1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
|
/*
* Copyright (C) 2015 Broadcom Corporation
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation version 2.
*
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
* kind, whether express or implied; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <delay.h>
#include <console/console.h>
#include <soc/config.h>
#include <soc/reg_utils.h>
#define DDR_CTL_TYPE_1 1
#define DDR_DRAM_TYPE_DDR3L 31
extern unsigned int ddr_init_tab[];
#ifdef DDR2_SUPPORT
extern unsigned int ddr2_init_tab[];
extern unsigned int ddr2_init_tab_400[];
extern unsigned int ddr2_init_tab_667[];
extern unsigned int ddr2_init_tab_800[];
extern unsigned int ddr2_init_tab_1066[];
extern unsigned int ddr2_mode_reg_tab[];
#endif
#ifdef CONFIG_DDR333
#define CONFIG_DRAM_FREQ 333
extern unsigned int ddr3_init_tab_667[];
#endif
#ifdef CONFIG_DDR400
#define CONFIG_DRAM_FREQ 400
extern unsigned int ddr3_init_tab_800[];
#endif
#ifdef CONFIG_DDR533
#define CONFIG_DRAM_FREQ 533
extern unsigned int ddr3_init_tab_1066[];
#endif
#ifdef CONFIG_DDR667
#define CONFIG_DRAM_FREQ 667
extern unsigned int ddr3_init_tab_1333[];
#endif
#if IS_ENABLED(CONFIG_CYGNUS_DDR800)
#define CONFIG_DRAM_FREQ 800
extern unsigned int ddr3_init_tab_1600[];
#endif
#define __udelay udelay
/* Local function prototype */
uint32_t change_ddr_clock(uint32_t clk);
void dump_phy_regs(void);
void ddr_init_regs(unsigned int * tblptr);
void ddr_phy_ctl_regs_ovrd(unsigned int * tblptr);
void ddr_phy_wl_regs_ovrd(unsigned int * tblptr);
int is_ddr_32bit(void);
uint32_t iproc_get_ddr3_clock_mhz(uint32_t unit);
int cygnus_phy_powerup(void);
void ddr_init2(void);
void PRE_SRX(void);
#if IS_ENABLED(CONFIG_SOC_BROADCOM_CYGNUS)
void PRE_SRX(void)
{
uint32_t readvalue = 0;
// Disable low power receivers: bit 0 of the byte lane STATIC_PAD_CTL register
readvalue = reg32_read ((volatile uint32_t *)DDR_PHY_CONTROL_REGS_STATIC_PAD_CTL);
reg32_write ((volatile uint32_t *)DDR_PHY_CONTROL_REGS_STATIC_PAD_CTL, ( readvalue & ~(1 << DDR_PHY_CONTROL_REGS_STATIC_PAD_CTL__RX_MODE_R)));
// Turn off ZQ_CAL drivers: bits 0,1, and 17 of the ZQ_CAL register (other bits 0 & 1 are set to 1)
readvalue = reg32_read ((volatile uint32_t *)DDR_PHY_CONTROL_REGS_ZQ_CAL);
reg32_write ((volatile uint32_t *)DDR_PHY_CONTROL_REGS_ZQ_CAL, ( readvalue & ~(1 << DDR_PHY_CONTROL_REGS_ZQ_CAL__ZQ_IDDQ)));
// Byte lane 0 power up
readvalue = reg32_read ((volatile uint32_t *)DDR_PHY_BYTE_LANE_0_IDLE_PAD_CONTROL);
reg32_write ((volatile uint32_t *)DDR_PHY_BYTE_LANE_0_IDLE_PAD_CONTROL, ( readvalue & ~(1 << DDR_PHY_BYTE_LANE_0_IDLE_PAD_CONTROL__IDLE)));
readvalue = reg32_read ((volatile uint32_t *)DDR_PHY_BYTE_LANE_0_IDLE_PAD_CONTROL);
reg32_write ((volatile uint32_t *)DDR_PHY_BYTE_LANE_0_IDLE_PAD_CONTROL, ( readvalue & 0xffff800f));
readvalue = reg32_read ((volatile uint32_t *)DDR_PHY_BYTE_LANE_0_IDLE_PAD_CONTROL);
reg32_write ((volatile uint32_t *)DDR_PHY_BYTE_LANE_0_IDLE_PAD_CONTROL, ( readvalue & ~(1 << DDR_PHY_BYTE_LANE_0_IDLE_PAD_CONTROL__IDDQ)));
// Byte lane 1 power up
readvalue = reg32_read ((volatile uint32_t *)DDR_PHY_BYTE_LANE_1_IDLE_PAD_CONTROL);
reg32_write ((volatile uint32_t *)DDR_PHY_BYTE_LANE_1_IDLE_PAD_CONTROL, ( readvalue & ~(1 << DDR_PHY_BYTE_LANE_1_IDLE_PAD_CONTROL__IDLE)));
readvalue = reg32_read ((volatile uint32_t *)DDR_PHY_BYTE_LANE_1_IDLE_PAD_CONTROL);
reg32_write ((volatile uint32_t *)DDR_PHY_BYTE_LANE_1_IDLE_PAD_CONTROL, ( readvalue & 0xffff800f));
readvalue = reg32_read ((volatile uint32_t *)DDR_PHY_BYTE_LANE_1_IDLE_PAD_CONTROL);
reg32_write ((volatile uint32_t *)DDR_PHY_BYTE_LANE_1_IDLE_PAD_CONTROL, ( readvalue & ~(1 << DDR_PHY_BYTE_LANE_1_IDLE_PAD_CONTROL__IDDQ)));
// Turn on PHY_CONTROL AUTO_OEB ¨C not required
// Enable byte lane AUTO_DQ_RXENB_MODE: bits 18 and 19 of the byte lane IDLE_PAD_CONTROL ¨C already set 180114c8: 000f000a
printk(BIOS_INFO, "\n....PLL power up.\n");
reg32_write((volatile uint32_t *)DDR_PHY_CONTROL_REGS_PLL_CONFIG, (reg32_read((volatile uint32_t *)DDR_PHY_CONTROL_REGS_PLL_CONFIG) & ~(1<<DDR_PHY_CONTROL_REGS_PLL_CONFIG__PWRDN)));
// PLL out of reset
reg32_write((volatile uint32_t *)DDR_PHY_CONTROL_REGS_PLL_CONFIG, (reg32_read((volatile uint32_t *)DDR_PHY_CONTROL_REGS_PLL_CONFIG) & ~(1<<DDR_PHY_CONTROL_REGS_PLL_CONFIG__RESET)));
printk(BIOS_INFO, "\n....poll lock..\n");
// Poll lock
readvalue = reg32_read((volatile uint32_t *)DDR_PHY_CONTROL_REGS_PLL_STATUS);
while ( ( readvalue & 0x1) == 0x0 )
{
printk(BIOS_INFO, "\n....DDR_PHY_CONTROL_REGS_PLL_STATUS = %8x..\n",readvalue);
readvalue = reg32_read((volatile uint32_t *)DDR_PHY_CONTROL_REGS_PLL_STATUS);
}
printk(BIOS_INFO, "\n....after while..\n");
reg32_write((volatile uint32_t *)DDR_PHY_CONTROL_REGS_PLL_CONFIG, (reg32_read((volatile uint32_t *)DDR_PHY_CONTROL_REGS_PLL_CONFIG) & ~(1<<DDR_PHY_CONTROL_REGS_PLL_CONFIG__RESET_POST_DIV)));
printk(BIOS_INFO, "\n....remove hold..\n");
// Remove hold
reg32_write((volatile uint32_t *)DDR_PHY_CONTROL_REGS_PLL_CONFIG, (reg32_read((volatile uint32_t *)DDR_PHY_CONTROL_REGS_PLL_CONFIG) & ~(1<<DDR_PHY_CONTROL_REGS_PLL_CONFIG__HOLD)));
printk(BIOS_INFO, "\n....restore dac..\n");
// Restore DAC
reg32_write((volatile uint32_t *)DDR_PHY_CONTROL_REGS_VREF_DAC_CONTROL, (reg32_read((volatile uint32_t *)DDR_PHY_CONTROL_REGS_VREF_DAC_CONTROL) & 0xffff0fff));
printk(BIOS_INFO, "\n....set iddq bit..\n");
// Set the iddq bit in the idle control register and select all outputs except cke and rst in the idee select registers.
