1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
|
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2015 Google Inc.
* Copyright (C) 2015 Intel Corporation
* Copyright (C) 2017 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <device/mmio.h>
#include <console/console.h>
#include <delay.h>
#include <gpio.h>
#include <soc/gpio.h>
#include <soc/pci_devs.h>
#include <soc/southbridge.h>
#include <assert.h>
static const struct soc_amd_event gpio_event_table[] = {
{ GPIO_1, GEVENT_19 },
{ GPIO_2, GEVENT_8 },
{ GPIO_3, GEVENT_2 },
{ GPIO_4, GEVENT_4 },
{ GPIO_5, GEVENT_7 },
{ GPIO_6, GEVENT_10 },
{ GPIO_7, GEVENT_11 },
{ GPIO_8, GEVENT_23 },
{ GPIO_9, GEVENT_22 },
{ GPIO_11, GEVENT_18 },
{ GPIO_13, GEVENT_21 },
{ GPIO_14, GEVENT_6 },
{ GPIO_15, GEVENT_20 },
{ GPIO_16, GEVENT_12 },
{ GPIO_17, GEVENT_13 },
{ GPIO_18, GEVENT_14 },
{ GPIO_21, GEVENT_5 },
{ GPIO_22, GEVENT_3 },
{ GPIO_23, GEVENT_16 },
{ GPIO_24, GEVENT_15 },
{ GPIO_65, GEVENT_0 },
{ GPIO_66, GEVENT_1 },
{ GPIO_68, GEVENT_9 },
{ GPIO_69, GEVENT_17 },
};
static int get_gpio_gevent(uint8_t gpio)
{
int i;
for (i = 0; i < ARRAY_SIZE(gpio_event_table); i++) {
if (gpio_event_table[i].gpio == gpio)
return (int)gpio_event_table[i].event;
}
return -1;
}
static void mem_read_write32(uint32_t *address, uint32_t value, uint32_t mask)
{
uint32_t reg32;
value &= mask;
reg32 = read32(address);
reg32 &= ~mask;
reg32 |= value;
write32(address, reg32);
}
__weak void configure_gevent_smi(uint8_t gevent, uint8_t mode, uint8_t level)
{
printk(BIOS_WARNING, "Warning: SMI disabled!\n");
}
static void program_smi(uint32_t flag, int gevent_num)
{
uint32_t trigger;
trigger = flag & FLAGS_TRIGGER_MASK;
/*
* Only level trigger is allowed for SMI. Trigger values are 0
* through 3, with 0-1 being level trigger and 2-3 being edge
* trigger. GPIO_TRIGGER_EDGE_LOW is 2, so trigger has to be
* less than GPIO_TRIGGER_EDGE_LOW.
*/
assert(trigger < GPIO_TRIGGER_EDGE_LOW);
if (trigger == GPIO_TRIGGER_LEVEL_HIGH)
configure_gevent_smi(gevent_num, SMI_MODE_SMI,
SMI_SCI_LVL_HIGH);
if (trigger == GPIO_TRIGGER_LEVEL_LOW)
configure_gevent_smi(gevent_num, SMI_MODE_SMI,
SMI_SCI_LVL_LOW);
}
static void route_sci(uint8_t event)
{
smi_write8(SMI_SCI_MAP(event), event);
}
static void get_sci_config_bits(uint32_t flag, uint32_t *edge, uint32_t *level)
{
uint32_t trigger;
trigger = flag & FLAGS_TRIGGER_MASK;
switch (trigger) {
case GPIO_TRIGGER_LEVEL_LOW:
*edge = SCI_TRIGGER_LEVEL;
*level = 0;
break;
case GPIO_TRIGGER_LEVEL_HIGH:
*edge = SCI_TRIGGER_LEVEL;
*level = 1;
break;
case GPIO_TRIGGER_EDGE_LOW:
*edge = SCI_TRIGGER_EDGE;
*level = 0;
break;
case GPIO_TRIGGER_EDGE_HIGH:
