1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
|
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2011-2012 Alexandru Gagniuc <mr.nuke.me@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "early_vx900.h"
#include "raminit.h"
#include <arch/io.h>
#include <arch/io.h>
#include <console/console.h>
#include <device/pci_ids.h>
#include <delay.h>
#include <lib.h>
#include <string.h>
/**
* @file raminit_ddr3.c
*
* \brief DDR3 initialization for VIA VX900 chipset
*
* Rather than explain the DDR3 init algorithm, it is better to focus on what
* works and what doesn't. Familiarity with the DDR3 spec does not hurt.
*
* 1 DIMMs and 2 DIMMs with one rank each works.
* 1 rank DIMM with 2 rank DIMM works, but the odd ranks are disabled.
* (2) 2-rank DIMMs will not work.
*
* It is not yet clear if odd ranks do not work because of faulty timing
* calibration, or a misconfiguration of the MCU. I have seen this with DIMMS
* which mirror pins on the odd rank. That could also be the issue.
*
* The capture window is not calibrated, but preset. Whether that preset is
* universal or frequency dependent, and whether it is board-specific or not is
* not yet clear. @see vx900_dram_calibrate_recieve_delays().
*
* 4GBit and 8GBit modules may not work. This is untested. Modules with 11
* column address bits are not tested. @see vx900_dram_map_row_col_bank()
*
* Everything else should be in a more or less usable state. FIXME s are placed
* all over as a reminder that either something really needs fixing, or as a
* reminder to double-check.
*/
/* Map BA0 <-> A17, BA1 <-> A18 */
/* Map BA2 <-> A19, RA0/RA1 must not overlap BA[0:2] */
#define VX900_MRS_MA_MAP 0x4b33 /* MA Pin Mapping for MRS commands */
#define VX900_CALIB_MA_MAP 0x5911 /* MA Pin mapping for calibrations */
/*
* Registers 0x78 -> 0x7f contain the calibration settings for DRAM IO timing
* The dataset in these registers is selected from 0x70.
* Once the correct dataset is selected the delays can be altered.
* delay_type refers to TxDQS, TxDQ, RxDQS, or RxCR
* bound refers to either manual, average, upper bound, or lower bound
*/
#define CALIB_TxDQS 0
#define CALIB_TxDQ 1
#define CALIB_RxDQS 2
#define CALIB_RxDQ_CR 3
#define CALIB_AVERAGE 0
#define CALIB_LOWER 1
#define CALIB_UPPER 2
#define CALIB_MANUAL 4 /* We want this & 3 to overflow to 0 */
static void vx900_delay_calib_mode_select(u8 delay_type, u8 bound)
{
/* Which calibration setting */
u8 reg8 = (delay_type & 0x03) << 2;
/* Upper, lower, average, or manual setting */
reg8 |= (bound & 0x03);
pci_write_config8(MCU, 0x70, reg8);
}
/*
* The vendor BIOS does something similar to vx900_delay_calib_mode_select(),
* then reads or write a byte, and repeats the process for all 8 bytes. This is
* annoyingly inefficient, and we can achieve the same result in a much more
* elegant manner.
*/
static void vx900_read_0x78_0x7f(timing_dly dly)
{
*((u32 *) (&(dly[0]))) = pci_read_config32(MCU, 0x78);
*((u32 *) (&(dly[4]))) = pci_read_config32(MCU, 0x7c);
}
static void vx900_write_0x78_0x7f(const timing_dly dly)
{
pci_write_config32(MCU, 0x78, *((u32 *) (&(dly[0]))));
pci_write_config32(MCU, 0x7c, *((u32 *) (&(dly[4]))));
}
static void vx900_read_delay_range(delay_range * d_range, u8 mode)
{
vx900_delay_calib_mode_select(mode, CALIB_LOWER);
vx900_read_0x78_0x7f(d_range->low);
vx900_delay_calib_mode_select(mode, CALIB_AVERAGE);
vx900_read_0x78_0x7f(d_range->avg);
vx900_delay_calib_mode_select(mode, CALIB_UPPER);
vx900_read_0x78_0x7f(d_range->high);
}
static void dump_delay(const timing_dly dly)
{
u8 i;
for (i = 0; i < 8; i++) {
printram(" %.2x", dly[i]);
}
printram("\n");
}
static void dump_delay_range(const delay_range d_range)
{
printram("Lower limit: ");
dump_delay(d_range.low);
printram("Average: ");
dump_delay(d_range.avg);
printram("Upper limit: ");
dump_delay(d_range.high);
}
/*
* These are some "safe" values that can be used for memory initialization.
