summaryrefslogtreecommitdiff
path: root/src/soc/intel/common/block/cse/cse.c
blob: 8af3d9e00e0bbf04924f94422aab505106d28bf4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
/* SPDX-License-Identifier: GPL-2.0-only */

#define __SIMPLE_DEVICE__

#include <assert.h>
#include <commonlib/helpers.h>
#include <console/console.h>
#include <device/mmio.h>
#include <delay.h>
#include <device/pci.h>
#include <device/pci_ids.h>
#include <device/pci_ops.h>
#include <intelblocks/cse.h>
#include <intelblocks/pmclib.h>
#include <option.h>
#include <security/vboot/misc.h>
#include <security/vboot/vboot_common.h>
#include <soc/intel/common/reset.h>
#include <soc/iomap.h>
#include <soc/pci_devs.h>
#include <soc/me.h>
#include <string.h>
#include <timer.h>
#include <types.h>

#define HECI_BASE_SIZE (4 * KiB)

#define MAX_HECI_MESSAGE_RETRY_COUNT 5

/* Wait up to 15 sec for HECI to get ready */
#define HECI_DELAY_READY_MS	(15 * 1000)
/* Wait up to 100 usec between circular buffer polls */
#define HECI_DELAY_US		100
/* Wait up to 5 sec for CSE to chew something we sent */
#define HECI_SEND_TIMEOUT_MS	(5 * 1000)
/* Wait up to 5 sec for CSE to blurp a reply */
#define HECI_READ_TIMEOUT_MS	(5 * 1000)
/* Wait up to 1 ms for CSE CIP */
#define HECI_CIP_TIMEOUT_US	1000
/* Wait up to 5 seconds for CSE to boot from RO(BP1) */
#define CSE_DELAY_BOOT_TO_RO_MS	(5 * 1000)

#define SLOT_SIZE		sizeof(uint32_t)

#define MMIO_CSE_CB_WW		0x00
#define MMIO_HOST_CSR		0x04
#define MMIO_CSE_CB_RW		0x08
#define MMIO_CSE_CSR		0x0c
#define MMIO_CSE_DEVIDLE	0x800
#define  CSE_DEV_IDLE		(1 << 2)
#define  CSE_DEV_CIP		(1 << 0)

#define CSR_IE			(1 << 0)
#define CSR_IS			(1 << 1)
#define CSR_IG			(1 << 2)
#define CSR_READY		(1 << 3)
#define CSR_RESET		(1 << 4)
#define CSR_RP_START		8
#define CSR_RP			(((1 << 8) - 1) << CSR_RP_START)
#define CSR_WP_START		16
#define CSR_WP			(((1 << 8) - 1) << CSR_WP_START)
#define CSR_CBD_START		24
#define CSR_CBD			(((1 << 8) - 1) << CSR_CBD_START)

#define MEI_HDR_IS_COMPLETE	(1 << 31)
#define MEI_HDR_LENGTH_START	16
#define MEI_HDR_LENGTH_SIZE	9
#define MEI_HDR_LENGTH		(((1 << MEI_HDR_LENGTH_SIZE) - 1) \
					<< MEI_HDR_LENGTH_START)
#define MEI_HDR_HOST_ADDR_START	8
#define MEI_HDR_HOST_ADDR	(((1 << 8) - 1) << MEI_HDR_HOST_ADDR_START)
#define MEI_HDR_CSE_ADDR_START	0
#define MEI_HDR_CSE_ADDR	(((1 << 8) - 1) << MEI_HDR_CSE_ADDR_START)

/* Get HECI BAR 0 from PCI configuration space */
static uintptr_t get_cse_bar(pci_devfn_t dev)
{
	uintptr_t bar;

	bar = pci_read_config32(dev, PCI_BASE_ADDRESS_0);
	assert(bar != 0);
	/*
	 * Bits 31-12 are the base address as per EDS for SPI,
	 * Don't care about 0-11 bit
	 */
	return bar & ~PCI_BASE_ADDRESS_MEM_ATTR_MASK;
}

static void heci_assign_resource(pci_devfn_t dev, uintptr_t tempbar)
{
	u16 pcireg;

	/* Assign Resources */
	/* Clear BIT 1-2 of Command Register */
	pcireg = pci_read_config16(dev, PCI_COMMAND);
	pcireg &= ~(PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY);
	pci_write_config16(dev, PCI_COMMAND, pcireg);

	/* Program Temporary BAR for HECI device */
	pci_write_config32(dev, PCI_BASE_ADDRESS_0, tempbar);
	pci_write_config32(dev, PCI_BASE_ADDRESS_1, 0x0);

	/* Enable Bus Master and MMIO Space */
	pci_or_config16(dev, PCI_COMMAND, PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY);
}

/*
 * Initialize the CSE device with provided temporary BAR. If BAR is 0 use a
 * default. This is intended for pre-mem usage only where BARs haven't been
 * assigned yet and devices are not enabled.
 */
void cse_init(uintptr_t tempbar)
{
	pci_devfn_t dev = PCH_DEV_CSE;

	/* Check if device enabled */
	if (!is_cse_enabled())
		return;

	/* Assume it is already initialized, nothing else to do */
	if (get_cse_bar(dev))
		return;

	/* Use default pre-ram bar */
	if (!tempbar)
		tempbar = HECI1_BASE_ADDRESS;

	/* Assign HECI resource and enable the resource */
	heci_assign_resource(dev, tempbar);

