1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
|
/* SPDX-License-Identifier: GPL-2.0-or-later */
#define __SIMPLE_DEVICE__
#include <acpi/acpi.h>
#include <acpi/acpi_pm.h>
#include <arch/io.h>
#include <device/mmio.h>
#include <console/console.h>
#include <device/device.h>
#include <device/pci.h>
#include <device/pci_def.h>
#include <intelblocks/msr.h>
#include <intelblocks/pmclib.h>
#include <intelblocks/rtc.h>
#include <intelblocks/tco.h>
#include <soc/iomap.h>
#include <soc/cpu.h>
#include <soc/pci_devs.h>
#include <soc/pm.h>
#include <soc/smbus.h>
#include <security/vboot/vbnv.h>
#include "chip.h"
uint8_t *pmc_mmio_regs(void)
{
return (void *)(uintptr_t)PCH_PWRM_BASE_ADDRESS;
}
uintptr_t soc_read_pmc_base(void)
{
return (uintptr_t)pmc_mmio_regs();
}
uint32_t *soc_pmc_etr_addr(void)
{
return (uint32_t *)(soc_read_pmc_base() + ETR);
}
const char *const *soc_smi_sts_array(size_t *a)
{
static const char *const smi_sts_bits[] = {
[BIOS_STS_BIT] = "BIOS",
[LEGACY_USB_STS_BIT] = "LEGACY USB",
[SMI_ON_SLP_EN_STS_BIT] = "SLP_SMI",
[APM_STS_BIT] = "APM",
[SWSMI_TMR_STS_BIT] = "SWSMI_TMR",
[PM1_STS_BIT] = "PM1",
[GPE0_STS_BIT] = "GPE0 (reserved)",
[GPIO_STS_BIT] = "GPIO_SMI",
[GPIO_UNLOCK_SMI_STS_BIT] = "GPIO_UNLOCK_SSMI",
[MC_SMI_STS_BIT] = "MCSMI",
[TCO_STS_BIT] = "TCO",
[PERIODIC_STS_BIT] = "PERIODIC",
[SERIRQ_SMI_STS_BIT] = "SERIRQ",
[SMBUS_SMI_STS_BIT] = "SMBUS_SMI",
[XHCI_SMI_STS_BIT] = "XHCI",
[SCS_SMI_STS_BIT] = "HOST_SMBUS",
[SCS_SMI_STS_BIT] = "SCS",
[PCI_EXP_SMI_STS_BIT] = "PCI_EXP_SMI",
[SCC2_SMI_STS_BIT] = "SCC2",
[SPI_SSMI_STS_BIT] = "SPI_SSMI",
[SPI_SMI_STS_BIT] = "SPI",
[PMC_OCP_SMI_STS_BIT] = "OCP_CSE",
};
*a = ARRAY_SIZE(smi_sts_bits);
return smi_sts_bits;
}
/*
* For APL/GLK this check for power button status if nothing else
* is indicating an SMI and SMIs aren't turned into SCIs.
* Apparently, there is no PM1 status bit in the SMI status
* register. That makes things difficult for
* determining if the power button caused an SMI.
*/
uint32_t soc_get_smi_status(uint32_t generic_sts)
{
if (generic_sts == 0 && !(pmc_read_pm1_control() & SCI_EN)) {
uint16_t pm1_sts = inw(ACPI_BASE_ADDRESS + PM1_STS);
/* Fake PM1 status bit if power button pressed. */
if (pm1_sts & PWRBTN_STS)
generic_sts |= (1 << PM1_STS_BIT);
}
/*
* GPE0_STS is reserved in APL/GLK datasheets. For compatibility
* with common code, mask it out so that it is always zero.