// Do NOT assert any other bits in the idle control register. (This step can be done during init on power up.)
reg32_write((volatile uint32_t *)DDR_PHY_CONTROL_REGS_IDLE_PAD_CONTROL, (reg32_read((volatile uint32_t *)DDR_PHY_CONTROL_REGS_IDLE_PAD_CONTROL) & ~(1 << DDR_PHY_CONTROL_REGS_IDLE_PAD_CONTROL__IDDQ)));
printk(BIOS_INFO, "\n....idle pad enable 0..\n");
reg32_write((volatile uint32_t *)DDR_PHY_CONTROL_REGS_IDLE_PAD_ENABLE0, 0x0);
reg32_write((volatile uint32_t *)DDR_PHY_CONTROL_REGS_IDLE_PAD_ENABLE1, 0x0);
printk(BIOS_INFO, "\n....DDR_PHY_CONTROL_REGS_IDLE_PAD_CONTROL..\n");
reg32_write((volatile uint32_t *)DDR_PHY_CONTROL_REGS_IDLE_PAD_CONTROL, (reg32_read((volatile uint32_t *)DDR_PHY_CONTROL_REGS_IDLE_PAD_CONTROL) & ~(1 << DDR_PHY_CONTROL_REGS_IDLE_PAD_CONTROL__IDLE)));
}
#endif
#if defined(CONFIG_IPROC_DDR_ECC) && !defined(CONFIG_IPROC_P7)
void iproc_ddr_ovrd_ecc_lane(void)
{
uint32_t val;
#define SET_OVR_STEP(v) ( 0x30000 | ( (v) & 0x3F ) ) /* OVR_FORCE = OVR_EN = 1, OVR_STEP = v */
val = reg32_read((volatile uint32_t *)DDR_PHY_WORD_LANE_0_VDL_OVRIDE_BYTE_RD_EN);
val = SET_OVR_STEP(val & 0xff);
reg32_write((volatile uint32_t *)DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_RD_EN, val);
val = reg32_read((volatile uint32_t *)DDR_PHY_CONTROL_REGS_REVISION);
val = reg32_read((volatile uint32_t *)DDR_PHY_WORD_LANE_0_VDL_OVRIDE_BYTE0_W);
val = SET_OVR_STEP(val & 0xff);
reg32_write((volatile uint32_t *)DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_W, val);
val = reg32_read((volatile uint32_t *)DDR_PHY_CONTROL_REGS_REVISION);
val = reg32_read((volatile uint32_t *)DDR_PHY_WORD_LANE_0_VDL_OVRIDE_BYTE0_R_P);
val = SET_OVR_STEP(val & 0xff);
reg32_write((volatile uint32_t *)DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_R_P, val);
val = reg32_read((volatile uint32_t *)DDR_PHY_CONTROL_REGS_REVISION);
val = reg32_read((volatile uint32_t *)DDR_PHY_WORD_LANE_0_VDL_OVRIDE_BYTE0_R_N);
val = SET_OVR_STEP(val & 0xff);
reg32_write((volatile uint32_t *)DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_R_N, val);
val = reg32_read((volatile uint32_t *)DDR_PHY_CONTROL_REGS_REVISION);
val = reg32_read((volatile uint32_t *)DDR_PHY_WORD_LANE_0_VDL_OVRIDE_BYTE0_BIT0_W);
val = SET_OVR_STEP(val & 0xff);
reg32_write((volatile uint32_t *)DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_BIT0_W, val);
val = reg32_read((volatile uint32_t *)DDR_PHY_CONTROL_REGS_REVISION);
val = reg32_read((volatile uint32_t *)DDR_PHY_WORD_LANE_0_VDL_OVRIDE_BYTE0_BIT1_W);
val = SET_OVR_STEP(val & 0xff);
reg32_write((volatile uint32_t *)DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_BIT1_W, val);
val = reg32_read((volatile uint32_t *)DDR_PHY_CONTROL_REGS_REVISION);
val = reg32_read((volatile uint32_t *)DDR_PHY_WORD_LANE_0_VDL_OVRIDE_BYTE0_BIT2_W);
val = SET_OVR_STEP(val & 0xff);
reg32_write((volatile uint32_t *)DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_BIT2_W, val);
val = reg32_read((volatile uint32_t *)DDR_PHY_CONTROL_REGS_REVISION);
val = reg32_read((volatile uint32_t *)DDR_PHY_WORD_LANE_0_VDL_OVRIDE_BYTE0_BIT3_W);
val = SET_OVR_STEP(val & 0xff);
reg32_write((volatile uint32_t *)DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_BIT3_W, val);
val = reg32_read((volatile uint32_t *)DDR_PHY_CONTROL_REGS_REVISION);
val = reg32_read((volatile uint32_t *)DDR_PHY_WORD_LANE_0_VDL_OVRIDE_BYTE0_DM_W);
val = SET_OVR_STEP(val & 0xff);
reg32_write((volatile uint32_t *)DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_DM_W, val);
val = reg32_read((volatile uint32_t *)DDR_PHY_CONTROL_REGS_REVISION);
val = reg32_read((volatile uint32_t *)DDR_PHY_WORD_LANE_0_VDL_OVRIDE_BYTE0_BIT0_R_P);
val = SET_OVR_STEP(val & 0xff);
reg32_write((volatile uint32_t *)DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_BIT0_R_P, val);
val = reg32_read((volatile uint32_t *)DDR_PHY_CONTROL_REGS_REVISION);
val = reg32_read((volatile uint32_t *)DDR_PHY_WORD_LANE_0_VDL_OVRIDE_BYTE0_BIT0_R_N);
val = SET_OVR_STEP(val & 0xff);
reg32_write((volatile uint32_t *)DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_BIT0_R_N, val);
val = reg32_read((volatile uint32_t *)DDR_PHY_CONTROL_REGS_REVISION);
val = reg32_read((volatile uint32_t *)DDR_PHY_WORD_LANE_0_VDL_OVRIDE_BYTE0_BIT1_R_P);
val = SET_OVR_STEP(val & 0xff);
reg32_write((volatile uint32_t *)DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_BIT1_R_P, val);
val = reg32_read((volatile uint32_t *)DDR_PHY_CONTROL_REGS_REVISION);
val = reg32_read((volatile uint32_t *)DDR_PHY_WORD_LANE_0_VDL_OVRIDE_BYTE0_BIT1_R_N);
val = SET_OVR_STEP(val & 0xff);
reg32_write((volatile uint32_t *)DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_BIT1_R_N, val);
val = reg32_read((volatile uint32_t *)DDR_PHY_CONTROL_REGS_REVISION);
val = reg32_read((volatile uint32_t *)DDR_PHY_WORD_LANE_0_VDL_OVRIDE_BYTE0_BIT2_R_P);
val = SET_OVR_STEP(val & 0xff);
reg32_write((volatile uint32_t *)DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_BIT2_R_P, val);
val = reg32_read((volatile uint32_t *)DDR_PHY_CONTROL_REGS_REVISION);
val = reg32_read((volatile uint32_t *)DDR_PHY_WORD_LANE_0_VDL_OVRIDE_BYTE0_BIT2_R_N);
val = SET_OVR_STEP(val & 0xff);
reg32_write((volatile uint32_t *)DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_BIT2_R_N, val);
val = reg32_read((volatile uint32_t *)DDR_PHY_CONTROL_REGS_REVISION);
val = reg32_read((volatile uint32_t *)DDR_PHY_WORD_LANE_0_VDL_OVRIDE_BYTE0_BIT3_R_P);
val = SET_OVR_STEP(val & 0xff);
reg32_write((volatile uint32_t *)DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_BIT3_R_P, val);
val = reg32_read((volatile uint32_t *)DDR_PHY_CONTROL_REGS_REVISION);
val = reg32_read((volatile uint32_t *)DDR_PHY_WORD_LANE_0_VDL_OVRIDE_BYTE0_BIT3_R_N);
val = SET_OVR_STEP(val & 0xff);
reg32_write((volatile uint32_t *)DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_BIT3_R_N, val);
val = reg32_read((volatile uint32_t *)DDR_PHY_CONTROL_REGS_REVISION);
val = reg32_read((volatile uint32_t *)DDR_PHY_WORD_LANE_0_VDL_OVRIDE_BYTE0_BIT_RD_EN);
val = SET_OVR_STEP(val & 0xff);
reg32_write((volatile uint32_t *)DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_BIT_RD_EN, val);
val = reg32_read((volatile uint32_t *)DDR_PHY_CONTROL_REGS_REVISION);
