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
|
/*
* This file is part of the coreboot project.
*
* Copyright 2017 Google Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <arch/early_variables.h>
#include <arch/io.h>
#include <assert.h>
#include <console/console.h>
#include <delay.h>
#include <device/device.h>
#include <device/pci_def.h>
#include <intelblocks/gspi.h>
#include <string.h>
#include <timer.h>
/* GSPI Memory Mapped Registers */
#define SSCR0 0x0 /* SSP Control Register 0 */
#define SSCR0_EDSS_0 (0 << 20)
#define SSCR0_EDSS_1 (1 << 20)
#define SSCR0_SCR_SHIFT (8)
#define SSCR0_SCR_MASK (0xFFF)
#define SSCR0_SSE_DISABLE (0 << 7)
#define SSCR0_SSE_ENABLE (1 << 7)
#define SSCR0_ECS_ON_CHIP (0 << 6)
#define SSCR0_FRF_MOTOROLA (0 << 4)
#define SSCR0_DSS_SHIFT (0)
#define SSCR0_DSS_MASK (0xF)
#define SSCR1 0x4 /* SSP Control Register 1 */
#define SSCR1_IFS_LOW (0 << 16)
#define SSCR1_IFS_HIGH (1 << 16)
#define SSCR1_SPH_FIRST (0 << 4)
#define SSCR1_SPH_SECOND (1 << 4)
#define SSCR1_SPO_LOW (0 << 3)
#define SSCR1_SPO_HIGH (1 << 3)
#define SSSR 0x8 /* SSP Status Register */
#define SSSR_TUR (1 << 21) /* Tx FIFO underrun */
#define SSSR_TINT (1 << 19) /* Rx Time-out interrupt */
#define SSSR_PINT (1 << 18) /* Peripheral trailing byte
interrupt */
#define SSSR_ROR (1 << 7) /* Rx FIFO Overrun */
#define SSSR_BSY (1 << 4) /* SSP Busy */
#define SSSR_RNE (1 << 3) /* Receive FIFO not empty */
#define SSSR_TNF (1 << 2) /* Transmit FIFO not full */
#define SSDR 0x10 /* SSP Data Register */
#define SSTO 0x28 /* SSP Time out */
#define SITF 0x44 /* SPI Transmit FIFO */
#define SITF_LEVEL_SHIFT (16)
#define SITF_LEVEL_MASK (0x3f)
#define SITF_LWM_SHIFT (8)
#define SITF_LWM_MASK (0x3f)
#define SITF_LWM(x) ((((x) - 1) & SITF_LWM_MASK) << SITF_LWM_SHIFT)
#define SITF_HWM_SHIFT (0)
#define SITF_HWM_MASK (0x3f)
#define SITF_HWM(x) ((((x) - 1) & SITF_HWM_MASK) << SITF_HWM_SHIFT)
#define SIRF 0x48 /* SPI Receive FIFO */
#define SIRF_LEVEL_SHIFT (8)
#define SIRF_LEVEL_MASK (0x3f)
#define SIRF_WM_SHIFT (0)
#define SIRF_WM_MASK (0x3f)
#define SIRF_WM(x) ((((x) - 1) & SIRF_WM_MASK) << SIRF_WM_SHIFT)
/* GSPI Additional Registers */
#define CLOCKS 0x200 /* Clocks */
#define CLOCKS_UPDATE (1 << 31)
#define CLOCKS_N_SHIFT (16)
#define CLOCKS_N_MASK (0x7fff)
#define CLOCKS_M_SHIFT (1)
#define CLOCKS_M_MASK (0x7fff)
#define CLOCKS_DISABLE (0 << 0)
#define CLOCKS_ENABLE (1 << 0)
#define RESETS 0x204 /* Resets */
#define DMA_RESET (0 << 2)
#define DMA_ACTIVE (1 << 2)
#define CTRLR_RESET (0 << 0)
#define CTRLR_ACTIVE (3 << 0)
#define ACTIVELTR_VALUE 0x210 /* Active LTR */
#define IDLELTR_VALUE 0x214 /* Idle LTR Value */
#define TX_BIT_COUNT 0x218 /* Tx Bit Count */
#define RX_BIT_COUNT 0x21c /* Rx Bit Count */
#define SSP_REG 0x220 /* SSP Reg */
#define DMA_FINISH_DISABLE (1 << 0)
#define SPI_CS_CONTROL 0x224 /* SPI CS Control */
#define CS_POLARITY_LOW (0 << 12)
#define CS_POLARITY_HIGH (1 << 12)
#define CS_0 (0 << 8)
#define CS_STATE_LOW (0 << 1)
#define CS_STATE_HIGH (1 << 1)