	/* Trigger HECI Reset and make Host ready for communication with CSE */
	heci_reset();
}

static uint32_t read_bar(pci_devfn_t dev, uint32_t offset)
{
	return read32p(get_cse_bar(dev) + offset);
}

static void write_bar(pci_devfn_t dev, uint32_t offset, uint32_t val)
{
	return write32p(get_cse_bar(dev) + offset, val);
}

static uint32_t read_cse_csr(void)
{
	return read_bar(PCH_DEV_CSE, MMIO_CSE_CSR);
}

static uint32_t read_host_csr(void)
{
	return read_bar(PCH_DEV_CSE, MMIO_HOST_CSR);
}

static void write_host_csr(uint32_t data)
{
	write_bar(PCH_DEV_CSE, MMIO_HOST_CSR, data);
}

static size_t filled_slots(uint32_t data)
{
	uint8_t wp, rp;
	rp = data >> CSR_RP_START;
	wp = data >> CSR_WP_START;
	return (uint8_t) (wp - rp);
}

static size_t cse_filled_slots(void)
{
	return filled_slots(read_cse_csr());
}

static size_t host_empty_slots(void)
{
	uint32_t csr;
	csr = read_host_csr();

	return ((csr & CSR_CBD) >> CSR_CBD_START) - filled_slots(csr);
}

static void clear_int(void)
{
	uint32_t csr;
	csr = read_host_csr();
	csr |= CSR_IS;
	write_host_csr(csr);
}

static uint32_t read_slot(void)
{
	return read_bar(PCH_DEV_CSE, MMIO_CSE_CB_RW);
}

static void write_slot(uint32_t val)
{
	write_bar(PCH_DEV_CSE, MMIO_CSE_CB_WW, val);
}

static int wait_write_slots(size_t cnt)
{
	struct stopwatch sw;

	stopwatch_init_msecs_expire(&sw, HECI_SEND_TIMEOUT_MS);
	while (host_empty_slots() < cnt) {
		udelay(HECI_DELAY_US);
		if (stopwatch_expired(&sw)) {
			printk(BIOS_ERR, "HECI: timeout, buffer not drained\n");
			return 0;
		}
	}
	return 1;
}

static int wait_read_slots(size_t cnt)
{
	struct stopwatch sw;

	stopwatch_init_msecs_expire(&sw, HECI_READ_TIMEOUT_MS);
	while (cse_filled_slots() < cnt) {
		udelay(HECI_DELAY_US);
		if (stopwatch_expired(&sw)) {
			printk(BIOS_ERR, "HECI: timed out reading answer!\n");
			return 0;
		}
	}
	return 1;
}

/* get number of full 4-byte slots */
static size_t bytes_to_slots(size_t bytes)
{
	return ALIGN_UP(bytes, SLOT_SIZE) / SLOT_SIZE;
}

static int cse_ready(void)
{
	uint32_t csr;
	csr = read_cse_csr();
	return csr & CSR_READY;
}

static bool cse_check_hfs1_com(int mode)
{
	union me_hfsts1 hfs1;
	hfs1.data = me_read_config32(PCI_ME_HFSTS1);
	return hfs1.fields.operation_mode == mode;
}

bool cse_is_hfs1_cws_normal(void)
{
	union me_hfsts1 hfs1;
	hfs1.data = me_read_config32(PCI_ME_HFSTS1);
	if (hfs1.fields.working_state == ME_HFS1_CWS_NORMAL)
		return true;
	return false;
}

bool cse_is_hfs1_com_normal(void)
{
	return cse_check_hfs1_com(ME_HFS1_COM_NORMAL);
}

bool cse_is_hfs1_com_secover_mei_msg(void)
{
	return cse_check_hfs1_com(ME_HFS1_COM_SECOVER_MEI_MSG);
}

bool cse_is_hfs1_com_soft_temp_disable(void)
{
	return cse_check_hfs1_com(ME_HFS1_COM_SOFT_TEMP_DISABLE);
}

/*
 * TGL HFSTS1.spi_protection_mode bit replaces the previous
 * `manufacturing mode (mfg_mode)` without changing the offset and purpose
 * of this bit.
 *
 * Using HFSTS1.mfg_mode to get the SPI protection status for all PCH.
 * mfg_mode = 0 means SPI protection in on.
 * mfg_mode = 1 means SPI is unprotected.
 */
bool cse_is_hfs1_spi_protected(void)
{
	union me_hfsts1 hfs1;
	hfs1.data = me_read_config32(PCI_ME_HFSTS1);
	return !hfs1.fields.mfg_mode;
}

bool cse_is_hfs3_fw_sku_lite(void)
{
	union me_hfsts3 hfs3;
	hfs3.data = me_read_config32(PCI_ME_HFSTS3);
	return hfs3.fields.fw_sku == ME_HFS3_FW_SKU_LITE;
}

/* Makes the host ready to communicate with CSE */
void cse_set_host_ready(void)
{
	uint32_t csr;
	csr = read_host_csr();
	csr &= ~CSR_RESET;
	csr |= (CSR_IG | CSR_READY);
	write_host_csr(csr);
}

/* Polls for ME mode ME_HFS1_COM_SECOVER_MEI_MSG for 15 seconds */
uint8_t cse_wait_sec_override_mode(void)
{
	struct stopwatch sw;
	stopwatch_init_msecs_expire(&sw, HECI_DELAY_READY_MS);
	while (!cse_is_hfs1_com_secover_mei_msg()) {
		udelay(HECI_DELAY_US);
		if (stopwatch_expired(&sw)) {
			printk(BIOS_ERR, "HECI: Timed out waiting for SEC_OVERRIDE mode!\n");
			return 0;
		}
	}
	printk(BIOS_DEBUG, "HECI: CSE took %lu ms to enter security override mode\n",
			stopwatch_duration_msecs(&sw));
	return 1;
}