val = reg32_read((volatile uint32_t *)DDR_PHY_WORD_LANE_0_READ_DATA_DLY);
reg32_write((volatile uint32_t *)DDR_PHY_ECC_LANE_READ_DATA_DLY, val);
val = reg32_read((volatile uint32_t *)DDR_PHY_CONTROL_REGS_REVISION);
val = reg32_read((volatile uint32_t *)DDR_PHY_WORD_LANE_0_READ_CONTROL);
reg32_write((volatile uint32_t *)DDR_PHY_ECC_LANE_READ_CONTROL, val);
val = reg32_read((volatile uint32_t *)DDR_PHY_CONTROL_REGS_REVISION);
val = reg32_read((volatile uint32_t *)DDR_PHY_WORD_LANE_0_IDLE_PAD_CONTROL);
reg32_write((volatile uint32_t *)DDR_PHY_ECC_LANE_IDLE_PAD_CONTROL, val);
val = reg32_read((volatile uint32_t *)DDR_PHY_CONTROL_REGS_REVISION);
val = reg32_read((volatile uint32_t *)DDR_PHY_WORD_LANE_0_DRIVE_PAD_CTL);
reg32_write((volatile uint32_t *)DDR_PHY_ECC_LANE_DRIVE_PAD_CTL, val);
val = reg32_read((volatile uint32_t *)DDR_PHY_CONTROL_REGS_REVISION);
val = reg32_read((volatile uint32_t *)DDR_PHY_WORD_LANE_0_WR_PREAMBLE_MODE);
reg32_write((volatile uint32_t *)DDR_PHY_ECC_LANE_WR_PREAMBLE_MODE, val);
val = reg32_read((volatile uint32_t *)DDR_PHY_CONTROL_REGS_REVISION);
__udelay(200);
reg32_write((volatile uint32_t *)DDR_PHY_ECC_LANE_READ_FIFO_CLEAR, 0x1);
val = reg32_read((volatile uint32_t *)DDR_PHY_CONTROL_REGS_REVISION);
__udelay(200);
}
uint32_t iproc_read_ecc_syndrome(void)
{
volatile uint32_t syndrome = 0;
/* Place uncorrectible as bits 7:0, and correctible as 15:8 */
syndrome = ((reg32_read((volatile uint32_t *)DDR_DENALI_CTL_89) >> 3) & 0x1) |
(((reg32_read((volatile uint32_t *)DDR_DENALI_CTL_89) >> 5) & 0x1));
return(syndrome);
}
void iproc_clear_ecc_syndrome(void)
{
uint32_t val;
/* Clear the interrupts, bits 6:3 */
reg32_write((volatile uint32_t *)DDR_DENALI_CTL_213, (1 << 5) | (1<< 3));
__udelay(1000);
}
#endif
#if IS_ENABLED(CONFIG_SOC_BROADCOM_CYGNUS)
uint32_t iproc_get_ddr3_clock_mhz(uint32_t unit)
{
uint32_t ndiv, mdiv, pdiv, ddrclk, data;
data = reg32_read((volatile uint32_t *)DDR_PHY_CONTROL_REGS_PLL_DIVIDERS);
ndiv = data >> DDR_PHY_CONTROL_REGS_PLL_DIVIDERS__NDIV_INT_R;
ndiv &= (2^DDR_PHY_CONTROL_REGS_PLL_DIVIDERS__NDIV_INT_WIDTH) - 1;
pdiv = data >> DDR_PHY_CONTROL_REGS_PLL_DIVIDERS__PDIV_R;
pdiv &= (2^DDR_PHY_CONTROL_REGS_PLL_DIVIDERS__PDIV_WIDTH) - 1;
mdiv = data >> DDR_PHY_CONTROL_REGS_PLL_DIVIDERS__MDIV_R;
mdiv &= (2^DDR_PHY_CONTROL_REGS_PLL_DIVIDERS__MDIV_WIDTH) - 1;
/* read ndiv pdiv and mdiv */
ddrclk = (25 * ndiv * 2 * pdiv) / mdiv;
printk(BIOS_INFO, "%s DDR PHY PLL divisor: ndiv(0x%x) mdiv(0x%x) ddrclk(0x%x)\n", __FUNCTION__, ndiv, mdiv, ddrclk);
return(ddrclk);
}
#endif
#if IS_ENABLED(CONFIG_SOC_BROADCOM_CYGNUS)
int cygnus_phy_powerup(void)
{
int data;
int count = 15;
data = reg32_read((volatile uint32_t *)CRMU_DDR_PHY_AON_CTRL);
if(reg32_read((volatile uint32_t *)CRMU_IHOST_POR_WAKEUP_FLAG)==0)
{
/* Step 1: POWRON */
data = reg32_read((volatile uint32_t *)CRMU_DDR_PHY_AON_CTRL);
data |= 0x8;// assert power ON
reg32_write((volatile uint32_t *)CRMU_DDR_PHY_AON_CTRL, data);
__udelay(2);
/* Step 2: POWROK */
data |= 0x10;// assert power OK
reg32_write((volatile uint32_t *)CRMU_DDR_PHY_AON_CTRL, data);
while(count--)
__udelay(2);
}
else
{
printk(BIOS_INFO, "DeepSleep wakeup: ddr phy init bypassed 1\n");
}
/* Step 3: DFI normal mode */
data &= ~(0x04);// remove DFI isolation
reg32_write((volatile uint32_t *)CRMU_DDR_PHY_AON_CTRL, data);
/* Step 4: Enable register access */
data &= ~(0x02);// remove PHY register isolation
reg32_write((volatile uint32_t *)CRMU_DDR_PHY_AON_CTRL, data);
data &= ~(0x01);// remove PLL isolation
reg32_write((volatile uint32_t *)CRMU_DDR_PHY_AON_CTRL, data);
count = 20;
while(count--)
__udelay(2);
if(reg32_read((volatile uint32_t *)CRMU_IHOST_POR_WAKEUP_FLAG)==0)
{
/* Step 5: release reset */
data |= 0x20;// de-assert reset
reg32_write((volatile uint32_t *)CRMU_DDR_PHY_AON_CTRL, data);
}
else
{
printk(BIOS_INFO, "DeepSleep wakeup: ddr phy init bypassed 2\n");
}
while((reg32_read((volatile uint32_t *)DDR_S1_IDM_IO_STATUS) & 0x08) != 0x08) {
//poll DDR_S1_IDM_IO_STATUS__o_phy_pwrup_rsb
}
return 0;
}
#endif
uint32_t change_ddr_clock(uint32_t clk)
{
return(0);
}
void dump_phy_regs(void)
{
int i;
printk(BIOS_DEBUG, "\n PHY register dump: Control registers\n");
for(i = 0; i <= 0x94; i+=4)
{
printk(BIOS_DEBUG, "0x%03x,\t0x%08x,\n", i,
*(volatile uint32_t *)(DDR_PHY_CONTROL_REGS_REVISION + i));
}
printk(BIOS_DEBUG, "\n PHY register dump: Wordlane0 registers\n");
for(i = 0; i <= 0xc5; i+=4)
{
printk(BIOS_DEBUG, "0x%03x,\t0x%08x,\n", i,
*(volatile uint32_t *)(DDR_PHY_BYTE_LANE_0_VDL_CONTROL_WR_DQS_P + i));
}
return;
}
void ddr_init_regs(unsigned int * tblptr)
{
unsigned int offset = *tblptr;
unsigned int *addr = (unsigned int *)DDR_DENALI_CTL_00;
while(offset != 0xffffffff) {
++tblptr;
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
addr[offset] = *tblptr;
#else
addr[offset] = swap_u32(*tblptr);
#endif
++tblptr;
offset = *tblptr;
}
}
void ddr_phy_ctl_regs_ovrd(unsigned int * tblptr)
{
unsigned int offset = *tblptr;
unsigned int *addr = (unsigned int *)DDR_PHY_CONTROL_REGS_REVISION;
unsigned int val;
while(offset != 0xffffffff) {
++tblptr;
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
addr[offset/4] = *tblptr;
#else
addr[offset/4] = swap_u32(*tblptr);
#endif
val = reg32_read((volatile uint32_t *)DDR_PHY_CONTROL_REGS_REVISION);
if (val) ;
++tblptr;
offset = *tblptr;
}
}
void ddr_phy_wl_regs_ovrd(unsigned int * tblptr)
{
}
/*DDR_SHMOO_RELATED_CHANGE*/
#ifdef CONFIG_RUN_DDR_SHMOO
int ReWriteModeRegisters( void )
{
int nRet = 0;
int j = 100;
reg32_clear_bits( (volatile uint32_t *)DDR_DENALI_CTL_89 , 1 << 18 );
/* Set mode register for MR0, MR1, MR2 and MR3 write for all chip selects */
reg32_write( (volatile uint32_t *)DDR_DENALI_CTL_43 , (1 << 17) | (1 << 24) | (1 << 25) );
/* Trigger Mode Register Write(MRW) sequence */
reg32_set_bits( (volatile uint32_t *)DDR_DENALI_CTL_43 , 1 << 25 );
do {
if ( reg32_read( (volatile uint32_t *)DDR_DENALI_CTL_89) & (1 << 18) ) {
break;
}
--j;
} while( j );
if ( j == 0 && (reg32_read( (volatile uint32_t *)DDR_DENALI_CTL_89) & (1 << 18) ) == 0 ) {
printk(BIOS_ERR, "Error: DRAM mode registers write failed\n");
nRet = 1;
};
return nRet;
}
#endif /* CONFIG_RUN_DDR_SHMOO */
int is_ddr_32bit(void)
{
int ddr32 = 0;
