blob: 48f3f1645c1033a00b1178f8b541f44039414bf6 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
|
config SOC_INTEL_COMMON_BLOCK_CPU
bool
default n
help
This option selects Intel Common CPU Model support code
which provides various CPU related APIs which are common
between all Intel Processor families. Common CPU code is supported
for SOCs starting from SKL,KBL,APL, and future.
config SOC_INTEL_COMMON_BLOCK_CPU_MPINIT
bool
default n
help
This option selects Intel Common CPU MP Init code. In
this common MP Init mechanism, the MP Init is occurring before
calling FSP Silicon Init. Hence, MP Init will be pulled to
BS_DEV_INIT_CHIPS Entry. And on Exit of BS_DEV_INIT, it is
ensured that all MTRRs are re-programmed based on the DRAM
resource settings.
config SOC_INTEL_COMMON_BLOCK_CAR
bool
default n
help
This option allows you to select how cache-as-ram (CAR) is set up.
config INTEL_CAR_NEM
bool
default n
help
Traditionally, CAR is set up by using Non-Evict mode. This method
does not allow CAR and cache to co-exist, because cache fills are
blocked in NEM.
config INTEL_CAR_CQOS
bool
default n
help
Cache Quality of Service allows more fine-grained control of cache
usage. As result, it is possible to set up a portion of L2 cache for
CAR and use the remainder for actual caching.
config INTEL_CAR_NEM_ENHANCED
bool
default n
help
A current limitation of NEM (Non-Evict mode) is that code and data sizes
are derived from the requirement to not write out any modified cache line.
With NEM, if there is no physical memory behind the cached area,
the modified data will be lost and NEM results will be inconsistent.
ENHANCED NEM guarantees that modified data is always
kept in cache while clean data is replaced.
|