* Some will stay untouched, and others will be overwritten later on
*/
static pci_reg8 mcu_init_config[] = {
{0x40, 0x01}, /* Virtual rank 0 ending address = 64M - 1 */
{0x41, 0x00}, {0x42, 0x00}, {0x43, 0x00}, /* Virtual Ranks ending */
{0x48, 0x00}, /* Virtual rank 0 starting address = 0 */
{0x49, 0x00}, {0x4a, 0x00}, {0x4b, 0x00}, /* Virtual Ranks beginning */
{0x50, 0xd8}, /* Set ranks 0-3 to 11 col bits, 16 row bits */
/* Disable all virtual ranks */
{0x54, 0x00}, {0x55, 0x00}, {0x56, 0x00}, {0x57, 0x00},
/* Disable rank interleaving in ranks 0-3 */
{0x58, 0x00}, {0x59, 0x00}, {0x5a, 0x00}, {0x5b, 0x00},
{0x6c, 0xA0}, /* Memory type: DDR3, VDIMM: 1.5V, 64-bit DRAM */
{0xc4, 0x80}, /* Enable 8 memory banks */
{0xc6, 0x80}, /* Minimum latency from self-refresh. Bit [7] must be 1 */
/* FIXME: do it here or in Final config? */
{0xc8, 0x80}, /* Enable automatic triggering of short ZQ calibration */
{0x99, 0xf0}, /* Power Management and Bypass Reorder Queue */
/* Enable differential DQS; MODT assertion values suggested in DS */
{0x9e, 0xa1}, {0x9f, 0x51},
/* DQ/DQM Duty Control - Do not put any extra delays */
{0xe9, 0x00}, {0xea, 0x00}, {0xeb, 0x00}, {0xec, 0x00},
{0xed, 0x00}, {0xee, 0x00}, {0xef, 0x00},
{0xfc, 0x00}, {0xfd, 0x00}, {0xfe, 0x00}, {0xff, 0x00},
/* The following parameters we may or may not change */
{0x61, 0x2e}, /* DRAMC Pipeline Control */
{0x77, 0x10}, /* MDQS Output Control */
/* The following are parameters we'll most likely never change again */
{0x60, 0xf4}, /* DRAM Pipeline Turn-Around Setting */
{0x65, 0x49}, /* DRAM Arbitration Bandwidth Timer - I */
{0x66, 0x80}, /* DRAM Queue / Arbitration */
{0x69, 0xc6}, /* Bank Control: 8 banks, high priority refresh */
{0x6a, 0xfc}, /* DRAMC Request Reorder Control */
{0x6e, 0x38}, /* Burst lenght: 8, burst-chop: enable */
{0x73, 0x04}, /* Close All Pages Threshold */
/* The following need to be dynamically asserted */
/* See: check_special_registers.c */
{0x74, 0xa0}, /* Yes, same 0x74; add one more T */
{0x76, 0x60}, /* Write Data Phase Control */
};
/*
* This table keeps the driving strength control setting that we can safely use
* during initialization. This settings come in part from SerialICE, and in part
* from code provided by VIA.