/*
 * Polls for CSE's current operation mode 'Soft Temporary Disable'.
 * The CSE enters the current operation mode when it boots from RO(BP1).
 */
uint8_t cse_wait_com_soft_temp_disable(void)
{
	struct stopwatch sw;
	stopwatch_init_msecs_expire(&sw, CSE_DELAY_BOOT_TO_RO_MS);
	while (!cse_is_hfs1_com_soft_temp_disable()) {
		udelay(HECI_DELAY_US);
		if (stopwatch_expired(&sw)) {
			printk(BIOS_ERR, "HECI: Timed out waiting for CSE to boot from RO!\n");
			return 0;
		}
	}
	printk(BIOS_SPEW, "HECI: CSE took %lu ms to boot from RO\n",
			stopwatch_duration_msecs(&sw));
	return 1;
}

static int wait_heci_ready(void)
{
	struct stopwatch sw;

	stopwatch_init_msecs_expire(&sw, HECI_DELAY_READY_MS);
	while (!cse_ready()) {
		udelay(HECI_DELAY_US);
		if (stopwatch_expired(&sw))
			return 0;
	}

	return 1;
}

static void host_gen_interrupt(void)
{
	uint32_t csr;
	csr = read_host_csr();
	csr |= CSR_IG;
	write_host_csr(csr);
}

static size_t hdr_get_length(uint32_t hdr)
{
	return (hdr & MEI_HDR_LENGTH) >> MEI_HDR_LENGTH_START;
}

static int
send_one_message(uint32_t hdr, const void *buff)
{
	size_t pend_len, pend_slots, remainder, i;
	uint32_t tmp;
	const uint32_t *p = buff;

	/* Get space for the header */
	if (!wait_write_slots(1))
		return 0;

	/* First, write header */
	write_slot(hdr);

	pend_len = hdr_get_length(hdr);
	pend_slots = bytes_to_slots(pend_len);

	if (!wait_write_slots(pend_slots))
		return 0;

	/* Write the body in whole slots */
	i = 0;
	while (i < ALIGN_DOWN(pend_len, SLOT_SIZE)) {
		write_slot(*p++);
		i += SLOT_SIZE;
	}

	remainder = pend_len % SLOT_SIZE;
	/* Pad to 4 bytes not touching caller's buffer */
	if (remainder) {
		memcpy(&tmp, p, remainder);
		write_slot(tmp);
	}

	host_gen_interrupt();

	/* Make sure nothing bad happened during transmission */
	if (!cse_ready())
		return 0;

	return pend_len;
}

/*
 * Send message msg of size len to host from host_addr to cse_addr.
 * Returns 1 on success and 0 otherwise.
 * In case of error heci_reset() may be required.
 */
static enum cse_tx_rx_status
heci_send(const void *msg, size_t len, uint8_t host_addr, uint8_t client_addr)
{
	uint8_t retry;
	uint32_t csr, hdr;
	size_t sent, remaining, cb_size, max_length;
	const uint8_t *p;

	if (!msg || !len)
		return CSE_TX_ERR_INPUT;

	clear_int();

	for (retry = 0; retry < MAX_HECI_MESSAGE_RETRY_COUNT; retry++) {
		p = msg;

		if (!wait_heci_ready()) {
			printk(BIOS_ERR, "HECI: not ready\n");
			continue;
		}

		csr = read_host_csr();
		cb_size = ((csr & CSR_CBD) >> CSR_CBD_START) * SLOT_SIZE;
		/*
		 * Reserve one slot for the header. Limit max message
		 * length by 9 bits that are available in the header.
		 */
		max_length = MIN(cb_size, (1 << MEI_HDR_LENGTH_SIZE) - 1)
				- SLOT_SIZE;
		remaining = len;

		/*
		 * Fragment the message into smaller messages not exceeding
		 * useful circular buffer length. Mark last message complete.
		 */
		do {
			hdr = MIN(max_length, remaining)
				<< MEI_HDR_LENGTH_START;
			hdr |= client_addr << MEI_HDR_CSE_ADDR_START;
			hdr |= host_addr << MEI_HDR_HOST_ADDR_START;
			hdr |= (MIN(max_length, remaining) == remaining) ?
						MEI_HDR_IS_COMPLETE : 0;
			sent = send_one_message(hdr, p);
			p += sent;
			remaining -= sent;
		} while (remaining > 0 && sent != 0);

		if (!remaining)
			return CSE_TX_RX_SUCCESS;
	}

	printk(BIOS_DEBUG, "HECI: Trigger HECI reset\n");
	heci_reset();
	return CSE_TX_ERR_CSE_NOT_READY;
}

static enum cse_tx_rx_status
recv_one_message(uint32_t *hdr, void *buff, size_t maxlen, size_t *recv_len)
{
	uint32_t reg, *p = buff;
	size_t recv_slots, remainder, i;

	/* first get the header */
	if (!wait_read_slots(1))
		return CSE_RX_ERR_TIMEOUT;

	*hdr = read_slot();
	*recv_len = hdr_get_length(*hdr);

	if (!*recv_len)
		printk(BIOS_WARNING, "HECI: message is zero-sized\n");

	recv_slots = bytes_to_slots(*recv_len);

	i = 0;
	if (*recv_len > maxlen) {
		printk(BIOS_ERR, "HECI: response is too big\n");
		return CSE_RX_ERR_RESP_LEN_MISMATCH;
	}

	/* wait for the rest of messages to arrive */
	wait_read_slots(recv_slots);

	/* fetch whole slots first */
	while (i < ALIGN_DOWN(*recv_len, SLOT_SIZE)) {
		*p++ = read_slot();
		i += SLOT_SIZE;
	}

	/*
	 * If ME is not ready, something went wrong and
	 * we received junk
	 */
	if (!cse_ready())
		return CSE_RX_ERR_CSE_NOT_READY;

	remainder = *recv_len % SLOT_SIZE;

	if (remainder) {
		reg = read_slot();
		memcpy(p, &reg, remainder);
	}
	return CSE_TX_RX_SUCCESS;
}

