1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
|
/*
* This file is part of the coreboot project.
*
* Copyright 2017 Intel Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <arch/early_variables.h>
#include <assert.h>
#include <commonlib/helpers.h>
#include <console/console.h>
#include <delay.h>
#include <device/pci.h>
#include <device/pci_ids.h>
#include <device/pci_ops.h>
#include <intelblocks/cse.h>
#include <soc/iomap.h>
#include <soc/pci_devs.h>
#include <string.h>
#include <timer.h>
#define MAX_HECI_MESSAGE_RETRY_COUNT 5
/* Wait up to 15 sec for HECI to get ready */
#define HECI_DELAY_READY (15 * 1000)
/* Wait up to 100 usec between circular buffer polls */
#define HECI_DELAY 100
/* Wait up to 5 sec for CSE to chew something we sent */
#define HECI_SEND_TIMEOUT (5 * 1000)
/* Wait up to 5 sec for CSE to blurp a reply */
#define HECI_READ_TIMEOUT (5 * 1000)
#define SLOT_SIZE sizeof(uint32_t)
#define MMIO_CSE_CB_WW 0x00
#define MMIO_HOST_CSR 0x04
#define MMIO_CSE_CB_RW 0x08
#define MMIO_CSE_CSR 0x0c
#define CSR_IE (1 << 0)
#define CSR_IS (1 << 1)
#define CSR_IG (1 << 2)
#define CSR_READY (1 << 3)
#define CSR_RESET (1 << 4)
#define CSR_RP_START 8
#define CSR_RP (((1 << 8) - 1) << CSR_RP_START)
#define CSR_WP_START 16
#define CSR_WP (((1 << 8) - 1) << CSR_WP_START)
#define CSR_CBD_START 24
#define CSR_CBD (((1 << 8) - 1) << CSR_CBD_START)
#define MEI_HDR_IS_COMPLETE (1 << 31)
#define MEI_HDR_LENGTH_START 16
#define MEI_HDR_LENGTH_SIZE 9
#define MEI_HDR_LENGTH (((1 << MEI_HDR_LENGTH_SIZE) - 1) \
<< MEI_HDR_LENGTH_START)
#define MEI_HDR_HOST_ADDR_START 8
#define MEI_HDR_HOST_ADDR (((1 << 8) - 1) << MEI_HDR_HOST_ADDR_START)
#define MEI_HDR_CSE_ADDR_START 0
#define MEI_HDR_CSE_ADDR (((1 << 8) - 1) << MEI_HDR_CSE_ADDR_START)
struct cse_device {
uintptr_t sec_bar;
} g_cse CAR_GLOBAL;
/*
* Initialize the device with provided temporary BAR. If BAR is 0 use a
* default. This is intended for pre-mem usage only where BARs haven't been
* assigned yet and devices are not enabled.
*/
void heci_init(uintptr_t tempbar)
{
struct cse_device *cse = car_get_var_ptr(&g_cse);
device_t dev = PCH_DEV_CSE;
u8 pcireg;
/* Assume it is already initialized, nothing else to do */
if (cse->sec_bar)
return;
/* Use default pre-ram bar */
if (!tempbar)
tempbar = HECI1_BASE_ADDRESS;
/* Assign Resources to HECI1 */
/* Clear BIT 1-2 of Command Register */
pcireg = pci_read_config8(dev, PCI_COMMAND);
pcireg &= ~(PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY);
pci_write_config8(dev, PCI_COMMAND, pcireg);
/* Program Temporary BAR for HECI1 */
pci_write_config32(dev, PCI_BASE_ADDRESS_0, tempbar);
pci_write_config32(dev, PCI_BASE_ADDRESS_1, 0x0);
/* Enable Bus Master and MMIO Space */
pcireg = pci_read_config8(dev, PCI_COMMAND);
pcireg |= PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY;
pci_write_config8(dev, PCI_COMMAND, pcireg);
cse->sec_bar = tempbar;
}
/* Get HECI BAR 0 from PCI configuration space */
static uint32_t get_cse_bar(void)
{
uintptr_t bar;
bar = pci_read_config32(PCH_DEV_CSE, PCI_BASE_ADDRESS_0);
assert(bar != 0);
/*
* Bits 31-12 are the base address as per EDS for SPI,
* Don't care about 0-11 bit
*/
return bar & ~PCI_BASE_ADDRESS_MEM_ATTR_MASK;
}
static uint32_t read_bar(uint32_t offset)
{
struct cse_device *cse = car_get_var_ptr(&g_cse);
/* Reach PCI config space to get BAR in case CAR global not available */
if (!cse->sec_bar)
cse->sec_bar = get_cse_bar();
return read32((void *)(cse->sec_bar + offset));
}
static void write_bar(uint32_t offset, uint32_t val)
{
struct cse_device *cse = car_get_var_ptr(&g_cse);
/* Reach PCI config space to get BAR in case CAR global not available */
if (!cse->sec_bar)