*/
static pci_reg8 mcu_drv_ctrl_config[] = {
{0xd3, 0x03}, /* Enable auto-compensation circuit for ODT strength */
{0xd4, 0x80}, /* Set internal ODT to dynamically turn on or off */
{0xd6, 0x20}, /* Enable strong driving for MA and DRAM commands */
{0xd0, 0x88}, /* (ODT) Strength ?has effect? */
{0xe0, 0x88}, /* DRAM Driving - Group DQS (MDQS) */
{0xe1, 0x00}, /* Disable offset mode for driving strength control */
{0xe2, 0x88}, /* DRAM Driving - Group DQ (MD, MDQM) */
{0xe4, 0xcc}, /* DRAM Driving - Group CSA (MCS, MCKE, MODT) */
{0xe8, 0x88}, /* DRAM Driving - Group MA (MA, MBA, MSRAS, MSCAS, MSWE) */
{0xe6, 0xff}, /* DRAM Driving - Group DCLK0 (DCLK[2:0] for DIMM0) */
{0xe7, 0xff}, /* DRAM Driving - Group DCLK1 (DCLK[5:3] for DIMM1) */
{0xe4, 0xcc}, /* DRAM Driving - Group CSA (MCS, MCKE, MODT) */
{0x91, 0x08}, /* MCLKO Output Phase Delay - I */
{0x92, 0x08}, /* MCLKO Output Phase Delay - II */
{0x93, 0x16}, /* CS/CKE Output Phase Delay */
{0x95, 0x16}, /* SCMD/MA Output Phase Delay */
{0x9b, 0x3f}, /* Memory Clock Output Enable */
};
static void vx900_dram_set_ma_pin_map(u16 map)
{
pci_write_config16(MCU, 0x52, map);
}
/*
* FIXME: This function is a complete waste of space. All we really need is a
* MA MAP table based on either row address bits or column address bits.
* The problem is, I do not know if this mapping is applied during the column
* access or during the row access. At least the religiously verbose output
* makes pretty console output.
*/
static void vx900_dram_map_pins(u8 ba0, u8 ba1, u8 ba2, u8 ra0, u8 ra1)
{
u16 map = 0;
printram("Mapping address pins to DRAM pins:\n");
printram(" BA0 -> A%u\n", ba0);
printram(" BA1 -> A%u\n", ba1);
printram(" BA2 -> A%u\n", ba2);
printram(" RA0 -> A%u\n", ra0);
printram(" RA1 -> A%u\n", ra1);
/* Make sure BA2 is enabled */
map |= (1 << 11);
/*
* Find RA1 (15:14)
* 00: A14
* 01: A16
* 10: A18
* 11: A20
*/
if ((ra1 & 0x01) || (ra1 < 14) || (ra1 > 20)) {
printram("Illegal mapping RA1 -> A%u\n", ra1);
return;
}
map |= (((ra1 - 14) >> 1) & 0x03) << 14;
/*
* Find RA0 (13:12)
* 00: A15
* 01: A17
* 10: A19
* 11: A21
*/
if ((!(ra0 & 0x01)) || (ra0 < 15) || (ra0 > 21)) {
printram("Illegal mapping RA0 -> A%u\n", ra0);
return;
}
map |= (((ra0 - 15) >> 1) & 0x03) << 12;
/*
* Find BA2 (10:8)
* x00: A14
* x01: A15
* x10: A18
* x11: A19
*/
switch (ba2) {
case 14:
map |= (0 << 8);
break;
case 15:
map |= (1 << 8);
break;
case 18:
map |= (2 << 8);
break;
case 19:
map |= (3 << 8);
break;
default:
printram("Illegal mapping BA2 -> A%u\n", ba2);
break;
}
/*
* Find BA1 (6:4)
* 000: A12
* 001: A14
* 010: A16
* 011: A18
* 1xx: A20
*/
if (((ba1 & 0x01)) || (ba1 < 12) || (ba1 > 20)) {
printram("Illegal mapping BA1 -> A%u\n", ba1);
return;
}
map |= (((ba1 - 12) >> 1) & 0x07) << 4;
/*
* Find BA0 (2:0)
* 000: A11
* 001: A13
* 010: A15
* 011: A17
* 1xx: A19
*/
if ((!(ba0 & 0x01)) || (ba0 < 11) || (ba0 > 19)) {
printram("Illegal mapping BA0 -> A%u\n", ba0);
return;
}
map |= (((ba0 - 11) >> 1) & 0x07) << 0;
printram("Setting map mask (rx52) to %.4x\n", map);
vx900_dram_set_ma_pin_map(map);
}
static void vx900_dram_write_init_config(void)
{
/* Keep our RAM space free of legacy stuff */
vx900_disable_legacy_rom_shadow();
/* Now worry about the real RAM init */
size_t i;
for (i = 0; i < (sizeof(mcu_init_config) / sizeof(pci_reg8)); i++) {
pci_write_config8(MCU, mcu_init_config[i].addr,
mcu_init_config[i].val);
}
vx900_dram_set_ma_pin_map(VX900_CALIB_MA_MAP);
/* FIXME: Slowing stuff down. Does this really help? */
/* Fast cycle control for CPU-to-DRAM Read Cycle 0:Disabled.