*edge = SCI_TRIGGER_EDGE;
*level = 1;
break;
default:
break;
}
}
uintptr_t gpio_get_address(gpio_t gpio_num)
{
uintptr_t gpio_address;
if (gpio_num < 64)
gpio_address = GPIO_BANK0_CONTROL(gpio_num);
else if (gpio_num < 128)
gpio_address = GPIO_BANK1_CONTROL(gpio_num);
else
gpio_address = GPIO_BANK2_CONTROL(gpio_num);
return gpio_address;
}
int gpio_get(gpio_t gpio_num)
{
uint32_t reg;
uintptr_t gpio_address = gpio_get_address(gpio_num);
reg = read32((void *)gpio_address);
return !!(reg & GPIO_PIN_STS);
}
void gpio_set(gpio_t gpio_num, int value)
{
uint32_t reg;
uintptr_t gpio_address = gpio_get_address(gpio_num);
reg = read32((void *)gpio_address);
reg &= ~GPIO_OUTPUT_MASK;
reg |= !!value << GPIO_OUTPUT_SHIFT;
write32((void *)gpio_address, reg);
}
void gpio_input_pulldown(gpio_t gpio_num)
{
uint32_t reg;
uintptr_t gpio_address = gpio_get_address(gpio_num);
reg = read32((void *)gpio_address);
reg &= ~GPIO_PULLUP_ENABLE;
reg |= GPIO_PULLDOWN_ENABLE;
write32((void *)gpio_address, reg);
}
void gpio_input_pullup(gpio_t gpio_num)
{
uint32_t reg;
uintptr_t gpio_address = gpio_get_address(gpio_num);
reg = read32((void *)gpio_address);
reg &= ~GPIO_PULLDOWN_ENABLE;
reg |= GPIO_PULLUP_ENABLE;
write32((void *)gpio_address, reg);
}
void gpio_input(gpio_t gpio_num)
{
uint32_t reg;
uintptr_t gpio_address = gpio_get_address(gpio_num);
reg = read32((void *)gpio_address);
reg &= ~GPIO_OUTPUT_ENABLE;
write32((void *)gpio_address, reg);
}
void gpio_output(gpio_t gpio_num, int value)
{
uint32_t reg;
uintptr_t gpio_address = gpio_get_address(gpio_num);
reg = read32((void *)gpio_address);
reg |= GPIO_OUTPUT_ENABLE;
write32((void *)gpio_address, reg);
gpio_set(gpio_num, value);
}
const char *gpio_acpi_path(gpio_t gpio)
{
return "\\_SB.GPIO";
}
uint16_t gpio_acpi_pin(gpio_t gpio)
{
return gpio;
}
void sb_program_gpios(const struct soc_amd_gpio *gpio_list_ptr, size_t size)
{
uint8_t *mux_ptr;
uint32_t *gpio_ptr, *inter_master;
uint32_t control, control_flags, edge_level, direction;
uint32_t mask, bit_edge, bit_level;
uint8_t mux, index, gpio;
int gevent_num;
inter_master = (uint32_t *)(uintptr_t)(GPIO_CONTROL_MMIO_BASE
+ GPIO_MASTER_SWITCH);
direction = 0;
edge_level = 0;
mask = 0;
/*
* Disable blocking wake/interrupt status generation while updating
* debounce registers. Otherwise when a debounce register is updated
* the whole GPIO controller will zero out all interrupt enable status
* bits while the delay happens. This could cause us to drop the bits
* due to the read-modify-write that happens on each register.
*
* Additionally disable interrupt generation so we don't get any
* spurious interrupts while updating the registers.