/*
 * Receive message into buff not exceeding maxlen. Message is considered
 * successfully received if a 'complete' indication is read from ME side
 * and there was enough space in the buffer to fit that message. maxlen
 * is updated with size of message that was received. Returns 0 on failure
 * and 1 on success.
 * In case of error heci_reset() may be required.
 */
static enum cse_tx_rx_status heci_receive(void *buff, size_t *maxlen)
{
	uint8_t retry;
	size_t left, received;
	uint32_t hdr = 0;
	uint8_t *p;
	enum cse_tx_rx_status ret = CSE_RX_ERR_TIMEOUT;

	if (!buff || !maxlen || !*maxlen)
		return CSE_RX_ERR_INPUT;

	clear_int();

	for (retry = 0; retry < MAX_HECI_MESSAGE_RETRY_COUNT; retry++) {
		p = buff;
		left = *maxlen;

		if (!wait_heci_ready()) {
			printk(BIOS_ERR, "HECI: not ready\n");
			continue;
		}

		/*
		 * Receive multiple packets until we meet one marked
		 * complete or we run out of space in caller-provided buffer.
		 */
		do {
			ret = recv_one_message(&hdr, p, left, &received);
			if (ret) {
				printk(BIOS_ERR, "HECI: Failed to receive!\n");
				goto CSE_RX_ERR_HANDLE;
			}
			left -= received;
			p += received;
			/* If we read out everything ping to send more */
			if (!(hdr & MEI_HDR_IS_COMPLETE) && !cse_filled_slots())
				host_gen_interrupt();
		} while (received && !(hdr & MEI_HDR_IS_COMPLETE) && left > 0);

		if ((hdr & MEI_HDR_IS_COMPLETE) && received) {
			*maxlen = p - (uint8_t *) buff;
			return CSE_TX_RX_SUCCESS;
		}
	}

CSE_RX_ERR_HANDLE:
	printk(BIOS_DEBUG, "HECI: Trigger HECI Reset\n");
	heci_reset();
	return CSE_RX_ERR_CSE_NOT_READY;
}

enum cse_tx_rx_status heci_send_receive(const void *snd_msg, size_t snd_sz, void *rcv_msg,
					size_t *rcv_sz, uint8_t cse_addr)
{
	enum cse_tx_rx_status ret;

	ret = heci_send(snd_msg, snd_sz, BIOS_HOST_ADDR, cse_addr);
	if (ret) {
		printk(BIOS_ERR, "HECI: send Failed\n");
		return ret;
	}

	if (rcv_msg != NULL) {
		ret = heci_receive(rcv_msg, rcv_sz);
		if (ret) {
			printk(BIOS_ERR, "HECI: receive Failed\n");
			return ret;
		}
	}
	return ret;
}

/*
 * Attempt to reset the device. This is useful when host and ME are out
 * of sync during transmission or ME didn't understand the message.
 */
int heci_reset(void)
{
	uint32_t csr;

	/* Clear post code to prevent eventlog entry from unknown code. */
	post_code(0);

	/* Send reset request */
	csr = read_host_csr();
	csr |= (CSR_RESET | CSR_IG);
	write_host_csr(csr);

	if (wait_heci_ready()) {
		/* Device is back on its imaginary feet, clear reset */
		cse_set_host_ready();
		return 1;
	}

	printk(BIOS_CRIT, "HECI: reset failed\n");

	return 0;
}

bool is_cse_devfn_visible(unsigned int devfn)
{
	int slot = PCI_SLOT(devfn);
	int func = PCI_FUNC(devfn);

	if (!is_devfn_enabled(devfn)) {
		printk(BIOS_WARNING, "HECI: CSE device %02x.%01x is disabled\n", slot, func);
		return false;
	}

	if (pci_read_config16(PCI_DEV(0, slot, func), PCI_VENDOR_ID) == 0xFFFF) {
		printk(BIOS_WARNING, "HECI: CSE device %02x.%01x is hidden\n", slot, func);
		return false;
	}

	return true;
}

bool is_cse_enabled(void)
{
	return is_cse_devfn_visible(PCH_DEVFN_CSE);
}

uint32_t me_read_config32(int offset)
{
	return pci_read_config32(PCH_DEV_CSE, offset);
}

static bool cse_is_global_reset_allowed(void)
{
	/*
	 * Allow sending GLOBAL_RESET command only if:
	 *  - CSE's current working state is Normal and current operation mode is Normal.
	 *  - (or) CSE's current working state is normal and current operation mode can
	 *    be Soft Temp Disable or Security Override Mode if CSE's Firmware SKU is
	 *    Lite.
	 */
	if (!cse_is_hfs1_cws_normal())
		return false;

	if (cse_is_hfs1_com_normal())
		return true;

	if (cse_is_hfs3_fw_sku_lite()) {
		if (cse_is_hfs1_com_soft_temp_disable() || cse_is_hfs1_com_secover_mei_msg())
			return true;
	}
	return false;
}