cse->sec_bar = get_cse_bar();
return write32((void *)(cse->sec_bar + offset), val);
}
static uint32_t read_cse_csr(void)
{
return read_bar(MMIO_CSE_CSR);
}
static uint32_t read_host_csr(void)
{
return read_bar(MMIO_HOST_CSR);
}
static void write_host_csr(uint32_t data)
{
write_bar(MMIO_HOST_CSR, data);
}
static size_t filled_slots(uint32_t data)
{
uint8_t wp, rp;
rp = data >> CSR_RP_START;
wp = data >> CSR_WP_START;
return (uint8_t) (wp - rp);
}
static size_t cse_filled_slots(void)
{
return filled_slots(read_cse_csr());
}
static size_t host_empty_slots(void)
{
uint32_t csr;
csr = read_host_csr();
return ((csr & CSR_CBD) >> CSR_CBD_START) - filled_slots(csr);
}
static void clear_int(void)
{
uint32_t csr;
csr = read_host_csr();
csr |= CSR_IS;
write_host_csr(csr);
}
static uint32_t read_slot(void)
{
return read_bar(MMIO_CSE_CB_RW);
}
static void write_slot(uint32_t val)
{
write_bar(MMIO_CSE_CB_WW, val);
}
static int wait_write_slots(size_t cnt)
{
struct stopwatch sw;
stopwatch_init_msecs_expire(&sw, HECI_SEND_TIMEOUT);
while (host_empty_slots() < cnt) {
udelay(HECI_DELAY);
if (stopwatch_expired(&sw)) {
printk(BIOS_ERR, "HECI: timeout, buffer not drained\n");
return 0;
}
}
return 1;
}
static int wait_read_slots(size_t cnt)
{
struct stopwatch sw;
stopwatch_init_msecs_expire(&sw, HECI_READ_TIMEOUT);
while (cse_filled_slots() < cnt) {
udelay(HECI_DELAY);
if (stopwatch_expired(&sw)) {
printk(BIOS_ERR, "HECI: timed out reading answer!\n");
return 0;
}
}
return 1;
}
/* get number of full 4-byte slots */
static size_t bytes_to_slots(size_t bytes)
{
return ALIGN_UP(bytes, SLOT_SIZE) / SLOT_SIZE;
}
static int cse_ready(void)
{
uint32_t csr;
csr = read_cse_csr();
return csr & CSR_READY;
}
static int wait_heci_ready(void)
{
struct stopwatch sw;
stopwatch_init_msecs_expire(&sw, HECI_DELAY_READY);
while (!cse_ready()) {
udelay(HECI_DELAY);
if (stopwatch_expired(&sw))
return 0;
}
return 1;
}
static void host_gen_interrupt(void)
{
uint32_t csr;
csr = read_host_csr();
csr |= CSR_IG;
write_host_csr(csr);
}
static size_t hdr_get_length(uint32_t hdr)
{
return (hdr & MEI_HDR_LENGTH) >> MEI_HDR_LENGTH_START;
}
static int
send_one_message(uint32_t hdr, const void *buff)
{
size_t pend_len, pend_slots, remainder, i;
uint32_t tmp;
const uint32_t *p = buff;
/* Get space for the header */
if (!wait_write_slots(1))
return 0;
/* First, write header */
write_slot(hdr);
pend_len = hdr_get_length(hdr);
pend_slots = bytes_to_slots(pend_len);
if (!wait_write_slots(pend_slots))
return 0;
/* Write the body in whole slots */
i = 0;
while (i < ALIGN_DOWN(pend_len, SLOT_SIZE)) {
write_slot(*p++);
i += SLOT_SIZE;
}
remainder = pend_len % SLOT_SIZE;
/* Pad to 4 bytes not touching caller's buffer */
if (remainder) {
memcpy(&tmp, p, remainder);
write_slot(tmp);
}
host_gen_interrupt();
/* Make sure nothing bad happened during transmission */
if (!cse_ready())
return 0;
return pend_len;
}
int
heci_send(const void *msg, size_t len, uint8_t host_addr, uint8_t client_addr)
{
uint8_t retry;
uint32_t csr, hdr;
size_t sent, remaining, cb_size, max_length;
const uint8_t *p;
if (!msg || !len)
return 0;
clear_int();
for (retry = 0; retry < MAX_HECI_MESSAGE_RETRY_COUNT; retry++) {
p = msg;
if (!wait_heci_ready()) {
printk(BIOS_ERR, "HECI: not ready\n");
continue;
}
csr = read_host_csr();
cb_size = ((csr & CSR_CBD) >> CSR_CBD_START) * SLOT_SIZE;
/*
* Reserve one slot for the header. Limit max message
* length by 9 bits that are available in the header.
*/
max_length = MIN(cb_size, (1 << MEI_HDR_LENGTH_SIZE) - 1)
- SLOT_SIZE;
remaining = len;
/*
* Fragment the message into smaller messages not exceeding
* useful circular buffer length. Mark last message complete.