*/
mem_read_write32(inter_master, 0, GPIO_MASK_STS_EN | GPIO_INTERRUPT_EN);
for (index = 0; index < size; index++) {
gpio = gpio_list_ptr[index].gpio;
mux = gpio_list_ptr[index].function;
control = gpio_list_ptr[index].control;
control_flags = gpio_list_ptr[index].flags;
mux_ptr = (uint8_t *)(uintptr_t)(gpio + GPIO_IOMUX_MMIO_BASE);
write8(mux_ptr, mux & AMD_GPIO_MUX_MASK);
read8(mux_ptr); /* Flush posted write */
/* special case if pin 2 is assigned to wake */
if ((gpio == 2) && !(mux & AMD_GPIO_MUX_MASK))
route_sci(GPIO_2_EVENT);
gpio_ptr = (uint32_t *)gpio_get_address(gpio);
if (control_flags & GPIO_SPECIAL_FLAG) {
gevent_num = get_gpio_gevent(gpio);
if (gevent_num < 0) {
printk(BIOS_WARNING, "Warning: GPIO pin %d has"
" no associated gevent!\n", gpio);
continue;
}
switch (control_flags & GPIO_SPECIAL_MASK) {
case GPIO_DEBOUNCE_FLAG:
mem_read_write32(gpio_ptr, control,
GPIO_DEBOUNCE_MASK);
break;
case GPIO_WAKE_FLAG:
mem_read_write32(gpio_ptr, control,
INT_WAKE_MASK);
break;
case GPIO_INT_FLAG:
mem_read_write32(gpio_ptr, control,
AMD_GPIO_CONTROL_MASK);
break;
case GPIO_SMI_FLAG:
mem_read_write32(gpio_ptr, control,
INT_SCI_SMI_MASK);
program_smi(control_flags, gevent_num);
break;
case GPIO_SCI_FLAG:
mem_read_write32(gpio_ptr, control,
INT_SCI_SMI_MASK);
get_sci_config_bits(control_flags, &bit_edge,
&bit_level);
edge_level |= bit_edge << gevent_num;
direction |= bit_level << gevent_num;
mask |= (1 << gevent_num);
route_sci(gevent_num);
break;
default:
printk(BIOS_WARNING, "Error, flags 0x%08x\n",
control_flags);
break;
}
} else {
mem_read_write32(gpio_ptr, control,
AMD_GPIO_CONTROL_MASK);
}
}
/*
* Re-enable interrupt status generation.
*
* We leave MASK_STATUS disabled because the kernel may reconfigure the
* debounce registers while the drivers load. This will cause interrupts
* to be missed during boot.
*/
mem_read_write32(inter_master, GPIO_INTERRUPT_EN, GPIO_INTERRUPT_EN);
/* Set all SCI trigger direction (high/low) */
mem_read_write32((uint32_t *)(uintptr_t)(APU_SMI_BASE + SMI_SCI_TRIG),
direction, mask);
/* Set all SCI trigger level (edge/level) */
mem_read_write32((uint32_t *)(uintptr_t)(APU_SMI_BASE + SMI_SCI_LEVEL),
edge_level, mask);
}
/*
* I2C pins are open drain with external pull up, so in order to bit bang them
* all, SCL pins must become GPIO inputs with no pull, then they need to be
* toggled between input-no-pull and output-low. This table is for the initial
* conversion of all SCL pins to input with no pull.
*/
static const struct soc_amd_gpio i2c_2_gpi[] = {
PAD_GPI(I2C0_SCL_PIN, PULL_NONE),
PAD_GPI(I2C1_SCL_PIN, PULL_NONE),
PAD_GPI(I2C2_SCL_PIN, PULL_NONE),
PAD_GPI(I2C3_SCL_PIN, PULL_NONE),
};
#define saved_pins_count ARRAY_SIZE(i2c_2_gpi)
/*
* To program I2C pins without destroying their programming, the registers
* that will be changed need to be saved first.