/*
 * Sends GLOBAL_RESET_REQ cmd to CSE with reset type GLOBAL_RESET.
 * Returns 0 on failure and 1 on success.
 */
static int cse_request_reset(enum rst_req_type rst_type)
{
	int status;
	struct mkhi_hdr reply;
	struct reset_message {
		struct mkhi_hdr hdr;
		uint8_t req_origin;
		uint8_t reset_type;
	} __packed;
	struct reset_message msg = {
		.hdr = {
			.group_id = MKHI_GROUP_ID_CBM,
			.command = MKHI_CBM_GLOBAL_RESET_REQ,
		},
		.req_origin = GR_ORIGIN_BIOS_POST,
		.reset_type = rst_type
	};
	size_t reply_size;

	printk(BIOS_DEBUG, "HECI: Global Reset(Type:%d) Command\n", rst_type);

	if (!(rst_type == GLOBAL_RESET || rst_type == CSE_RESET_ONLY)) {
		printk(BIOS_ERR, "HECI: Unsupported reset type is requested\n");
		return 0;
	}

	if (!cse_is_global_reset_allowed() || !is_cse_enabled()) {
		printk(BIOS_ERR, "HECI: CSE does not meet required prerequisites\n");
		return 0;
	}

	heci_reset();

	reply_size = sizeof(reply);
	memset(&reply, 0, reply_size);

	if (rst_type == CSE_RESET_ONLY)
		status = heci_send(&msg, sizeof(msg), BIOS_HOST_ADDR, HECI_MKHI_ADDR);
	else
		status = heci_send_receive(&msg, sizeof(msg), &reply, &reply_size,
									HECI_MKHI_ADDR);

	printk(BIOS_DEBUG, "HECI: Global Reset %s!\n", !status ? "success" : "failure");
	return status;
}

int cse_request_global_reset(void)
{
	return cse_request_reset(GLOBAL_RESET);
}

static bool cse_is_hmrfpo_enable_allowed(void)
{
	/*
	 * Allow sending HMRFPO ENABLE command only if:
	 *  - CSE's current working state is Normal and current operation mode is Normal
	 *  - (or) cse's current working state is normal and current operation mode is
	 *    Soft Temp Disable if CSE's Firmware SKU is Lite
	 */
	if (!cse_is_hfs1_cws_normal())
		return false;

	if (cse_is_hfs1_com_normal())
		return true;

	if (cse_is_hfs3_fw_sku_lite() && cse_is_hfs1_com_soft_temp_disable())
		return true;

	return false;
}

/* Sends HMRFPO Enable command to CSE */
int cse_hmrfpo_enable(void)
{
	struct hmrfpo_enable_msg {
		struct mkhi_hdr hdr;
		uint32_t nonce[2];
	} __packed;

	/* HMRFPO Enable message */
	struct hmrfpo_enable_msg msg = {
		.hdr = {
			.group_id = MKHI_GROUP_ID_HMRFPO,
			.command = MKHI_HMRFPO_ENABLE,
		},
		.nonce = {0},
	};

	/* HMRFPO Enable response */
	struct hmrfpo_enable_resp {
		struct mkhi_hdr hdr;
		/* Base addr for factory data area, not relevant for client SKUs */
		uint32_t fct_base;
		/* Length of factory data area, not relevant for client SKUs */
		uint32_t fct_limit;
		uint8_t status;
		uint8_t reserved[3];
	} __packed;

	struct hmrfpo_enable_resp resp;
	size_t resp_size = sizeof(struct hmrfpo_enable_resp);

	if (cse_is_hfs1_com_secover_mei_msg()) {
		printk(BIOS_DEBUG, "HECI: CSE is already in security override mode, "
			       "skip sending HMRFPO_ENABLE command to CSE\n");
		return 1;
	}

	printk(BIOS_DEBUG, "HECI: Send HMRFPO Enable Command\n");

	if (!cse_is_hmrfpo_enable_allowed()) {
		printk(BIOS_ERR, "HECI: CSE does not meet required prerequisites\n");
		return 0;
	}

	if (heci_send_receive(&msg, sizeof(struct hmrfpo_enable_msg),
				&resp, &resp_size, HECI_MKHI_ADDR))
		return 0;

	if (resp.hdr.result) {
		printk(BIOS_ERR, "HECI: Resp Failed:%d\n", resp.hdr.result);
		return 0;
	}

	if (resp.status) {
		printk(BIOS_ERR, "HECI: HMRFPO_Enable Failed (resp status: %d)\n", resp.status);
		return 0;
	}

	return 1;
}

/*
 * Sends HMRFPO Get Status command to CSE to get the HMRFPO status.
 * The status can be DISABLED/LOCKED/ENABLED
 */
int cse_hmrfpo_get_status(void)
{
	struct hmrfpo_get_status_msg {
		struct mkhi_hdr hdr;
	} __packed;

	struct hmrfpo_get_status_resp {
		struct mkhi_hdr hdr;
		uint8_t status;
		uint8_t reserved[3];
	} __packed;

	struct hmrfpo_get_status_msg msg = {
		.hdr = {
			.group_id = MKHI_GROUP_ID_HMRFPO,
			.command = MKHI_HMRFPO_GET_STATUS,
		},
	};
	struct hmrfpo_get_status_resp resp;
	size_t resp_size = sizeof(struct hmrfpo_get_status_resp);

	printk(BIOS_INFO, "HECI: Sending Get HMRFPO Status Command\n");

	if (!cse_is_hfs1_cws_normal()) {
		printk(BIOS_ERR, "HECI: CSE's current working state is not Normal\n");
		return -1;
	}

	if (heci_send_receive(&msg, sizeof(struct hmrfpo_get_status_msg),
				&resp, &resp_size, HECI_MKHI_ADDR)) {
		printk(BIOS_ERR, "HECI: HMRFPO send/receive fail\n");
		return -1;
	}

	if (resp.hdr.result) {
		printk(BIOS_ERR, "HECI: HMRFPO Resp Failed:%d\n",
				resp.hdr.result);
		return -1;
	}

	return resp.status;
}

void print_me_fw_version(void *unused)
{
	struct me_fw_ver_resp resp = {0};