#define CS_STATE_MASK (1 << 1)
#define CS_MODE_HW (0 << 0)
#define CS_MODE_SW (1 << 0)
#define GSPI_DATA_BIT_LENGTH (8)
#define GSPI_BUS_BASE(bar, bus) ((bar) + (bus) * 4 * KiB)
#if defined(__SIMPLE_DEVICE__)
static uintptr_t gspi_get_base_addr(int devfn,
DEVTREE_CONST struct device *dev)
{
pci_devfn_t pci_dev = PCI_DEV(0, PCI_SLOT(devfn), PCI_FUNC(devfn));
return ALIGN_DOWN(pci_read_config32(pci_dev, PCI_BASE_ADDRESS_0), 16);
}
static void gspi_set_base_addr(int devfn, DEVTREE_CONST struct device *dev,
uintptr_t base)
{
pci_devfn_t pci_dev = PCI_DEV(0, PCI_SLOT(devfn), PCI_FUNC(devfn));
pci_write_config32(pci_dev, PCI_BASE_ADDRESS_0, base);
pci_write_config32(pci_dev, PCI_COMMAND, PCI_COMMAND_MEMORY |
PCI_COMMAND_MASTER);
}
void gspi_early_bar_init(void)
{
unsigned int gspi_bus;
const unsigned int gspi_max = CONFIG_SOC_INTEL_COMMON_BLOCK_GSPI_MAX;
const struct gspi_cfg *cfg = gspi_get_soc_cfg();
int devfn;
uintptr_t gspi_base_addr;
assert(gspi_max != 0);
if (!cfg) {
printk(BIOS_ERR, "%s: No GSPI config provided by SoC!\n",
__func__);
return;
}
gspi_base_addr = gspi_get_soc_early_base();
if (!gspi_base_addr) {
printk(BIOS_ERR, "%s: GSPI base address provided is NULL!\n",
__func__);
return;
}
for (gspi_bus = 0; gspi_bus < gspi_max; gspi_bus++) {
if (!cfg[gspi_bus].early_init)
continue;
devfn = gspi_soc_bus_to_devfn(gspi_bus);
gspi_set_base_addr(devfn, NULL,
GSPI_BUS_BASE(gspi_base_addr, gspi_bus));
}
}
#else
static uintptr_t gspi_get_base_addr(int devfn, struct device *dev)
{
return ALIGN_DOWN(pci_read_config32(dev, PCI_BASE_ADDRESS_0), 16);
}
static void gspi_set_base_addr(int devfn, struct device *dev, uintptr_t base)
{
pci_write_config32(dev, PCI_BASE_ADDRESS_0, base);
pci_write_config32(dev, PCI_COMMAND, PCI_COMMAND_MEMORY |
PCI_COMMAND_MASTER);
}
#endif
static uintptr_t gspi_calc_base_addr(unsigned int gspi_bus)
{
uintptr_t bus_base, gspi_base_addr;
DEVTREE_CONST struct device *dev;
int devfn = gspi_soc_bus_to_devfn(gspi_bus);
if (devfn < 0)
return 0;
dev = dev_find_slot(0, devfn);
if (!dev || !dev->enabled)
return 0;
bus_base = gspi_get_base_addr(devfn, dev);
if (bus_base)
return bus_base;
gspi_base_addr = gspi_get_soc_early_base();
if (!gspi_base_addr)
return 0;
bus_base = GSPI_BUS_BASE(gspi_base_addr, gspi_bus);
gspi_set_base_addr(devfn, dev, bus_base);
return bus_base;
}
static uint32_t gspi_get_bus_clk_mhz(unsigned int gspi_bus)
{
const struct gspi_cfg *cfg = gspi_get_soc_cfg();
if (!cfg)
return 0;
return cfg[gspi_bus].speed_mhz;
}
static uintptr_t gspi_base[CONFIG_SOC_INTEL_COMMON_BLOCK_GSPI_MAX] CAR_GLOBAL;
static uintptr_t gspi_get_bus_base_addr(unsigned int gspi_bus)
{
uintptr_t *base = car_get_var_ptr(gspi_base);
if (!base[gspi_bus])
base[gspi_bus] = gspi_calc_base_addr(gspi_bus);
return base[gspi_bus];
}
/* Parameters for GSPI controller operation. */
struct gspi_ctrlr_params {
uintptr_t mmio_base;
unsigned int gspi_bus;
uint8_t *in;
size_t bytesin;
const uint8_t *out;
size_t bytesout;
};
static uint32_t gspi_read_mmio_reg(const struct gspi_ctrlr_params *p,