* This CPU bus controller will wait for all data */
/* Memory to CPU bus Controller Conversion Mode 1: Synchronous mode */
}
static void dram_find_spds_ddr3(const dimm_layout * addr, dimm_info * dimm)
{
size_t i = 0;
int dimms = 0;
do {
spd_raw_data spd;
spd_read(addr->spd_addr[i], spd);
spd_decode_ddr3(&dimm->dimm[i], spd);
if (dimm->dimm[i].dram_type != SPD_MEMORY_TYPE_SDRAM_DDR3)
continue;
dimms++;
dram_print_spd_ddr3(&dimm->dimm[i]);
} while (addr->spd_addr[++i] != SPD_END_LIST
&& i < VX900_MAX_DIMM_SLOTS);
if (!dimms)
die("No DIMMs were found");
}
static void dram_find_common_params(const dimm_info * dimms,
ramctr_timing * ctrl)
{
size_t i, valid_dimms;
memset(ctrl, 0, sizeof(ramctr_timing));
ctrl->cas_supported = 0xff;
valid_dimms = 0;
for (i = 0; i < VX900_MAX_DIMM_SLOTS; i++) {
const dimm_attr *dimm = &dimms->dimm[i];
if (dimm->dram_type == SPD_MEMORY_TYPE_UNDEFINED)
continue;
valid_dimms++;
if (valid_dimms == 1) {
/* First DIMM defines the type of DIMM */
ctrl->dram_type = dimm->dram_type;
ctrl->dimm_type = dimm->dimm_type;
} else {
/* Check if we have mismatched DIMMs */
if (ctrl->dram_type != dimm->dram_type
|| ctrl->dimm_type != dimm->dimm_type)
die("Mismatched DIMM Types");
}
/* Find all possible CAS combinations */
ctrl->cas_supported &= dimm->cas_supported;
/* Find the smallest common latencies supported by all DIMMs */
ctrl->tCK = MAX(ctrl->tCK, dimm->tCK);
ctrl->tAA = MAX(ctrl->tAA, dimm->tAA);
ctrl->tWR = MAX(ctrl->tWR, dimm->tWR);
ctrl->tRCD = MAX(ctrl->tRCD, dimm->tRCD);
ctrl->tRRD = MAX(ctrl->tRRD, dimm->tRRD);
ctrl->tRP = MAX(ctrl->tRP, dimm->tRP);
ctrl->tRAS = MAX(ctrl->tRAS, dimm->tRAS);
ctrl->tRC = MAX(ctrl->tRC, dimm->tRC);
ctrl->tRFC = MAX(ctrl->tRFC, dimm->tRFC);
ctrl->tWTR = MAX(ctrl->tWTR, dimm->tWTR);
ctrl->tRTP = MAX(ctrl->tRTP, dimm->tRTP);
ctrl->tFAW = MAX(ctrl->tFAW, dimm->tFAW);
}
ctrl->n_dimms = valid_dimms;
if (!ctrl->cas_supported)
die("Unsupported DIMM combination. "
"DIMMS do not support common CAS latency");
if (!valid_dimms)
die("No valid DIMMs found");
}
static void vx900_dram_phys_bank_range(const dimm_info * dimms,
rank_layout * ranks)
{
size_t i;
for (i = 0; i < VX900_MAX_DIMM_SLOTS; i++) {
if (dimms->dimm[i].dram_type == SPD_MEMORY_TYPE_UNDEFINED)