	/* Ignore if UART debugging is disabled */
	if (!CONFIG(CONSOLE_SERIAL))
		return;

	if (get_me_fw_version(&resp) == CB_SUCCESS) {
		printk(BIOS_DEBUG, "ME: Version: %d.%d.%d.%d\n", resp.code.major,
			resp.code.minor, resp.code.hotfix, resp.code.build);
		return;
	}
	printk(BIOS_DEBUG, "ME: Version: Unavailable\n");
}

enum cb_err get_me_fw_version(struct me_fw_ver_resp *resp)
{
	const struct mkhi_hdr fw_ver_msg = {
		.group_id = MKHI_GROUP_ID_GEN,
		.command = MKHI_GEN_GET_FW_VERSION,
	};

	if (resp == NULL) {
		printk(BIOS_ERR, "%s failed, null pointer parameter\n", __func__);
		return CB_ERR;
	}
	size_t resp_size = sizeof(*resp);

	/* Ignore if CSE is disabled */
	if (!is_cse_enabled())
		return CB_ERR;

	/*
	 * Ignore if ME Firmware SKU type is Lite since
	 * print_boot_partition_info() logs RO(BP1) and RW(BP2) versions.
	 */
	if (cse_is_hfs3_fw_sku_lite())
		return CB_ERR;

	/*
	 * Prerequisites:
	 * 1) HFSTS1 Current Working State is Normal
	 * 2) HFSTS1 Current Operation Mode is Normal
	 * 3) It's after DRAM INIT DONE message (taken care of by calling it
	 *    during ramstage
	 */
	if (!cse_is_hfs1_cws_normal() || !cse_is_hfs1_com_normal())
		return CB_ERR;

	heci_reset();

	if (heci_send_receive(&fw_ver_msg, sizeof(fw_ver_msg), resp, &resp_size,
									HECI_MKHI_ADDR))
		return CB_ERR;

	if (resp->hdr.result)
		return CB_ERR;


	return CB_SUCCESS;
}

void cse_trigger_vboot_recovery(enum csme_failure_reason reason)
{
	printk(BIOS_DEBUG, "cse: CSE status registers: HFSTS1: 0x%x, HFSTS2: 0x%x "
	       "HFSTS3: 0x%x\n", me_read_config32(PCI_ME_HFSTS1),
	       me_read_config32(PCI_ME_HFSTS2), me_read_config32(PCI_ME_HFSTS3));

	if (CONFIG(VBOOT)) {
		struct vb2_context *ctx = vboot_get_context();
		if (ctx == NULL)
			goto failure;
		vb2api_fail(ctx, VB2_RECOVERY_INTEL_CSE_LITE_SKU, reason);
		vboot_save_data(ctx);
		vboot_reboot();
	}
failure:
	die("cse: Failed to trigger recovery mode(recovery subcode:%d)\n", reason);
}

static bool disable_cse_idle(pci_devfn_t dev)
{
	struct stopwatch sw;
	uint32_t dev_idle_ctrl = read_bar(dev, MMIO_CSE_DEVIDLE);
	dev_idle_ctrl &= ~CSE_DEV_IDLE;
	write_bar(dev, MMIO_CSE_DEVIDLE, dev_idle_ctrl);

	stopwatch_init_usecs_expire(&sw, HECI_CIP_TIMEOUT_US);
	do {
		dev_idle_ctrl = read_bar(dev, MMIO_CSE_DEVIDLE);
		if ((dev_idle_ctrl & CSE_DEV_CIP) == CSE_DEV_CIP)
			return true;
		udelay(HECI_DELAY_US);
	} while (!stopwatch_expired(&sw));

	return false;
}

static void enable_cse_idle(pci_devfn_t dev)
{
	uint32_t dev_idle_ctrl = read_bar(dev, MMIO_CSE_DEVIDLE);
	dev_idle_ctrl |= CSE_DEV_IDLE;
	write_bar(dev, MMIO_CSE_DEVIDLE, dev_idle_ctrl);
}

enum cse_device_state get_cse_device_state(unsigned int devfn)
{
	pci_devfn_t dev = PCI_DEV(0, PCI_SLOT(devfn), PCI_FUNC(devfn));
	uint32_t dev_idle_ctrl = read_bar(dev, MMIO_CSE_DEVIDLE);
	if ((dev_idle_ctrl & CSE_DEV_IDLE) == CSE_DEV_IDLE)
		return DEV_IDLE;

	return DEV_ACTIVE;
}

static enum cse_device_state ensure_cse_active(pci_devfn_t dev)
{
	if (!disable_cse_idle(dev))
		return DEV_IDLE;
	pci_or_config32(dev, PCI_COMMAND, PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);

	return DEV_ACTIVE;
}

static void ensure_cse_idle(pci_devfn_t dev)
{
	enable_cse_idle(dev);

	pci_and_config32(dev, PCI_COMMAND, ~(PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER));
}

bool set_cse_device_state(unsigned int devfn, enum cse_device_state requested_state)
{
	enum cse_device_state current_state = get_cse_device_state(devfn);
	pci_devfn_t dev = PCI_DEV(0, PCI_SLOT(devfn), PCI_FUNC(devfn));

	if (current_state == requested_state)
		return true;

	if (requested_state == DEV_ACTIVE)
		return ensure_cse_active(dev) == requested_state;
	else
		ensure_cse_idle(dev);

	return true;
}

void cse_set_to_d0i3(void)
{
	if (!is_cse_devfn_visible(PCH_DEVFN_CSE))
		return;

	set_cse_device_state(PCH_DEVFN_CSE, DEV_IDLE);
}

/* Function to set D0I3 for all HECI devices */
void heci_set_to_d0i3(void)
{
	for (int i = 0; i < CONFIG_MAX_HECI_DEVICES; i++) {
		unsigned int devfn = PCI_DEVFN(PCH_DEV_SLOT_CSE, i);
		if (!is_cse_devfn_visible(devfn))
			continue;

		set_cse_device_state(devfn, DEV_IDLE);
	}
}

/* Initialize the HECI devices. */
void heci_init(void)
{
	for (int i = 0; i < CONFIG_MAX_HECI_DEVICES; i++) {
		unsigned int devfn = PCI_DEVFN(PCH_DEV_SLOT_CSE, i);
		pci_devfn_t dev = PCI_DEV(0, PCI_SLOT(devfn), PCI_FUNC(devfn));

		if (!is_cse_devfn_visible(devfn))
			continue;