#if (CONFIG_CYGNUS_SHMOO_REUSE_DDR_32BIT)
ddr32=1;
#endif /* (CONFIG_CYGNUS_SHMOO_REUSE_DDR_32BIT) */
return ddr32;
}
static uint32_t get_ddr_clock(uint32_t sku_id, int ddr_type)
{
#ifdef CONFIG_DRAM_FREQ
return CONFIG_DRAM_FREQ;
#else
#error Please set DDR frequency (CONFIG_DRAM_FREQ must be set)
#endif
}
#if defined(CONFIG_SHMOO_REUSE) || defined(CONFIG_SHMOO_AND28_REUSE)
#define RAND_MAGIC_1 0x0000444BUL
#define RAND_MAGIC_2 0x88740000UL
#define RAND_MAGIC_3 69069UL
#define RAND_SEED 0x5301beef
#define RAND_SEED_2 ((RAND_SEED << 21) + (RAND_SEED << 14) + (RAND_SEED << 7))
#define RAND_C_INIT (((RAND_SEED_2 + RAND_MAGIC_1) << 1) + 1)
#define RAND_T_INIT ((RAND_SEED_2 << (RAND_SEED_2 & 0xF)) + RAND_MAGIC_2)
static int simple_memory_test(void *start, uint32_t len)
{
register uint32_t rand_c_value, rand_t_value, rand_value;
register uint32_t i;
register volatile uint32_t *paddr;
len /= 4;
paddr = (volatile uint32_t *)start;
rand_c_value = RAND_C_INIT;
rand_t_value = RAND_T_INIT;
for(i=0; i<len; i++, paddr++) {
rand_c_value *= RAND_MAGIC_3;
rand_t_value ^= rand_t_value >> 15;
rand_t_value ^= rand_t_value << 17;
rand_value = rand_t_value ^ rand_c_value;
*paddr = rand_value;
}
paddr = (volatile uint32_t *)start;
rand_c_value = RAND_C_INIT;
rand_t_value = RAND_T_INIT;
for(i=0; i<len; i++, paddr++) {
rand_c_value *= RAND_MAGIC_3;
rand_t_value ^= rand_t_value >> 15;
rand_t_value ^= rand_t_value << 17;
rand_value = rand_t_value ^ rand_c_value;
if (*paddr != rand_value) {
return -1;
}
}
return 0;
}
#endif /* CONFIG_SHMOO_REUSE || CONFIG_SHMOO_AND28_REUSE */
#if defined(CONFIG_RUN_DDR_SHMOO2) && defined(CONFIG_SHMOO_REUSE)
#define SHMOO_HEADER_MAGIC "SHMO"
#define SHMOO_MIN_BLOCK_SIZE 0x10000
static const uint16_t ddr_phy_ctl_regs[] = {
0x030,
0x034,
0x06c
};
static const uint16_t ddr_phy_wl_regs[] = {
0x000,
0x004,
0x008,
0x00c,
0x010,
0x014,
0x018,
0x01c,
0x020,
0x024,
0x028,
0x02c,
0x030,
0x034,
0x038,
0x03c,
0x040,
0x044,
0x048,
0x04c,
0x050,
0x054,
0x058,
0x05c,
0x060,
0x064,
0x068,
0x06c,
0x070,
0x074,
0x0a4,
0x0a8,
0x0ac,
0x0b0,
0x0b4,
0x0b8,
0x0bc,
0x0c0,
0x0c4,
0x0c8,
0x0cc,
0x0d0,
0x0d4,
0x0d8,
0x0dc,
0x0e0,
0x0e4,
0x0e8,
0x0ec,
0x0f0,
0x0f4,
0x0f8,
0x0fc,
0x100,
0x104,
0x108,
0x10c,
0x110,
0x114,
0x118,
0x11c,
0x120,
0x124,
0x128,
0x12c,
0x130,
0x134,
0x138,
0x13c,
0x140,
0x144,
0x148,
0x14c,
0x150,
0x154,
0x158,
0x15c,
0x160,
0x164,
0x168,
0x16c,
0x1a0,
0x1a4,
0x1a8,
0x1ac,
0x1b0
};
#if defined(CONFIG_IPROC_DDR_ECC) && !defined(CONFIG_IPROC_P7)
static const uint16_t ddr_phy_eccl_regs[] = {
DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_RD_EN_BASE,
DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_W_BASE,
DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_R_P_BASE,
DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_R_N_BASE,
DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_BIT0_W_BASE,
DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_BIT1_W_BASE,
DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_BIT2_W_BASE,
DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_BIT3_W_BASE,
DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_DM_W_BASE,
DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_BIT0_R_P_BASE,
DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_BIT0_R_N_BASE,
DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_BIT1_R_P_BASE,
DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_BIT1_R_N_BASE,
DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_BIT2_R_P_BASE,
DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_BIT2_R_N_BASE,
DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_BIT3_R_P_BASE,
DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_BIT3_R_N_BASE,
DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_BIT_RD_EN_BASE,
DDR_PHY_ECC_LANE_READ_DATA_DLY_BASE,
DDR_PHY_ECC_LANE_READ_CONTROL_BASE,
DDR_PHY_ECC_LANE_IDLE_PAD_CONTROL_BASE,
DDR_PHY_ECC_LANE_DRIVE_PAD_CTL_BASE,
DDR_PHY_ECC_LANE_WR_PREAMBLE_MODE_BASE,
};
#endif
#if defined(CONFIG_IPROC_NAND) && defined(CONFIG_ENV_IS_IN_NAND) && CONFIG_ENV_IS_IN_NAND
static int write_shmoo_to_flash(void *buf, int length)
{
nand_info_t *nand;
int ret = 0;
uint32_t offset = CONFIG_SHMOO_REUSE_NAND_OFFSET;
uint32_t end = offset + CONFIG_SHMOO_REUSE_NAND_RANGE;
uint32_t blksize;
/* Get flash handle */
nand = &nand_info[0];
if (nand->size < offset || nand->writesize == 0 || nand->erasesize == 0) {
printk(BIOS_ERR, "Failed to initialize NAND flash for saving Shmoo values!\n");
return -1;
}
/* For NAND with bad blocks, we always erase all blocks in the range */
{
nand_erase_options_t opts;
memset(&opts, 0, sizeof(opts));
opts.offset = offset / nand->erasesize * nand->erasesize;
opts.length = (CONFIG_SHMOO_REUSE_NAND_RANGE - 1) / nand->erasesize * nand->erasesize + 1;
opts.quiet = 1;
ret = nand_erase_opts(nand, &opts);
if (ret) {
printk(BIOS_ERR, "NAND flash erase failed, error=%d\n", ret);
return ret;
}
}
/* Write data */
blksize = nand->erasesize > SHMOO_MIN_BLOCK_SIZE?
nand->erasesize : SHMOO_MIN_BLOCK_SIZE;
while (offset < end) {
if (nand_block_isbad(nand, offset)) {
offset += blksize;
continue;
}
ret = nand_write(nand, offset, (size_t *)&length, (u_char *)buf);
if (ret) {
printk(BIOS_ERR, "NAND flash write failed, error=%d\n", ret);
}
break;
}
return ret;
}
#elif defined (CONFIG_SPI_FLASH) && defined(CONFIG_ENV_IS_IN_SPI_FLASH) && CONFIG_ENV_IS_IN_SPI_FLASH
static int write_shmoo_to_flash(void *buf, int length)
{
struct spi_flash *flash;
int erase = 0;
volatile uint32_t *flptr;
int i, j, ret = 0;
uint32_t offset = CONFIG_SHMOO_REUSE_QSPI_OFFSET;
/* Check if erasing is required */
flptr = (volatile uint32_t *)(IPROC_QSPI_MEM_BASE + offset / 4 * 4);
j = (length - 1) / 4 + 1;
for(i=0; i<j; i++, flptr++) {
if (*flptr != 0xFFFFFFFF) {
erase = 1;
break;
}
}
/* Probe flash */
flash = spi_flash_probe(
CONFIG_ENV_SPI_BUS,
CONFIG_ENV_SPI_CS,
CONFIG_ENV_SPI_MAX_HZ,
CONFIG_ENV_SPI_MODE
);
if (!flash) {
printk(BIOS_ERR, "Failed to initialize SPI flash for saving Shmoo values!\n");
return -1;
}
/* Erase if necessary */
if (erase) {
ret = spi_flash_erase(
flash,
offset / flash->sector_size * flash->sector_size,
flash->sector_size
);
if (ret) {
printk(BIOS_ERR, "SPI flash erase failed, error=%d\n", ret);