*/
return generic_sts & ~(1 << GPE0_STS_BIT);
}
const char *const *soc_tco_sts_array(size_t *a)
{
static const char *const tco_sts_bits[] = {
[3] = "TIMEOUT",
[17] = "SECOND_TO",
};
*a = ARRAY_SIZE(tco_sts_bits);
return tco_sts_bits;
}
const char *const *soc_std_gpe_sts_array(size_t *a)
{
static const char *const gpe_sts_bits[] = {
[0] = "PCIE_SCI",
[2] = "SWGPE",
[3] = "PCIE_WAKE0",
[4] = "PUNIT",
[6] = "PCIE_WAKE1",
[7] = "PCIE_WAKE2",
[8] = "PCIE_WAKE3",
[9] = "PCI_EXP",
[10] = "BATLOW",
[11] = "CSE_PME",
[12] = "XDCI_PME",
[13] = "XHCI_PME",
[14] = "AVS_PME",
[15] = "GPIO_TIER1_SCI",
[16] = "SMB_WAK",
[17] = "SATA_PME",
};
*a = ARRAY_SIZE(gpe_sts_bits);
return gpe_sts_bits;
}
void soc_clear_pm_registers(uintptr_t pmc_bar)
{
uint32_t gen_pmcon1;
gen_pmcon1 = read32p(pmc_bar + GEN_PMCON1);
/* Clear the status bits. The RPS field is cleared on a 0 write. */
write32p(pmc_bar + GEN_PMCON1, gen_pmcon1 & ~RPS);
}
void soc_get_gpi_gpe_configs(uint8_t *dw0, uint8_t *dw1, uint8_t *dw2)
{
DEVTREE_CONST struct soc_intel_apollolake_config *config;
config = config_of_soc();
/* Assign to out variable */
*dw0 = config->gpe0_dw1;
*dw1 = config->gpe0_dw2;
*dw2 = config->gpe0_dw3;
}
void soc_fill_power_state(struct chipset_power_state *ps)
{
uintptr_t pmc_bar0 = soc_read_pmc_base();
ps->tco1_sts = tco_read_reg(TCO1_STS);
ps->tco2_sts = tco_read_reg(TCO2_STS);
ps->prsts = read32p(pmc_bar0 + PRSTS);
ps->gen_pmcon1 = read32p(pmc_bar0 + GEN_PMCON1);
ps->gen_pmcon2 = read32p(pmc_bar0 + GEN_PMCON2);
ps->gen_pmcon3 = read32p(pmc_bar0 + GEN_PMCON3);
printk(BIOS_DEBUG, "prsts: %08x\n",
ps->prsts);
printk(BIOS_DEBUG, "tco_sts: %04x %04x\n",
ps->tco1_sts, ps->tco2_sts);
printk(BIOS_DEBUG,
"gen_pmcon1: %08x gen_pmcon2: %08x gen_pmcon3: %08x\n",
ps->gen_pmcon1, ps->gen_pmcon2, ps->gen_pmcon3);
}
/* Return 0, 3, or 5 to indicate the previous sleep state. */
int soc_prev_sleep_state(const struct chipset_power_state *ps,
int prev_sleep_state)
{
/* WAK_STS bit will not be set when waking from G3 state */
if (!(ps->pm1_sts & WAK_STS) && (ps->gen_pmcon1 & COLD_BOOT_STS))
prev_sleep_state = ACPI_S5;
return prev_sleep_state;
}
static int rtc_failed(uint32_t gen_pmcon1)
{
return !!(gen_pmcon1 & RPS);
}
int soc_get_rtc_failed(void)
{
const struct chipset_power_state *ps;
if (acpi_fetch_pm_state(&ps, PS_CLAIMER_RTC) < 0)
return 1;
return rtc_failed(ps->gen_pmcon1);
}
int vbnv_cmos_failed(void)
{
uintptr_t pmc_bar = soc_read_pmc_base();
uint32_t gen_pmcon1 = read32p(pmc_bar + GEN_PMCON1);
int rtc_failure = rtc_failed(gen_pmcon1);
if (rtc_failure) {
printk(BIOS_INFO, "RTC failed!\n");
/* We do not want to write 1 to clear-1 bits. Set them to 0. */
gen_pmcon1 &= ~GEN_PMCON1_CLR1_BITS;
/* RPS is write 0 to clear. */
gen_pmcon1 &= ~RPS;
write32p(pmc_bar + GEN_PMCON1, gen_pmcon1);
}
return rtc_failure;
}
/* STM Support */
uint16_t get_pmbase(void)
{
return (uint16_t)ACPI_BASE_ADDRESS;
}
void pmc_soc_set_afterg3_en(const bool on)
{
const uintptr_t gen_pmcon1 = soc_read_pmc_base() + GEN_PMCON1;
uint32_t reg32;
reg32 = read32p(gen_pmcon1);
if (on)
reg32 &= ~SLEEP_AFTER_POWER_FAIL;
else
reg32 |= SLEEP_AFTER_POWER_FAIL;
write32p(gen_pmcon1, reg32);
}
|