		/* Assume it is already initialized, nothing else to do */
		if (get_cse_bar(dev))
			return;

		heci_assign_resource(dev, HECI1_BASE_ADDRESS + (i * HECI_BASE_SIZE));

		ensure_cse_active(dev);
	}
	/* Trigger HECI Reset and make Host ready for communication with CSE */
	heci_reset();
}

void cse_control_global_reset_lock(void)
{
	/*
	 * As per ME BWG recommendation the BIOS should not lock down CF9GR bit during
	 * manufacturing and re-manufacturing environment if HFSTS1 [4] is set. Note:
	 * this recommendation is not applicable for CSE-Lite SKUs where BIOS should set
	 * CF9LOCK bit irrespectively.
	 *
	 * Other than that, make sure payload/OS can't trigger global reset.
	 *
	 * BIOS must also ensure that CF9GR is cleared and locked (Bit31 of ETR3)
	 * prior to transferring control to the OS.
	 */
	if (CONFIG(SOC_INTEL_CSE_LITE_SKU) || cse_is_hfs1_spi_protected())
		pmc_global_reset_disable_and_lock();
	else
		pmc_global_reset_enable(false);
}

#if ENV_RAMSTAGE

/*
 * Disable the Intel (CS)Management Engine via HECI based on a cmos value
 * of `me_state`. A value of `0` will result in a (CS)ME state of `0` (working)
 * and value of `1` will result in a (CS)ME state of `3` (disabled).
 *
 * It isn't advised to use this in combination with me_cleaner.
 *
 * It is advisable to have a second cmos option called `me_state_counter`.
 * Whilst not essential, it avoid reboots loops if the (CS)ME fails to
 * change states after 3 attempts. Some versions of the (CS)ME need to be
 * reset 3 times.
 *
 * Ideal cmos values would be:
 *
 * # coreboot config options: cpu
 * 432     1       e       5       me_state
 * 440     4       h       0       me_state_counter
 *
 * #ID     value   text
 * 5       0       Enable
 * 5       1       Disable
 */

static void me_reset_with_count(void)
{
	unsigned int cmos_me_state_counter = get_uint_option("me_state_counter", UINT_MAX);

	if (cmos_me_state_counter != UINT_MAX) {
		printk(BIOS_DEBUG, "CMOS: me_state_counter = %u\n", cmos_me_state_counter);
		/* Avoid boot loops by only trying a state change 3 times */
		if (cmos_me_state_counter < ME_DISABLE_ATTEMPTS) {
			cmos_me_state_counter++;
			set_uint_option("me_state_counter", cmos_me_state_counter);
			printk(BIOS_DEBUG, "ME: Reset attempt %u/%u.\n", cmos_me_state_counter,
									 ME_DISABLE_ATTEMPTS);
			do_global_reset();
		} else {
			/*
			 * If the (CS)ME fails to change states after 3 attempts, it will
			 * likely need a cold boot, or recovering.
			 */
			printk(BIOS_ERR, "Failed to change ME state in %u attempts!\n",
									 ME_DISABLE_ATTEMPTS);

		}
	} else {
		printk(BIOS_DEBUG, "ME: Resetting");
		do_global_reset();
	}
}

static void cse_set_state(struct device *dev)
{

	/* (CS)ME Disable Command */
	struct me_disable_command {
		struct mkhi_hdr hdr;
		uint32_t rule_id;
		uint8_t rule_len;
		uint32_t rule_data;
	} __packed me_disable = {
		.hdr = {
			.group_id = MKHI_GROUP_ID_FWCAPS,
			.command = MKHI_SET_ME_DISABLE,
		},
		.rule_id = ME_DISABLE_RULE_ID,
		.rule_len = ME_DISABLE_RULE_LENGTH,
		.rule_data = ME_DISABLE_COMMAND,
	};

	struct me_disable_reply {
		struct mkhi_hdr hdr;
		uint32_t rule_id;
	} __packed;

	struct me_disable_reply disable_reply;

	size_t disable_reply_size;

	/* (CS)ME Enable Command */
	struct me_enable_command {
		struct mkhi_hdr hdr;
	} me_enable = {
		.hdr = {
			.group_id = MKHI_GROUP_ID_BUP_COMMON,
			.command = MKHI_SET_ME_ENABLE,
		},
	};

	struct me_enable_reply {
		struct mkhi_hdr hdr;
	} __packed;

	struct me_enable_reply enable_reply;

	size_t enable_reply_size;

	/* Function Start */

	int send;
	int result;
	/*
	 * Check if the CMOS value "me_state" exists, if it doesn't, then
	 * don't do anything.
	 */
	const unsigned int cmos_me_state = get_uint_option("me_state", UINT_MAX);

	if (cmos_me_state == UINT_MAX)
		return;

	printk(BIOS_DEBUG, "CMOS: me_state = %u\n", cmos_me_state);