spi_flash_free(flash);
return ret;
}
}
/* Write data */
ret = spi_flash_write(flash, offset, length, buf);
if (ret) {
printk(BIOS_ERR, "SPI flash write failed, error=%d\n", ret);
}
/* Free flash instance */
spi_flash_free(flash);
return ret;
}
#elif defined (CONFIG_ENV_IS_IN_FLASH)
static int write_shmoo_to_flash(void *buf, int length)
{
int erase = 0;
volatile uint32_t *flptr, shmoo_start;
int i, j, ret = 0;
uint32_t offset = CONFIG_SHMOO_REUSE_NOR_OFFSET;
int sect_len;
/* Check if erasing is required */
flptr = (volatile uint32_t *)(IPROC_NOR_MEM_BASE + offset / 4 * 4);
shmoo_start = flptr;
j = (length - 1) / 4 + 1;
for(i=0; i<j; i++, flptr++) {
if (*flptr != 0xFFFFFFFF) {
erase = 1;
break;
}
}
sect_len = (((length / 0x20000) + 1)*0x20000 - 1);
/* Erase if necessary */
if (erase) {
ret = flash_sect_erase((ulong)shmoo_start, (ulong)shmoo_start + sect_len);
if (ret) {
printk(BIOS_ERR, "NOR flash erase failed, error=%d, start addr: 0x%x, end addr: 0x%x\n",
ret, (ulong)shmoo_start, (ulong)shmoo_start + sect_len);
return ret;
}
}
/* Write data */
ret = flash_write((char *)buf, (ulong)shmoo_start, length);
if (ret) {
printk(BIOS_ERR, "NOR flash write failed, error=%d\n", ret);
}
return ret;
}
#else
#error Flash (SPI or NAND) must be enabled
#endif
/* Return flash pointer; or NULL if validation failed */
static volatile uint32_t *validate_flash_shmoo_values(struct shmoo_signature *psig, int *ppairs)
{
uint32_t dev_id, sku_id, ddr_type, ddr_clk;
volatile uint32_t *ptr;
volatile uint32_t *flptr;
struct shmoo_signature sig;
uint32_t checksum, pairs, length;
uint32_t chksum;
int offset;
int i;
int numpairs = 1;
if (is_ddr_32bit()) {
numpairs = 2;
}
/* Calculate required length (register/value pair) */
pairs =
sizeof(ddr_phy_ctl_regs) / sizeof(ddr_phy_ctl_regs[0]) +
sizeof(ddr_phy_wl_regs) / sizeof(ddr_phy_wl_regs[0]) * numpairs;
#ifdef CONFIG_IPROC_DDR_ECC
pairs += sizeof(ddr_phy_eccl_regs) / sizeof(ddr_phy_eccl_regs[0]);
#endif
if (ppairs != NULL) {
*ppairs = pairs;
}
#if defined(CONFIG_ENV_IS_IN_NAND) && CONFIG_ENV_IS_IN_NAND
/* Read SHMOO data from NAND */
flptr = (volatile uint32_t *)(IPROC_NAND_MEM_BASE + CONFIG_SHMOO_REUSE_NAND_OFFSET);
offset = (CONFIG_SHMOO_REUSE_NAND_RANGE - 1) / SHMOO_MIN_BLOCK_SIZE * SHMOO_MIN_BLOCK_SIZE;
#elif defined (CONFIG_ENV_IS_IN_FLASH)
/* Read SHMOO data from NOR */
flptr = (volatile uint32_t *)(IPROC_NOR_MEM_BASE + CONFIG_SHMOO_REUSE_NOR_OFFSET);
offset = 0;
#else
/* Read SHMOO data from SPI */
flptr = (volatile uint32_t *)(IPROC_QSPI_MEM_BASE + CONFIG_SHMOO_REUSE_QSPI_OFFSET);
offset = 0;
#endif
/* Get chip type and DDR type/clock */
dev_id = (reg32_read((volatile uint32_t *)ChipcommonA_ChipID)) & 0x0000ffff;
sku_id = (reg32_read((volatile uint32_t *)ROM_S0_IDM_IO_STATUS) >> 2) & 0x03;
ddr_type = reg32_read((volatile uint32_t *)DDR_S1_IDM_IO_STATUS) & 0x1;
ddr_clk = get_ddr_clock(sku_id, ddr_type);
/* Construct signature */
memcpy(sig.magic, SHMOO_HEADER_MAGIC, 4);
sig.dev_id = dev_id;
sig.sku_id = sku_id;
sig.ddr_type = ddr_type;
sig.ddr_clock = ddr_clk;
/* Provide signature data to caller */
if (psig) {
memcpy(psig, &sig, sizeof(sig));
}
/* Check signature (in min-blocks from bottom) */
while (offset >= 0) {
ptr = flptr + offset;
if (!shmoo_sigmemcmp(&sig,(void *)ptr)) {
break;
}
offset -= SHMOO_MIN_BLOCK_SIZE;
}
if (offset < 0) {
printk(BIOS_ERR, " Signature mismatch ");
return NULL;
}
ptr += 3;
/* Verify checksum */
checksum = *ptr++;
length = *ptr++;
if (pairs != length) {
/* Pair count unmatched */
printk(BIOS_ERR, " Pair count mismatch pairs %x length %x",pairs, length);
return NULL;
}
chksum = 0;
for(i=0; i<length * 2; i++, ptr++) {
chksum += *ptr;
}
if (chksum != checksum) {
printk(BIOS_ERR, " Checksum mismatch cksum: %x checksum:%x",chksum,checksum);
return NULL;
}
return flptr + offset;
}
static int try_restore_shmoo(void)
{
int invalid = 0;
struct shmoo_signature sig;
volatile uint32_t *flptr;
volatile uint32_t *reg;
uint32_t val;
int pairs, i;
/* Validate values in flash */
printk(BIOS_INFO, "Validate Shmoo parameters stored in flash ..... ");
flptr = validate_flash_shmoo_values(&sig, &pairs);
if (flptr == NULL) {
printk(BIOS_ERR, "failed\n");
return 1;
}
printk(BIOS_INFO, "OK\n");
/* Check if user wants to skip restoring and run Shmoo */
if (CONFIG_SHMOO_REUSE_DELAY_MSECS > 0) {
char c = 0;
unsigned long start;
printk(BIOS_INFO, "Press Ctrl-C to run Shmoo ..... ");
start = get_timer(0);
while(get_timer(start) <= CONFIG_SHMOO_REUSE_DELAY_MSECS) {
if (tstc()) {
c = getc();
if (c == 0x03) {
printk(BIOS_INFO, "Pressed.\n");
printk(BIOS_INFO, "Do you want to run the Shmoo? [y/N] ");
for(;;) {
c = getc();
if (c == 'y' || c == 'Y') {
printk(BIOS_INFO, "Y\n");
invalid = 1;
break;
} else if (c == '\r' || c == 'n' || c == 'N') {
if (c != '\r')
printk(BIOS_INFO, "N\n");
break;
}
}
break;
} else {
c = 0;
}
}
}
if (c == 0)
printk(BIOS_INFO, "skipped\n");
}
if (invalid) {
return 1;
}
/* Restore values from flash */
printk(BIOS_INFO, "Restoring Shmoo parameters from flash ..... ");
flptr += 5;
for(i=0; i<pairs; i++) {
reg = (uint32_t *)(*flptr++);
val = (uint32_t *)(*flptr++);
if( (((uint32_t)reg >= DDR_PHY_WORD_LANE_0_VDL_OVRIDE_BYTE_RD_EN) && ((uint32_t)reg <= (DDR_PHY_WORD_LANE_0_VDL_OVRIDE_BYTE_RD_EN + 0x114)))
#if (CONFIG_CYGNUS_SHMOO_REUSE_DDR_32BIT || defined(CONFIG_NS_PLUS))
|| (((uint32_t)reg >= DDR_PHY_WORD_LANE_1_VDL_OVRIDE_BYTE_RD_EN) && ((uint32_t)reg <= (DDR_PHY_WORD_LANE_1_VDL_OVRIDE_BYTE_RD_EN + 0x114)))
#endif
#ifdef CONFIG_IPROC_DDR_ECC
|| (((uint32_t)reg >= (DDR_DENALI_CTL_00 + DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_RD_EN_BASE)) && ((uint32_t)reg <= (DDR_DENALI_CTL_00 + DDR_PHY_ECC_LANE_VDL_OVRIDE_BYTE_BIT_RD_EN_BASE)))
#endif
) {
val |= (1 << 17); /* Force Override */
}
// printk(BIOS_INFO, "Writing 0x%x to 0x%x\n",val,reg);
reg32_write(reg,val);
reg32_read(reg); /* Dummy read back */
}
printk(BIOS_INFO, "done\n");
/* Perform memory test to see if the parameters work */
if (CONFIG_SHMOO_REUSE_MEMTEST_LENGTH > 0 ) {
printk(BIOS_INFO, "Running simple memory test ..... ");
i = simple_memory_test(
(void *)CONFIG_SHMOO_REUSE_MEMTEST_START,
CONFIG_SHMOO_REUSE_MEMTEST_LENGTH);
if (i) {
printk(BIOS_ERR, "failed!\n");
return 1;
}
printk(BIOS_INFO, "OK\n");