continue;
u8 nranks = dimms->dimm[i].ranks;
/* Make sure we save the flags */
ranks->flags[i * 2 + 1] = ranks->flags[i * 2] =
dimms->dimm[i].flags;
/* Only Rank1 has a mirrored pin mapping */
ranks->flags[i * 2].pins_mirrored = 0;
if (nranks > 2)
die("Found DIMM with more than two ranks, which is not "
"supported by this chipset");
u32 size = dimms->dimm[i].size_mb;
if (nranks == 2) {
/* Each rank holds half the capacity of the DIMM */
size >>= 1;
ranks->phys_rank_size_mb[i << 1] = size;
ranks->phys_rank_size_mb[(i << 1) | 1] = size;
} else {
/* Otherwise, everything is held in the first bank */
ranks->phys_rank_size_mb[i << 1] = size;
ranks->phys_rank_size_mb[(i << 1) | 1] = 0;
}
}
}
#define ODT_R0 0
#define ODT_R1 1
#define ODT_R2 2
#define ODT_R3 3
/*
* This is the table that tells us which MODT pin to map to which rank.
*
* This table is taken from code provided by VIA, but no explanation was
* provided as to why it is done this way. It may be possible that this table is
* not suitable for the way we map ranks later on.
*/
static const u8 odt_lookup_table[][2] = {
/* RankMAP Rank 3 Rank 2 Rank 1 Rank 0 */
{0x01, (ODT_R3 << 6) | (ODT_R2 << 4) | (ODT_R1 << 2) | (ODT_R0 << 0)},
{0x03, (ODT_R3 << 6) | (ODT_R2 << 4) | (ODT_R0 << 2) | (ODT_R1 << 0)},
{0x04, (ODT_R3 << 6) | (ODT_R2 << 4) | (ODT_R1 << 2) | (ODT_R0 << 0)},
{0x05, (ODT_R3 << 6) | (ODT_R0 << 4) | (ODT_R1 << 2) | (ODT_R2 << 0)},
{0x07, (ODT_R3 << 6) | (ODT_R0 << 4) | (ODT_R2 << 2) | (ODT_R2 << 0)},
{0x0c, (ODT_R2 << 6) | (ODT_R3 << 4) | (ODT_R1 << 2) | (ODT_R0 << 0)},
{0x0d, (ODT_R0 << 6) | (ODT_R0 << 4) | (ODT_R1 << 2) | (ODT_R2 << 0)},
{0x0f, (ODT_R0 << 6) | (ODT_R0 << 4) | (ODT_R2 << 2) | (ODT_R2 << 0)},
{0, 0},
};
static void vx900_dram_driving_ctrl(const dimm_info * dimm)
{
size_t i, ndimms;
u8 reg8, regxd5, rank_mask;
rank_mask = 0;
/* For ODT range selection, datasheet recommends
* when 1 DIMM present: 60 Ohm
* when 2 DIMMs present: 120 Ohm */
ndimms = 0;
for (i = 0; i < VX900_MAX_DIMM_SLOTS; i++) {
if (dimm->dimm[i].dram_type != SPD_MEMORY_TYPE_SDRAM_DDR3)
continue;
ndimms++;
rank_mask |= (1 << (i * 2));
if (dimm->dimm[i].ranks > 1)
rank_mask |= (2 << (i * 2));
}
/* ODT strength and MD/MDQM/MDQS driving strength */