	/*
	 * We only take action if the me_state doesn't match the CS(ME) working state
	 */

	const unsigned int soft_temp_disable = cse_is_hfs1_com_soft_temp_disable();

	if (cmos_me_state && !soft_temp_disable) {
		/* me_state should be disabled, but it's enabled */
		printk(BIOS_DEBUG, "ME needs to be disabled.\n");
		send = heci_send_receive(&me_disable, sizeof(me_disable),
			&disable_reply, &disable_reply_size, HECI_MKHI_ADDR);
		result = disable_reply.hdr.result;
	} else if (!cmos_me_state && soft_temp_disable) {
		/* me_state should be enabled, but it's disabled */
		printk(BIOS_DEBUG, "ME needs to be enabled.\n");
		send = heci_send_receive(&me_enable, sizeof(me_enable),
			&enable_reply, &enable_reply_size, HECI_MKHI_ADDR);
		result = enable_reply.hdr.result;
	} else {
		printk(BIOS_DEBUG, "ME is %s.\n", cmos_me_state ? "disabled" : "enabled");
		unsigned int cmos_me_state_counter = get_uint_option("me_state_counter",
								 UINT_MAX);
		/* set me_state_counter to 0 */
		if ((cmos_me_state_counter != UINT_MAX && cmos_me_state_counter != 0))
			set_uint_option("me_state_counter", 0);
		return;
	}

	printk(BIOS_DEBUG, "HECI: ME state change send %s!\n",
							!send ? "success" : "failure");
	printk(BIOS_DEBUG, "HECI: ME state change result %s!\n",
							result ? "success" : "failure");

	/*
	 * Reset if the result was successful, or if the send failed as some older
	 * version of the Intel (CS)ME won't successfully receive the message unless reset
	 * twice.
	 */
	if (send || !result)
		me_reset_with_count();
}

/*
 * `cse_final_ready_to_boot` function is native implementation of equivalent events
 * performed by FSP NotifyPhase(Ready To Boot) API invocations.
 *
 * Operations are:
 * 1. Send EOP to CSE if not done.
 * 2. Perform global reset lock.
 * 3. Put HECI1 to D0i3 and disable the HECI1 if the user selects
 *      DISABLE_HECI1_AT_PRE_BOOT config or CSE HFSTS1 Operation Mode is
 *      `Software Temporary Disable`.
 */
static void cse_final_ready_to_boot(void)
{
	if (CONFIG(SOC_INTEL_CSE_SET_EOP))
		cse_send_end_of_post();

	cse_control_global_reset_lock();

	if (CONFIG(DISABLE_HECI1_AT_PRE_BOOT) || cse_is_hfs1_com_soft_temp_disable()) {
		cse_set_to_d0i3();
		heci1_disable();
	}
}

/*
 * `cse_final_end_of_firmware` function is native implementation of equivalent events
 * performed by FSP NotifyPhase(End of Firmware) API invocations.
 *
 * Operations are:
 * 1. Set D0I3 for all HECI devices.
 */
static void cse_final_end_of_firmware(void)
{
	heci_set_to_d0i3();
}

/*
 * `cse_final` function is native implementation of equivalent events performed by
 * each FSP NotifyPhase() API invocations.
 */
static void cse_final(struct device *dev)
{
	if (!CONFIG(USE_FSP_NOTIFY_PHASE_READY_TO_BOOT))
		cse_final_ready_to_boot();

	if (!CONFIG(USE_FSP_NOTIFY_PHASE_END_OF_FIRMWARE))
		cse_final_end_of_firmware();
}

static struct device_operations cse_ops = {
	.set_resources		= pci_dev_set_resources,
	.read_resources		= pci_dev_read_resources,
	.enable_resources	= pci_dev_enable_resources,
	.init			= pci_dev_init,
	.ops_pci		= &pci_dev_ops_pci,
	.enable			= cse_set_state,
	.final			= cse_final,
};

static const unsigned short pci_device_ids[] = {
	PCI_DID_INTEL_MTL_CSE0,
	PCI_DID_INTEL_APL_CSE0,
	PCI_DID_INTEL_GLK_CSE0,
	PCI_DID_INTEL_CNL_CSE0,
	PCI_DID_INTEL_SKL_CSE0,
	PCI_DID_INTEL_LWB_CSE0,
	PCI_DID_INTEL_LWB_CSE0_SUPER,
	PCI_DID_INTEL_CNP_H_CSE0,
	PCI_DID_INTEL_ICL_CSE0,
	PCI_DID_INTEL_CMP_CSE0,
	PCI_DID_INTEL_CMP_H_CSE0,
	PCI_DID_INTEL_TGL_CSE0,
	PCI_DID_INTEL_TGL_H_CSE0,
	PCI_DID_INTEL_MCC_CSE0,
	PCI_DID_INTEL_MCC_CSE1,
	PCI_DID_INTEL_MCC_CSE2,
	PCI_DID_INTEL_MCC_CSE3,
	PCI_DID_INTEL_JSP_CSE0,
	PCI_DID_INTEL_JSP_CSE1,
	PCI_DID_INTEL_JSP_CSE2,
	PCI_DID_INTEL_JSP_CSE3,
	PCI_DID_INTEL_ADP_P_CSE0,
	PCI_DID_INTEL_ADP_P_CSE1,
	PCI_DID_INTEL_ADP_P_CSE2,
	PCI_DID_INTEL_ADP_P_CSE3,
	PCI_DID_INTEL_ADP_S_CSE0,
	PCI_DID_INTEL_ADP_S_CSE1,
	PCI_DID_INTEL_ADP_S_CSE2,
	PCI_DID_INTEL_ADP_S_CSE3,
	PCI_DID_INTEL_ADP_M_CSE0,
	PCI_DID_INTEL_ADP_M_CSE1,
	PCI_DID_INTEL_ADP_M_CSE2,
	PCI_DID_INTEL_ADP_M_CSE3,
	0,
};

static const struct pci_driver cse_driver __pci_driver = {
	.ops			= &cse_ops,
	.vendor			= PCI_VID_INTEL,
	/* SoC/chipset needs to provide PCI device ID */
	.devices		= pci_device_ids
};

#endif