}
return 0;
}
#define SHMOO_REG_BUFFER_SIZE 100;
static uint32_t shmoo_reg_buffer[SHMOO_REG_BUFFER_SIZE];
void iproc_save_shmoo_values(void)
{
uint32_t *buffer, *ptr;
volatile uint32_t *flptr;
uint32_t reg, val;
struct shmoo_signature sig;
int pairs, length;
uint32_t chksum;
int i;
/* Check if flash already contains valid data */
flptr = validate_flash_shmoo_values(&sig, &pairs);
if (flptr != NULL) {
/* Check if the flash data are the same as current DDR PHY values */
flptr += 5;
for(i=0; i<pairs; i++) {
reg = *flptr++;
val = *flptr++;
if (val != reg32_read(reg)) {
break;
}
}
if (i == pairs) {
/* No difference found; Saving skipped */
return;
}
}
/* Calculate size of buffer */
length = 12 +
sizeof(uint32_t) * 2 +
sizeof(uint32_t) * pairs * 2;
/* Allocate buffer */
if (length > size(uint32_t) * SHMOO_REG_BUFFER_SIZE) {
printk(BIOS_INFO, "Error pre-allocated shmoo register buffer is not large enough!\n");
return;
}
buffer = shmoo_reg_buffer;
ptr = buffer;
/* Fill signature */
shmoo_sig2mem(&sig,ptr);
ptr += 5;
/* Copy registers and values to buffer */
chksum = 0;
for(i=0; i<sizeof(ddr_phy_ctl_regs) / sizeof(ddr_phy_ctl_regs[0]); i++) {
reg = (uint32_t)DDR_PHY_CONTROL_REGS_REVISION + ddr_phy_ctl_regs[i];
*ptr++ = reg;
chksum += reg;
// val = *(volatile uint32_t *)reg;
val = reg32_read((volatile uint32_t *)reg);
*ptr++ = val;
chksum += val;
}
for(i=0; i<sizeof(ddr_phy_wl_regs) / sizeof(ddr_phy_wl_regs[0]); i++) {
reg = (uint32_t)DDR_PHY_WORD_LANE_0_VDL_OVRIDE_BYTE_RD_EN + ddr_phy_wl_regs[i];
*ptr++ = reg;
chksum += reg;
// val = *(volatile uint32_t *)reg;
val = reg32_read((volatile uint32_t *)reg);
*ptr++ = val;
chksum += val;
}
#if (CONFIG_CYGNUS_SHMOO_REUSE_DDR_32BIT || defined(CONFIG_NS_PLUS))
if (is_ddr_32bit()) {
for(i=0; i<sizeof(ddr_phy_wl_regs) / sizeof(ddr_phy_wl_regs[0]); i++) {
reg = (uint32_t)DDR_PHY_WORD_LANE_1_VDL_OVRIDE_BYTE_RD_EN + ddr_phy_wl_regs[i];
*ptr++ = reg;
chksum += reg;
// val = *(volatile uint32_t *)reg;
val = reg32_read((volatile uint32_t *)reg);
*ptr++ = val;
chksum += val;
}
}
#endif /* (CONFIG_CYGNUS_SHMOO_REUSE_DDR_32BIT || defined(CONFIG_NS_PLUS)) */
#ifdef CONFIG_IPROC_DDR_ECC
for(i=0; i<sizeof(ddr_phy_eccl_regs) / sizeof(ddr_phy_eccl_regs[0]); i++) {
reg = (uint32_t)DDR_DENALI_CTL_00 + ddr_phy_eccl_regs[i];
*ptr++ = reg;
chksum += reg;
// val = *(volatile uint32_t *)reg;
val = reg32_read((volatile uint32_t *)reg);
*ptr++ = val;
chksum += val;
}
#endif
/* Fill checksum and length */
buffer[3] = chksum;
buffer[4] = pairs;
/* Write to flash */
printk(BIOS_INFO, "Writing Shmoo values into flash .....\n");
i = write_shmoo_to_flash(buffer, length);
/* Free buffer */
// free(buffer);
}
#endif /* CONFIG_RUN_DDR_SHMOO2 && CONFIG_SHMOO_REUSE */
#include "soc/ddr_bist.h"
#include "soc/shmoo_and28/shmoo_and28.h"
#ifdef CONFIG_IPROC_DDR_ECC
static int clear_ddr(uint32_t offset, uint32_t size)
{
unsigned long start;
unsigned int i, val;
reg32_write((uint32_t *)DDR_BistConfig,reg32_read((uint32_t *)DDR_BistConfig) & ~0x1);
for( i = 0; i < 1000; i++);
#if !defined(CONFIG_IPROC_P7)
reg32_write((volatile uint32_t *)DDR_DENALI_CTL_213, 0x00FFFFFF);
#endif
reg32_write((volatile uint32_t *)DDR_BistConfig, 0x00000002);
reg32_write((volatile uint32_t *)DDR_BistConfig, 0x00000003);
reg32_write((volatile uint32_t *)DDR_BistConfig, 0x0000C003);
reg32_write((volatile uint32_t *)DDR_BistGeneralConfigurations, 0x00000020);
val = 255 << DDR_BistConfigurations__WriteWeight_R |
0 << DDR_BistConfigurations__ReadWeight_R |
1 << DDR_BistConfigurations__ConsAddr8Banks;
reg32_write((volatile uint32_t *)DDR_BistConfigurations, val);
reg32_write((volatile uint32_t *)DDR_BistStartAddress, offset);
reg32_write((volatile uint32_t *)DDR_BistEndAddress, (1 << DDR_BistEndAddress__BistEndAddress_WIDTH) - 1);
reg32_write((volatile uint32_t *)DDR_BistNumberOfActions, (size + 31) / 32);
reg32_write((volatile uint32_t *)DDR_BistPatternWord0, 0);
reg32_write((volatile uint32_t *)DDR_BistPatternWord1, 0);
reg32_write((volatile uint32_t *)DDR_BistPatternWord2, 0);
reg32_write((volatile uint32_t *)DDR_BistPatternWord3, 0);
reg32_write((volatile uint32_t *)DDR_BistPatternWord4, 0);
reg32_write((volatile uint32_t *)DDR_BistPatternWord5, 0);
reg32_write((volatile uint32_t *)DDR_BistPatternWord6, 0);
reg32_write((volatile uint32_t *)DDR_BistPatternWord7, 0);
reg32_set_bits((volatile uint32_t *)DDR_BistConfigurations, 1 << DDR_BistConfigurations__IndWrRdAddrMode);
reg32_set_bits((volatile uint32_t *)DDR_BistConfigurations, 1 << DDR_BistConfigurations__BistEn);
start = get_timer(0);
while(get_timer(start) <= 10000) {
if(reg32_read((volatile uint32_t *)DDR_BistStatuses) & (1 << DDR_BistStatuses__BistFinished))
break;
}
/* Clear BIST_EN bit */
reg32_clear_bits((volatile uint32_t *)DDR_BistConfigurations, 1 << DDR_BistConfigurations__BistEn);
if((get_timer(start) <= 10000) &&
(!reg32_read((volatile uint32_t *)DDR_BistErrorOccurred)))
{
printk(BIOS_INFO, "clear_ddr: OK\n");
return(0);
}
printk(BIOS_INFO, "clear_ddr: Failed: 0x%lx\n", get_timer(start));
if(reg32_read((volatile uint32_t *)DDR_BistErrorOccurred))
printk(BIOS_ERR, "clear_ddr: Error occured\n");
return(1);
}
#endif /* CONFIG_IPROC_DDR_ECC */
#if defined(CONFIG_SHMOO_AND28_REUSE)
extern void restore_shmoo_config(and28_shmoo_config_param_t *shmoo_control_para);
#endif
#if IS_ENABLED(CONFIG_SOC_BROADCOM_CYGNUS)
static int simple_ddr_crc32_check(void)
{
return 0;
register uint32_t crc_mcu = 0;
register uint32_t crc = 0, offset = 0;
register volatile uint32_t *buf = (uint32_t *)0x60000000;
register uint32_t len = 0x00100000;//in word
printk(BIOS_INFO, "Checking simple DDR CRC, word start 0x%p, len 0x%08x...\n", buf, len);
for(offset=0; offset<len; offset++)
{
crc ^= *buf++;
}
crc_mcu = reg32_read((volatile uint32_t *)0x03012A00);
if(crc != crc_mcu)
{
printk(BIOS_ERR, "DDR CRC NOT match, old=0x%08x, new=0x%08x!\n", crc_mcu, crc);
return -1;
}
else
{
printk(BIOS_INFO, "DDR CRC 0x%08x, match!\n", crc);
return 0;
}
}
#endif
void ddr_init2(void)
{
int i;
volatile unsigned int val;
int ddr_type;
uint32_t status, sku_id, ddr_clk, dev_id = 0;
uint32_t unit = 0;
uint32_t skip_shmoo = 0;
#if IS_ENABLED(CONFIG_SOC_BROADCOM_CYGNUS)
uint32_t pwrctli0 = reg32_read((volatile uint32_t *)IHOST_SCU_POWER_STATUS) & 0x3;