uint32_t offset)
{
assert(p->mmio_base != 0);
return read32((void *)(p->mmio_base + offset));
}
static void gspi_write_mmio_reg(const struct gspi_ctrlr_params *p,
uint32_t offset, uint32_t value)
{
assert(p->mmio_base != 0);
write32((void *)(p->mmio_base + offset), value);
}
static int gspi_ctrlr_params_init(struct gspi_ctrlr_params *p,
unsigned int spi_bus)
{
memset(p, 0, sizeof(*p));
if (gspi_soc_spi_to_gspi_bus(spi_bus, &p->gspi_bus)) {
printk(BIOS_ERR, "%s: No GSPI bus available for SPI bus %u.\n",
__func__, spi_bus);
return -1;
}
p->mmio_base = gspi_get_bus_base_addr(p->gspi_bus);
if (!p->mmio_base) {
printk(BIOS_ERR, "%s: Base addr is 0 for GSPI bus=%u.\n",
__func__, p->gspi_bus);
return -1;
}
return 0;
}
enum cs_assert {
CS_ASSERT,
CS_DEASSERT,
};
static void __gspi_cs_change(const struct gspi_ctrlr_params *p,
enum cs_assert cs_assert)
{
uint32_t cs_ctrl, state;
cs_ctrl = gspi_read_mmio_reg(p, SPI_CS_CONTROL);
cs_ctrl &= ~CS_STATE_MASK;
if (cs_ctrl & CS_POLARITY_HIGH)
state = (cs_assert == CS_ASSERT) ? CS_STATE_HIGH : CS_STATE_LOW;
else
state = (cs_assert == CS_ASSERT) ? CS_STATE_LOW : CS_STATE_HIGH;
cs_ctrl |= state;
gspi_write_mmio_reg(p, SPI_CS_CONTROL, cs_ctrl);
}
static int gspi_cs_change(const struct spi_slave *dev, enum cs_assert cs_assert)
{
struct gspi_ctrlr_params params, *p = ¶ms;
if (gspi_ctrlr_params_init(p, dev->bus))
return -1;
__gspi_cs_change(p, cs_assert);
return 0;
}
int __attribute__((weak)) gspi_get_soc_spi_cfg(unsigned int gspi_bus,
struct spi_cfg *cfg)
{
cfg->clk_phase = SPI_CLOCK_PHASE_FIRST;
cfg->clk_polarity = SPI_POLARITY_LOW;
cfg->cs_polarity = SPI_POLARITY_LOW;
cfg->wire_mode = SPI_4_WIRE_MODE;
cfg->data_bit_length = GSPI_DATA_BIT_LENGTH;
return 0;
}
static int gspi_cs_assert(const struct spi_slave *dev)
{
return gspi_cs_change(dev, CS_ASSERT);
}
static void gspi_cs_deassert(const struct spi_slave *dev)
{
gspi_cs_change(dev, CS_DEASSERT);
}
static uint32_t gspi_get_clk_div(unsigned int gspi_bus)
{
const uint32_t ref_clk_mhz = CONFIG_SOC_INTEL_COMMON_LPSS_CLOCK_MHZ;
const uint32_t gspi_clk_mhz = gspi_get_bus_clk_mhz(gspi_bus);
assert(gspi_clk_mhz != 0);
assert(ref_clk_mhz != 0);
return (DIV_ROUND_UP(ref_clk_mhz, gspi_clk_mhz) - 1) & SSCR0_SCR_MASK;
}
static int gspi_ctrlr_setup(const struct spi_slave *dev)
{
struct spi_cfg cfg;
uint32_t cs_ctrl, sscr0, sscr1, clocks, sitf, sirf;
struct gspi_ctrlr_params params, *p = ¶ms;
/* Only chip select 0 is supported. */
if (dev->cs != 0) {
printk(BIOS_ERR, "%s: Invalid CS value: cs=%u.\n", __func__,
dev->cs);
return -1;
}
if (gspi_ctrlr_params_init(p, dev->bus))
return -1;
/* Obtain SPI bus configuration for the device. */
if (gspi_get_soc_spi_cfg(p->gspi_bus, &cfg)) {
printk(BIOS_ERR, "%s: Failed to get config for bus=%u.\n",
__func__, p->gspi_bus);
return -1;
}
/* Take controller out of reset, keeping DMA in reset. */
gspi_write_mmio_reg(p, RESETS, CTRLR_ACTIVE | DMA_RESET);
/* De-assert chip select. */
__gspi_cs_change(p, CS_DEASSERT);
/*
* CS control:
* - Set SW mode.