if (ndimms > 1) {
/* Enable 1 ODT block (120 Ohm ODT) */
regxd5 = 0 << 2;
/* Enable strong driving for MD/MDQM/MDQS */
regxd5 |= (1 << 7);
} else {
/* Enable 2 ODT blocks (60 Ohm ODT) */
regxd5 = 1 << 2;
/* Leave MD/MDQM/MDQS driving weak */
}
pci_write_config8(MCU, 0xd5, regxd5);
/* Enable strong CLK driving for DIMMs with more than one rank */
if (dimm->dimm[0].ranks > 1)
pci_mod_config8(MCU, 0xd6, 0, (1 << 7));
if (dimm->dimm[1].ranks > 1)
pci_mod_config8(MCU, 0xd6, 0, (1 << 6));
/* DRAM ODT Lookup Table */
for (i = 0;; i++) {
if (odt_lookup_table[i][0] == 0) {
printram("No ODT entry for rank mask %x\n", rank_mask);
die("Aborting");
}
if (odt_lookup_table[i][0] != rank_mask)
continue;
reg8 = odt_lookup_table[i][1];
break;
}
printram("Mapping rank mask %x to ODT entry %.2x\n", rank_mask, reg8);
pci_write_config8(MCU, 0x9c, reg8);
for (i = 0; i < (sizeof(mcu_drv_ctrl_config) / sizeof(pci_reg8)); i++) {
pci_write_config8(MCU, mcu_drv_ctrl_config[i].addr,
mcu_drv_ctrl_config[i].val);
}
}
static void vx900_pr_map_all_vr3(void)
{
/* Enable all ranks and set them to VR3 */
pci_write_config16(MCU, 0x54, 0xbbbb);
}
/* Map physical rank pr to virtual rank vr */
static void vx900_map_pr_vr(u8 pr, u8 vr)
{
u16 val;
pr &= 0x3;
vr &= 0x3;
/* Enable rank (bit [3], and set the VR number bits [1:0] */
val = 0x8 | vr;
/* Now move the value to the appropriate PR */
val <<= (pr * 4);
pci_mod_config16(MCU, 0x54, 0xf << (pr * 4), val);
printram("Mapping PR %u to VR %u\n", pr, vr);
}
static u8 vx900_get_CWL(u8 CAS)
{
/* Get CWL based on CAS using the following rule:
* _________________________________________
* CAS: | 4T | 5T | 6T | 7T | 8T | 9T | 10T | 11T |
* CWL: | 5T | 5T | 5T | 6T | 6T | 7T | 7T | 8T |
*/
static const u8 cas_cwl_map[] = { 5, 5, 5, 6, 6, 7, 7, 8 };
if (CAS > 11)
return 8;
return cas_cwl_map[CAS - 4];
}
/*
* Here we are calculating latencies, and writing them to the appropriate
* registers. Note that some registers do not take latencies from 0 = 0T,
* 1 = 1T, so each register gets its own math formula.
*/
static void vx900_dram_timing(ramctr_timing * ctrl)
{
u8 reg8, val, tFAW, tRRD;
u32 val32;
/* Maximum supported DDR3 frequency is 533MHz (DDR3 1066) so make sure
* we cap it if we have faster DIMMs.