*/
static void save_i2c_pin_registers(uint8_t gpio,
struct soc_amd_i2c_save *save_table)
{
uint32_t *gpio_ptr;
uint8_t *mux_ptr;
mux_ptr = (uint8_t *)(uintptr_t)(gpio + GPIO_IOMUX_MMIO_BASE);
gpio_ptr = (uint32_t *)gpio_get_address(gpio);
save_table->mux_value = read8(mux_ptr);
save_table->control_value = read32(gpio_ptr);
}
static void restore_i2c_pin_registers(uint8_t gpio,
struct soc_amd_i2c_save *save_table)
{
uint32_t *gpio_ptr;
uint8_t *mux_ptr;
mux_ptr = (uint8_t *)(uintptr_t)(gpio + GPIO_IOMUX_MMIO_BASE);
gpio_ptr = (uint32_t *)gpio_get_address(gpio);
write8(mux_ptr, save_table->mux_value);
read8(mux_ptr);
write32(gpio_ptr, save_table->control_value);
read32(gpio_ptr);
}
/* Slaves to be reset are controlled by devicetree register i2c_scl_reset */
void sb_reset_i2c_slaves(void)
{
const struct soc_amd_stoneyridge_config *cfg;
const struct device *dev = pcidev_path_on_root(GNB_DEVFN);
struct soc_amd_i2c_save save_table[saved_pins_count];
uint8_t i, j, control;
if (!dev || !dev->chip_info)
return;
cfg = dev->chip_info;
control = cfg->i2c_scl_reset & GPIO_I2C_MASK;
if (control == 0)
return;
/* Save and reprogram I2C SCL pins */
for (i = 0; i < saved_pins_count; i++)
save_i2c_pin_registers(i2c_2_gpi[i].gpio, &save_table[i]);
sb_program_gpios(i2c_2_gpi, saved_pins_count);
/*
* Toggle SCL back and forth 9 times under 100KHz. A single read is
* needed after the writes to force the posted write to complete.
*/
for (j = 0; j < 9; j++) {
if (control & GPIO_I2C0_SCL)
write32((uint32_t *)GPIO_I2C0_ADDRESS, GPIO_SCL_LOW);
if (control & GPIO_I2C1_SCL)
write32((uint32_t *)GPIO_I2C1_ADDRESS, GPIO_SCL_LOW);
if (control & GPIO_I2C2_SCL)
write32((uint32_t *)GPIO_I2C2_ADDRESS, GPIO_SCL_LOW);
if (control & GPIO_I2C3_SCL)
write32((uint32_t *)GPIO_I2C3_ADDRESS, GPIO_SCL_LOW);
read32((uint32_t *)GPIO_I2C3_ADDRESS); /* Flush posted write */
udelay(4); /* 4usec gets 85KHz for 1 pin, 70KHz for 4 pins */
if (control & GPIO_I2C0_SCL)
write32((uint32_t *)GPIO_I2C0_ADDRESS, GPIO_SCL_HIGH);
if (control & GPIO_I2C1_SCL)
write32((uint32_t *)GPIO_I2C1_ADDRESS, GPIO_SCL_HIGH);
if (control & GPIO_I2C2_SCL)
write32((uint32_t *)GPIO_I2C2_ADDRESS, GPIO_SCL_HIGH);
if (control & GPIO_I2C3_SCL)
write32((uint32_t *)GPIO_I2C3_ADDRESS, GPIO_SCL_HIGH);
read32((uint32_t *)GPIO_I2C3_ADDRESS); /* Flush posted write */
udelay(4);
}
/* Restore I2C pins. */
for (i = 0; i < saved_pins_count; i++)
restore_i2c_pin_registers(i2c_2_gpi[i].gpio, &save_table[i]);
}
int gpio_interrupt_status(gpio_t gpio)
{
uintptr_t gpio_address = gpio_get_address(gpio);
uint32_t reg = read32((void *)gpio_address);
if (reg & GPIO_INT_STATUS) {
/* Clear interrupt status, preserve wake status */
reg &= ~GPIO_WAKE_STATUS;
write32((void *)gpio_address, reg);
return 1;
}
return 0;
}
|