* - Set chip select to 0.
* - Set polarity based on device configuration.
* - Do not assert CS.
*/
cs_ctrl = CS_MODE_SW | CS_0;
if (cfg.cs_polarity == SPI_POLARITY_LOW)
cs_ctrl |= CS_POLARITY_LOW | CS_STATE_HIGH;
else
cs_ctrl |= CS_POLARITY_HIGH | CS_STATE_LOW;
gspi_write_mmio_reg(p, SPI_CS_CONTROL, cs_ctrl);
/* Disable SPI controller. */
gspi_write_mmio_reg(p, SSCR0, SSCR0_SSE_DISABLE);
/*
* SSCR0 configuration:
* clk_div - Based on reference clock and expected clock frequency.
* data bit length - assumed to be 8, hence EDSS = 0.
* ECS - Use on-chip clock
* FRF - Frame format set to Motorola SPI
*/
sscr0 = gspi_get_clk_div(p->gspi_bus) << SSCR0_SCR_SHIFT;
assert(GSPI_DATA_BIT_LENGTH == 8);
sscr0 |= ((GSPI_DATA_BIT_LENGTH - 1) << SSCR0_DSS_SHIFT) | SSCR0_EDSS_0;
sscr0 |= SSCR0_ECS_ON_CHIP | SSCR0_FRF_MOTOROLA;
gspi_write_mmio_reg(p, SSCR0, sscr0);
/*
* SSCR1 configuration:
* - Chip select polarity
* - Clock phase setting
* - Clock polarity
*/
sscr1 = (cfg.cs_polarity == SPI_POLARITY_LOW) ? SSCR1_IFS_LOW :
SSCR1_IFS_HIGH;
sscr1 |= (cfg.clk_phase == SPI_CLOCK_PHASE_FIRST) ? SSCR1_SPH_FIRST :
SSCR1_SPH_SECOND;
sscr1 |= (cfg.clk_polarity == SPI_POLARITY_LOW) ? SSCR1_SPO_LOW :
SSCR1_SPO_HIGH;
gspi_write_mmio_reg(p, SSCR1, sscr1);
/*
* Program m/n divider.
* Set m and n to 1, so that this divider acts as a pass-through.
*/
clocks = (1 << CLOCKS_N_SHIFT) | (1 << CLOCKS_M_SHIFT) | CLOCKS_ENABLE;
gspi_write_mmio_reg(p, CLOCKS, clocks);
udelay(10);
/*
* Tx FIFO Threshold.
* Low watermark threshold = 1
* High watermark threshold = 1
*/
sitf = SITF_LWM(1) | SITF_HWM(1);
gspi_write_mmio_reg(p, SITF, sitf);
/* Rx FIFO Threshold (set to 1). */
sirf = SIRF_WM(1);
gspi_write_mmio_reg(p, SIRF, sirf);
/* Enable GSPI controller. */
sscr0 |= SSCR0_SSE_ENABLE;
gspi_write_mmio_reg(p, SSCR0, sscr0);
return 0;
}
static uint32_t gspi_read_status(const struct gspi_ctrlr_params *p)
{
return gspi_read_mmio_reg(p, SSSR);
}
static void gspi_clear_status(const struct gspi_ctrlr_params *p)
{
const uint32_t sssr = SSSR_TUR | SSSR_TINT | SSSR_PINT | SSSR_ROR;
gspi_write_mmio_reg(p, SSSR, sssr);
}
static bool gspi_rx_fifo_empty(const struct gspi_ctrlr_params *p)
{
return !(gspi_read_status(p) & SSSR_RNE);
}
static bool gspi_tx_fifo_full(const struct gspi_ctrlr_params *p)
{
return !(gspi_read_status(p) & SSSR_TNF);
}
static bool gspi_rx_fifo_overrun(const struct gspi_ctrlr_params *p)
{
if (gspi_read_status(p) & SSSR_ROR) {
printk(BIOS_ERR, "%s:GSPI receive FIFO overrun!"