*/
do {
hdr = MIN(max_length, remaining)
<< MEI_HDR_LENGTH_START;
hdr |= client_addr << MEI_HDR_CSE_ADDR_START;
hdr |= host_addr << MEI_HDR_HOST_ADDR_START;
hdr |= (MIN(max_length, remaining) == remaining) ?
MEI_HDR_IS_COMPLETE : 0;
sent = send_one_message(hdr, p);
p += sent;
remaining -= sent;
} while (remaining > 0 && sent != 0);
if (!remaining)
return 1;
}
return 0;
}
static size_t
recv_one_message(uint32_t *hdr, void *buff, size_t maxlen)
{
uint32_t reg, *p = buff;
size_t recv_slots, recv_len, remainder, i;
/* first get the header */
if (!wait_read_slots(1))
return 0;
*hdr = read_slot();
recv_len = hdr_get_length(*hdr);
if (!recv_len)
printk(BIOS_WARNING, "HECI: message is zero-sized\n");
recv_slots = bytes_to_slots(recv_len);
i = 0;
if (recv_len > maxlen) {
printk(BIOS_ERR, "HECI: response is too big\n");
return 0;
}
/* wait for the rest of messages to arrive */
wait_read_slots(recv_slots);
/* fetch whole slots first */
while (i < ALIGN_DOWN(recv_len, SLOT_SIZE)) {
*p++ = read_slot();
i += SLOT_SIZE;
}
/*
* If ME is not ready, something went wrong and
* we received junk
*/
if (!cse_ready())
return 0;
remainder = recv_len % SLOT_SIZE;
if (remainder) {
reg = read_slot();
memcpy(p, ®, remainder);
}
return recv_len;
}
int heci_receive(void *buff, size_t *maxlen)
{
uint8_t retry;
size_t left, received;
uint32_t hdr = 0;
uint8_t *p;
if (!buff || !maxlen || !*maxlen)
return 0;
clear_int();
for (retry = 0; retry < MAX_HECI_MESSAGE_RETRY_COUNT; retry++) {
p = buff;
left = *maxlen;
if (!wait_heci_ready()) {
printk(BIOS_ERR, "HECI: not ready\n");
continue;
}
/*
* Receive multiple packets until we meet one marked
* complete or we run out of space in caller-provided buffer.
*/
do {
received = recv_one_message(&hdr, p, left);
if (!received) {
printk(BIOS_ERR, "HECI: Failed to recieve!\n");
return 0;
}
left -= received;
p += received;
/* If we read out everything ping to send more */
if (!(hdr & MEI_HDR_IS_COMPLETE) && !cse_filled_slots())
host_gen_interrupt();
} while (received && !(hdr & MEI_HDR_IS_COMPLETE) && left > 0);
if ((hdr & MEI_HDR_IS_COMPLETE) && received) {
*maxlen = p - (uint8_t *) buff;
return 1;
}
}
return 0;
}
/*
* Attempt to reset the device. This is useful when host and ME are out
* of sync during transmission or ME didn't understand the message.
*/
int heci_reset(void)
{
uint32_t csr;
/* Send reset request */
csr = read_host_csr();
csr |= CSR_RESET;
csr |= CSR_IG;
write_host_csr(csr);
if (wait_heci_ready()) {
/* Device is back on its imaginary feet, clear reset */
csr = read_host_csr();
csr &= ~CSR_RESET;
csr |= CSR_IG;
csr |= CSR_READY;
write_host_csr(csr);
return 1;
}
printk(BIOS_CRIT, "HECI: reset failed\n");
return 0;
}
#if ENV_RAMSTAGE
static void update_sec_bar(struct device *dev)
{
g_cse.sec_bar = find_resource(dev, PCI_BASE_ADDRESS_0)->base;
}
static void cse_set_resources(struct device *dev)
{
if (dev->path.pci.devfn == PCH_DEVFN_CSE)
update_sec_bar(dev);
pci_dev_set_resources(dev);
}
static struct device_operations cse_ops = {
.set_resources = cse_set_resources,
.read_resources = pci_dev_read_resources,
.enable_resources = pci_dev_enable_resources,
.init = pci_dev_init,
.ops_pci = &pci_dev_ops_pci,
};
static const unsigned short pci_device_ids[] = {
PCI_DEVICE_ID_INTEL_APL_CSE0,
PCI_DEVICE_ID_INTEL_GLK_CSE0,
PCI_DEVICE_ID_INTEL_CNL_CSE0,
PCI_DEVICE_ID_INTEL_SKL_CSE0,
0,
};
static const struct pci_driver cse_driver __pci_driver = {
.ops = &cse_ops,
.vendor = PCI_VENDOR_ID_INTEL,
/* SoC/chipset needs to provide PCI device ID */
.devices = pci_device_ids
};
#endif
|