skip_shmoo = reg32_read((volatile uint32_t *)CRMU_IHOST_POR_WAKEUP_FLAG) & 0x1;
if(pwrctli0==2)
{
goto wakeup;
}
else if(pwrctli0==3)
{
skip_shmoo = 1;
reg32_write((volatile uint32_t *)IHOST_GTIM_GLOB_CTRL, reg32_read((volatile uint32_t *)IHOST_GTIM_GLOB_CTRL)| 0x1);
}
#endif /* IS_ENABLED(CONFIG_SOC_BROADCOM_CYGNUS) */
dev_id = dev_id;
#if IS_ENABLED(CONFIG_SOC_BROADCOM_CYGNUS)
and28_shmoo_dram_info_t sdi;
and28_shmoo_config_param_t config_param;
#endif
#if !IS_ENABLED(CONFIG_SOC_BROADCOM_CYGNUS)
dev_id = (reg32_read((volatile uint32_t *)ChipcommonA_ChipID)) & 0x0000ffff;
#else
dev_id = 0x5800;
cygnus_phy_powerup();
#endif
#if IS_ENABLED(CONFIG_SOC_BROADCOM_CYGNUS)
sku_id = (reg32_read((volatile uint32_t *)ROM_S0_IDM_IO_STATUS) >> 8) & 0x0f;
#else
sku_id = (reg32_read((volatile uint32_t *)ROM_S0_IDM_IO_STATUS) >> 2) & 0x03;
#endif
/* See if it is KATANA2, KATANA2 doesn't have right chip ID in ChipcommonA_ChipID */
if(((sku_id & 0xfff0) == 0xa450) || ((sku_id & 0xfff0) == 0xb450) || sku_id == 0xb248) {
dev_id = 56450; /* KATANA2 */
}
printk(BIOS_INFO, "DEV ID = 0x%x\n", dev_id);
printk(BIOS_INFO, "SKU ID = 0x%x\n", sku_id);
#if defined(CONFIG_IPROC_P7)
val = reg32_read((volatile uint32_t *)DDR_S1_IDM_IO_STATUS) & 0x3;
if (val == 0) {
ddr_type = 1;
} else if (val == 1) {
ddr_type = 2;
} else {
printk(BIOS_ERR, "Unsupported DDR type: %d\n", val);
goto done;
}
printk(BIOS_INFO, "DDR type: DDR%d\n", (ddr_type == 1)? 3 : 4);
#elif IS_ENABLED(CONFIG_SOC_BROADCOM_CYGNUS)
ddr_type = 1;
#else
ddr_type = reg32_read((volatile uint32_t *)DDR_S1_IDM_IO_STATUS) & 0x1;
printk(BIOS_INFO, "DDR type: DDR%d\n", (ddr_type) ? 3 : 2);
#endif /* defined(CONFIG_IPROC_P7) */
ddr_clk = get_ddr_clock(sku_id, ddr_type);
printk(BIOS_INFO, "MEMC 0 DDR speed = %dMHz\n", ddr_clk);
status = change_ddr_clock(ddr_clk);
if(status) {
printk(BIOS_INFO, "CRU LCPLL configuratioin failed\n");
goto done;
}
#if defined(CONFIG_IPROC_P7)
val = reg32_read((volatile uint32_t *)CRU_ddrphy_pwr_ctrl);
/* assert power ON */
val |= 1 << CRU_ddrphy_pwr_ctrl__i_pwronin_phy;
reg32_write((volatile uint32_t *)CRU_ddrphy_pwr_ctrl, val);
/* assert power OK */
__udelay(10);
val |= 1 << CRU_ddrphy_pwr_ctrl__i_pwrokin_phy;
reg32_write((volatile uint32_t *)CRU_ddrphy_pwr_ctrl, val);
/* remove DFI isolation */
__udelay(150);
val &= ~(1 << CRU_ddrphy_pwr_ctrl__i_iso_phy_dfi);
reg32_write((volatile uint32_t *)CRU_ddrphy_pwr_ctrl, val);
/* remove PHY register isolation */
val &= ~(1 << CRU_ddrphy_pwr_ctrl__i_iso_phy_regs);
reg32_write((volatile uint32_t *)CRU_ddrphy_pwr_ctrl, val);
/* remove PLL isolation */
val &= ~(1 << CRU_ddrphy_pwr_ctrl__i_iso_phy_pll);
reg32_write((volatile uint32_t *)CRU_ddrphy_pwr_ctrl, val);
/* de-assert reset */
__udelay(200);
val |= 1 << CRU_ddrphy_pwr_ctrl__i_hw_reset_n;
reg32_write((volatile uint32_t *)CRU_ddrphy_pwr_ctrl, val);
/* Wait for PHY power up */
for(i=0; i < 0x19000; i++) {
val = reg32_read((volatile uint32_t *)DDR_S1_IDM_IO_STATUS);
if((val & (1 << DDR_S1_IDM_IO_STATUS__o_phy_pwrup_rsb)))
break;
}
if(i == 0x19000) {
printk(BIOS_ERR, "DDR PHY not power up\n");
goto done;
}
#endif /* defined(CONFIG_IPROC_P7) */
#if IS_ENABLED(CONFIG_SOC_BROADCOM_CYGNUS) || defined(CONFIG_IPROC_P7)
/* Get the DDR S1 and S2 out of reset */
reg32_write((volatile uint32_t *)DDR_S1_IDM_RESET_CONTROL, 0);
reg32_write((volatile uint32_t *)DDR_S2_IDM_RESET_CONTROL, 0);
__udelay(1000);
reg32_write((volatile uint32_t *)DDR_S0_IDM_RESET_CONTROL, 0);
/* Set the ddr_ck to 400 MHz, 2x memc clock */
reg32_write_masked((volatile uint32_t *)DDR_S1_IDM_IO_CONTROL_DIRECT, 0xfff << 16, /*ddr_clk*/ 0x190 << 16);
if(pwrctli0==3)
{
printk(BIOS_INFO, "\n PRE_SRX call \n");
PRE_SRX();
}
#else
reg32_write((volatile uint32_t *)DDR_S1_IDM_RESET_CONTROL, 0);
reg32_write((volatile uint32_t *)DDR_S2_IDM_RESET_CONTROL, 0);
/* Set the ddr_ck to 400 MHz, 2x memc clock */
reg32_write_masked((volatile uint32_t *)DDR_S1_IDM_IO_CONTROL_DIRECT, 0xfff << 16, /*ddr_clk*/ 0x190 << 16);
#endif /* IS_ENABLED(CONFIG_SOC_BROADCOM_CYGNUS) || defined(CONFIG_IPROC_P7) */
#if defined(CONFIG_IPROC_P7)
if (is_ddr_32bit()) {
reg32_write_masked(
(volatile uint32_t *)DDR_S2_IDM_IO_CONTROL_DIRECT,
1 << DDR_S2_IDM_IO_CONTROL_DIRECT__mode_32b,
1 << DDR_S2_IDM_IO_CONTROL_DIRECT__mode_32b
);
}
/* Wait for PHY ready */
for(i=0; i < 0x19000; i++) {
val = reg32_read((volatile uint32_t *)DDR_S1_IDM_IO_STATUS);
if((val & (1 << DDR_S1_IDM_IO_STATUS__o_phy_ready)))
break; /* DDR PHY is up */
}
if(i == 0x19000) {
printk(BIOS_ERR, "DDR PLL not locked\n");
goto done;
}
/* Get the DDR S0 out of reset */
reg32_write((volatile uint32_t *)DDR_S0_IDM_RESET_CONTROL, 0);
#endif /* defined(CONFIG_IPROC_P7) */
/* Wait for DDR PHY up */
for(i=0; i < 0x19000; i++) {
val = reg32_read((volatile uint32_t *)DDR_PHY_CONTROL_REGS_REVISION);
if( val != 0) {
printk(BIOS_INFO, "PHY revision version: 0x%08x\n", val);
break; /* DDR PHY is up */
}
}
if(i == 0x19000) {
printk(BIOS_ERR, "DDR PHY is not up\n");
return;
}
#if IS_ENABLED(CONFIG_SOC_BROADCOM_CYGNUS)
if(!skip_shmoo)
{
printk(BIOS_INFO, "ddr_init2: Calling soc_and28_shmoo_dram_info_set\n");
/* Cygnus clock speed:
*
* clock rate
* 400 800
* 533 1066
* 667 1333
* 800 1600
*/
sdi.data_rate_mbps = (ddr_clk == 667) ? 1333 : ((ddr_clk == 333) ? 667 : (ddr_clk << 1));
sdi.ref_clk_mhz = 50;
sdi.ctl_type = DDR_CTL_TYPE_1;
sdi.dram_type = DDR_DRAM_TYPE_DDR3L;
sdi.dram_bitmap = 0x00000001;
sdi.interface_bitwidth = SDI_INTERFACE_BITWIDTH;
sdi.num_columns = SDI_NUM_COLUMNS;
sdi.num_rows = SDI_NUM_ROWS;
sdi.num_banks = SDI_NUM_BANKS;
sdi.refi = 7800;
sdi.command_parity_latency = 0;
sdi.sim_system_mode = 0;
printk(BIOS_INFO, "ddr_init2: Calling soc_and28_shmoo_dram_info_set\n");
soc_and28_shmoo_dram_info_set(unit, &sdi);
}
else
{
printk(BIOS_INFO, "DeepSleep wakeup: ddr init bypassed 1\n");
}
#else
#error "DRAM config is not set"
#endif
#if IS_ENABLED(CONFIG_SOC_BROADCOM_CYGNUS)
if(!skip_shmoo)
{
printk(BIOS_INFO, "ddr_init2: Calling soc_and28_shmoo_phy_init\n");
if(soc_and28_shmoo_phy_init(unit, 0) != SOC_E_NONE) {
printk(BIOS_ERR, "DDR PHY initialization failed\n");
goto done;
}
}
else
{
printk(BIOS_INFO, "DeepSleep wakeup: ddr init bypassed 2\n");