" (bus=%u).\n", __func__, p->gspi_bus);
return true;
}
return false;
}
/* Read SSDR and return lowest byte. */
static uint8_t gspi_read_byte(const struct gspi_ctrlr_params *p)
{
return gspi_read_mmio_reg(p, SSDR) & 0xFF;
}
/* Write 32-bit word with "data" in lowest byte to SSDR. */
static void gspi_write_byte(const struct gspi_ctrlr_params *p, uint8_t data)
{
return gspi_write_mmio_reg(p, SSDR, data);
}
static void gspi_read_data(struct gspi_ctrlr_params *p)
{
*(p->in) = gspi_read_byte(p);
p->in++;
p->bytesin--;
}
static void gspi_write_data(struct gspi_ctrlr_params *p)
{
gspi_write_byte(p, *(p->out));
p->out++;
p->bytesout--;
}
static void gspi_read_dummy(struct gspi_ctrlr_params *p)
{
gspi_read_byte(p);
p->bytesin--;
}
static void gspi_write_dummy(struct gspi_ctrlr_params *p)
{
gspi_write_byte(p, 0);
p->bytesout--;
}
static int gspi_ctrlr_flush(const struct gspi_ctrlr_params *p)
{
const uint32_t timeout_ms = 500;
struct stopwatch sw;
/* Wait 500ms to allow Rx FIFO to be empty. */
stopwatch_init_msecs_expire(&sw, timeout_ms);
while (!gspi_rx_fifo_empty(p)) {
if (stopwatch_expired(&sw)) {
printk(BIOS_ERR, "%s: Rx FIFO not empty after 500ms! "
"(bus=%u)\n", __func__, p->gspi_bus);
return -1;
}
gspi_read_byte(p);
}
return 0;
}
static int __gspi_xfer(struct gspi_ctrlr_params *p)
{
/*
* If bytesin is non-zero, then use gspi_read_data to perform
* byte-by-byte read of data from SSDR and save it to "in" buffer. Else
* discard the read data using gspi_read_dummy.
*/
void (*fn_read)(struct gspi_ctrlr_params *p) = gspi_read_data;
/*
* If bytesout is non-zero, then use gspi_write_data to perform
* byte-by-byte write of data from "out" buffer to SSDR. Else, use
* gspi_write_dummy to write dummy "0" data to SSDR in order to trigger
* read from slave.
*/
void (*fn_write)(struct gspi_ctrlr_params *p) = gspi_write_data;
if (!p->bytesin) {
p->bytesin = p->bytesout;
fn_read = gspi_read_dummy;
}
if (!p->bytesout) {
p->bytesout = p->bytesin;
fn_write = gspi_write_dummy;
}
while (p->bytesout || p->bytesin) {
if (p->bytesout && !gspi_tx_fifo_full(p))
fn_write(p);
if (p->bytesin && !gspi_rx_fifo_empty(p)) {
if (gspi_rx_fifo_overrun(p))
return -1;
fn_read(p);
}
}
return 0;
}
static int gspi_ctrlr_xfer(const struct spi_slave *dev,
const void *dout, size_t bytesout,
void *din, size_t bytesin)
{
struct gspi_ctrlr_params params;
struct gspi_ctrlr_params *p = ¶ms;
/*
* Assumptions about in and out transfers:
* 1. Both bytesin and bytesout cannot be 0.
* 2. If both bytesin and bytesout are non-zero, then they should be
* equal i.e. if both in and out transfers are to be done in same
* transaction, then they should be equal in length.
* 3. Buffer corresponding to non-zero bytes (bytesin/bytesout) cannot
* be NULL.
*/
if (!bytesin && !bytesout) {
printk(BIOS_ERR, "%s: Both in and out bytes cannot be zero!\n",
__func__);
return -1;
} else if (bytesin && bytesout && (bytesin != bytesout)) {
printk(BIOS_ERR, "%s: bytesin(%zd) != bytesout(%zd)\n",
__func__, bytesin, bytesout);
return -1;
}
if ((bytesin && !din) || (bytesout && !dout)) {
printk(BIOS_ERR, "%s: in/out buffer is NULL!\n", __func__);
return -1;
}
if (gspi_ctrlr_params_init(p, dev->bus))
return -1;
/* Flush out any stale data in Rx FIFO. */
if (gspi_ctrlr_flush(p))
return -1;
/* Clear status bits. */
gspi_clear_status(p);
p->in = din;
p->bytesin = bytesin;
p->out = dout;
p->bytesout = bytesout;
return __gspi_xfer(p);
}
const struct spi_ctrlr gspi_ctrlr = {
.claim_bus = gspi_cs_assert,
.release_bus = gspi_cs_deassert,
.setup = gspi_ctrlr_setup,
.xfer = gspi_ctrlr_xfer,
.max_xfer_size = SPI_CTRLR_DEFAULT_MAX_XFER_SIZE,
};
|