}
#endif
#ifdef CONFIG_RUN_DDR_SHMOO
printk(BIOS_DEBUG, "PHY register dump after DDR PHY init\n");
dump_phy_regs();
#endif
printk(BIOS_INFO, "Programming controller register\n");
ddr_init_regs(ddr_init_tab);
ddr_type = 1;
if(ddr_type) {
/* DDR3 */
switch(ddr_clk) {
#ifdef CONFIG_DDR333
case 333:
ddr_init_regs(ddr3_init_tab_667);
break;
#endif
#ifdef CONFIG_DDR400
case 400:
ddr_init_regs(ddr3_init_tab_800);
break;
#endif
#ifdef CONFIG_DDR533
case 533:
ddr_init_regs(ddr3_init_tab_1066);
break;
#endif
#ifdef CONFIG_DDR667
case 667:
ddr_init_regs(ddr3_init_tab_1333);
break;
#endif
#if (defined(CONFIG_DDR750) || IS_ENABLED(CONFIG_CYGNUS_DDR800))
case 750:
case 800:
ddr_init_regs(ddr3_init_tab_1600);
break;
#endif
}
}
#if CONFIG_CYGNUS_DDR_AUTO_SELF_REFRESH_ENABLE
#if (DDR_AUTO_SELF_REFRESH_IDLE_COUNT > 0) & (DDR_AUTO_SELF_REFRESH_IDLE_COUNT <= 0xff)
/* Enable auto self-refresh */
reg32_set_bits((unsigned int *)DDR_DENALI_CTL_57,
0x2 << DDR_DENALI_CTL_57__LP_AUTO_EXIT_EN_R |
0x2 << DDR_DENALI_CTL_57__LP_AUTO_ENTRY_EN_R );
reg32_set_bits((unsigned int *)DDR_DENALI_CTL_58,
DDR_AUTO_SELF_REFRESH_IDLE_COUNT << DDR_DENALI_CTL_58__LP_AUTO_SR_IDLE_R);
#else
#error DDR_AUTO_SELF_REFRESH_IDLE_COUNT out of range
#endif
#else
/* Disable auto-self refresh */
reg32_clear_bits((unsigned int *)DDR_DENALI_CTL_57,
0x2 << DDR_DENALI_CTL_57__LP_AUTO_EXIT_EN_R |
0x2 << DDR_DENALI_CTL_57__LP_AUTO_ENTRY_EN_R );
reg32_clear_bits((unsigned int *)DDR_DENALI_CTL_58,
0xff << DDR_DENALI_CTL_58__LP_AUTO_SR_IDLE_R );
#endif
/* Start the DDR */
reg32_set_bits((volatile uint32_t *)DDR_DENALI_CTL_00, 0x01);
#if IS_ENABLED(CONFIG_SOC_BROADCOM_CYGNUS)
if(!skip_shmoo)
{
while(!(reg32_read((volatile uint32_t *)DDR_DENALI_CTL_175) & 0x100));
printk(BIOS_INFO, "ddr_init2: MemC initialization complete\n");
reg32_set_bits((unsigned int *)DDR_DENALI_CTL_177, 0x00100);
reg32_write((unsigned int *)DDR_BistConfig, 0x00000002);
reg32_write((unsigned int *)DDR_BistConfig, 0x00000003);
reg32_write((unsigned int *)DDR_BistConfig, 0x0000C003);
reg32_write((unsigned int *)DDR_BistGeneralConfigurations, 0x00000020);
printk(BIOS_INFO, "ddr_init2: Calling soc_and28_shmoo_ctl\n");
#if defined(CONFIG_SHMOO_AND28_REUSE)
if (is_shmoo_data_valid()) {
restore_shmoo_config(&config_param);
soc_and28_shmoo_ctl(unit, 0, SHMOO_AND28_SHMOO_RSVP, 0, 1, SHMOO_AND28_ACTION_RESTORE, &config_param);
#if defined(CONFIG_SHMOO_REUSE_MEMTEST_LENGTH)
/* Perform memory test to see if the stored SHMMO values work */
if (CONFIG_SHMOO_REUSE_MEMTEST_LENGTH > 0) {
/* Release DDR to AXI for memory testing */
reg32_clear_bits((volatile uint32_t *)DDR_BistConfig, 1 << DDR_BistConfig__axi_port_sel);
printk(BIOS_INFO, "Running simple memory test ..... ");
i = simple_memory_test(
(void *)CONFIG_SHMOO_REUSE_MEMTEST_START,
CONFIG_SHMOO_REUSE_MEMTEST_LENGTH);
if (i) {
printk(BIOS_ERR, "failed!\n");
/* Connect DDR controller to BIST for SHMOO */
reg32_set_bits((volatile uint32_t *)DDR_BistConfig, 1 << DDR_BistConfig__axi_port_sel);
/* Perform full SHMOO since stored values don't work */
soc_and28_shmoo_ctl(unit, 0, SHMOO_AND28_SHMOO_RSVP, 0, 1, SHMOO_AND28_ACTION_RUN, &config_param);
} else {
printk(BIOS_INFO, "OK\n");
}
}
#endif /* defined(CONFIG_SHMOO_REUSE_MEMTEST_LENGTH) */
} else {
soc_and28_shmoo_ctl(unit, 0, SHMOO_AND28_SHMOO_RSVP, 0, 1, SHMOO_AND28_ACTION_RUN, &config_param);
}
#else
soc_and28_shmoo_ctl(unit, 0, SHMOO_AND28_SHMOO_RSVP, 0, 1, SHMOO_AND28_ACTION_RUN, &config_param);
#endif /* CONFIG_SHMOO_AND28_REUSE */
}
#endif
else
{
printk(BIOS_INFO, "DeepSleep wakeup: ddr init bypassed 3\n");
}
#if defined(CONFIG_IPROC_P7) && defined(CONFIG_IPROC_DDR_ECC)
printk(BIOS_INFO, "Enabling DDR ECC correcting and reporting\n");
/* Clear DDR ECC interrupts if any */
reg32_set_bits((volatile uint32_t *)DDR_DENALI_CTL_177,
DDR_DENALI_CTL_177_ECC_MASK);
/* Disable auto corruption */
reg32_set_bits((volatile uint32_t *)DDR_DENALI_CTL_148,
1 << DDR_DENALI_CTL_148__ECC_DISABLE_W_UC_ERR);
/* Enable ECC correction and reporting */
reg32_set_bits((volatile uint32_t *)DDR_DENALI_CTL_146,
1 << DDR_DENALI_CTL_146__ECC_EN);
/* Initialize DDR so that uninitialized reads won't report ecc error */
clear_ddr(0, CONFIG_PHYS_SDRAM_1_SIZE);
#elif defined(CONFIG_IPROC_DDR_ECC)
printk(BIOS_INFO, "Enabling DDR ECC reporting\n");
/* Clear DDR interrupts if any */
*(unsigned int *)(DDR_DENALI_CTL_213) = 0x00FFFFFF;
__udelay(1000);
reg32_set_bits((volatile uint32_t *)DDR_DENALI_CTL_67, 0x01); //Disable auto correction
reg32_set_bits((volatile uint32_t *)DDR_DENALI_CTL_66, 0x01); //Enable ECC
clear_ddr(0, CONFIG_PHYS_SDRAM_1_SIZE);
printk(BIOS_INFO, "Enabling DDR ECC correction\n");
reg32_set_bits((volatile uint32_t *)DDR_DENALI_CTL_66, 1 << 1); //Enable ECC correction
#endif /* defined(CONFIG_IPROC_P7) && defined(CONFIG_IPROC_DDR_ECC) */
/* Release DDR slave port to AXI */
reg32_clear_bits((volatile uint32_t *)DDR_BistConfig, 1 << DDR_BistConfig__axi_port_sel);
printk(BIOS_INFO, "DDR Interface Ready\n");
//dump_phy_regs();
#if IS_ENABLED(CONFIG_SOC_BROADCOM_CYGNUS)
/* SRX */
if(skip_shmoo)
{
// Enter Self refresh (dummy) , to keep Denali happy
reg32_write((unsigned int *)DDR_DENALI_CTL_56, 0x0a050505);
__udelay(200);
printk(BIOS_INFO, "\nDDR self refresh exit \n");
// Assert DFI request from PHY to mask any interaction with MEMC
reg32_write((unsigned int *)DDR_PHY_CONTROL_REGS_DFI_CNTRL, 0xe0);
reg32_write((unsigned int *)DDR_PHY_CONTROL_REGS_DFI_CNTRL, 0);
// Exit Self refresh
reg32_write((unsigned int *)DDR_DENALI_CTL_56, 0x09050505);
}
/* Clear iHOST flag */
reg32_write((unsigned int *)CRMU_IHOST_POR_WAKEUP_FLAG, 0x0);
printk(BIOS_INFO, "IHOST POR WAKEUP FLAG cleared\n");
// iproc_dump_ddr_regs();
if(pwrctli0==0)
goto done;
wakeup:
printk(BIOS_INFO, "Wakeup from %s\n", pwrctli0==2 ? "SLEEP":"DEEPSLEEP");
if(pwrctli0==3)
{
__udelay(10000);
if(simple_ddr_crc32_check()<0)
{
printk(BIOS_INFO, "Die...\n");
while(1);
}
}
/* CRMU_IHOST_SW_PERSISTENT_REG4 = 0x03024c64 */
asm(
"movw r3, #0x4c64\n"
"movt r3, #0x0302\n"
"ldr r5, [r3]\n"
"mov lr, #0\n"
"mov pc, r5\n");
#endif /* IS_ENABLED(CONFIG_SOC_BROADCOM_CYGNUS) */
done:
/* Reclaim everything we have previously allocated for temporary usage. */
// free_heap();
return;
}
|