* Then, align it to the closest JEDEC standard frequency */
if (ctrl->tCK <= TCK_533MHZ) {
ctrl->tCK = TCK_533MHZ;
} else if (ctrl->tCK <= TCK_400MHZ) {
ctrl->tCK = TCK_400MHZ;
} else if (ctrl->tCK <= TCK_333MHZ) {
ctrl->tCK = TCK_333MHZ;
} else {
ctrl->tCK = TCK_266MHZ;
}
val32 = (1000 << 8) / ctrl->tCK;
printram("Selected DRAM frequency: %u MHz\n", val32);
/* Find CAS and CWL latencies */
val = CEIL_DIV(ctrl->tAA, ctrl->tCK);
printram("Minimum CAS latency : %uT\n", val);
/* Find lowest supported CAS latency that satisfies the minimum value */
while (!((ctrl->cas_supported >> (val - 4)) & 1)
&& (ctrl->cas_supported >> (val - 4))) {
val++;
}
/* Is CAS supported */
if (!(ctrl->cas_supported & (1 << (val - 4))))
printram("CAS not supported\n");
printram("Selected CAS latency : %uT\n", val);
ctrl->CAS = val;
ctrl->CWL = vx900_get_CWL(ctrl->CAS);
printram("Selected CWL latency : %uT\n", ctrl->CWL);
/* Write CAS and CWL */
reg8 = (((ctrl->CWL - 4) & 0x07) << 4) | ((ctrl->CAS - 4) & 0x07);
pci_write_config8(MCU, 0xc0, reg8);
/* Find tRCD */
val = CEIL_DIV(ctrl->tRCD, ctrl->tCK);
printram("Selected tRCD : %uT\n", val);
reg8 = ((val - 4) & 0x7) << 4;
/* Find tRP */
val = CEIL_DIV(ctrl->tRP, ctrl->tCK);
printram("Selected tRP : %uT\n", val);
reg8 |= ((val - 4) & 0x7);
pci_write_config8(MCU, 0xc1, reg8);
/* Find tRAS */
val = CEIL_DIV(ctrl->tRAS, ctrl->tCK);
printram("Selected tRAS : %uT\n", val);
reg8 = ((val - 15) & 0x7) << 4;
/* Find tWR */
ctrl->WR = CEIL_DIV(ctrl->tWR, ctrl->tCK);
printram("Selected tWR : %uT\n", ctrl->WR);
reg8 |= ((ctrl->WR - 4) & 0x7);
pci_write_config8(MCU, 0xc2, reg8);
/* Find tFAW */
tFAW = CEIL_DIV(ctrl->tFAW, ctrl->tCK);
printram("Selected tFAW : %uT\n", tFAW);
/* Find tRRD */
tRRD = CEIL_DIV(ctrl->tRRD, ctrl->tCK);
printram("Selected tRRD : %uT\n", tRRD);
val = tFAW - 4 * tRRD; /* number of cycles above 4*tRRD */
reg8 = ((val - 0) & 0x7) << 4;
reg8 |= ((tRRD - 2) & 0x7);
pci_write_config8(MCU, 0xc3, reg8);
/* Find tRTP */
val = CEIL_DIV(ctrl->tRTP, ctrl->tCK);
printram("Selected tRTP : %uT\n", val);
reg8 = ((val & 0x3) << 4);
/* Find tWTR */
val = CEIL_DIV(ctrl->tWTR, ctrl->tCK);
printram("Selected tWTR : %uT\n", val);
reg8 |= ((val - 2) & 0x7);
pci_mod_config8(MCU, 0xc4, 0x3f, reg8);
/* DRAM Timing for All Ranks - VI
* [7:6] CKE Assertion Minimum Pulse Width
* We probably don't want to mess with this just yet.
* [5:0] Refresh-to-Active or Refresh-to-Refresh (tRFC)
* tRFC = (30 + 2 * [5:0])T
* Since we previously set RxC4[7]
*/
reg8 = pci_read_config8(MCU, 0xc5);
val = CEIL_DIV(ctrl->tRFC, ctrl->tCK);
printram("Minimum tRFC : %uT\n", val);
if (val < 30) {
val = 0;
} else {
val = (val - 30 + 1) / 2;
}
;
printram("Selected tRFC : %uT\n", 30 + 2 * val);
reg8 |= (val & 0x3f);
pci_write_config8(MCU, 0xc5, reg8);
/* Where does this go??? */
val = CEIL_DIV(ctrl->tRC, ctrl->tCK);
printram("Required tRC : %uT\n", val);
}
/* Program the DRAM frequency */
static void vx900_dram_freq(ramctr_timing * ctrl)
{
u8 val;
/* Step 1 - Reset the PLL */
pci_mod_config8(MCU, 0x90, 0x00, 0x0f);
/* Wait at least 10 ns; VIA code delays by 640us */
udelay(640);
/* Step 2 - Set target frequency */
if (ctrl->tCK <= TCK_533MHZ) {
val = 0x07;
ctrl->tCK = TCK_533MHZ;
} else if (ctrl->tCK <= TCK_400MHZ) {
val = 0x06;
ctrl->tCK = TCK_400MHZ;
} else if (ctrl->tCK <= TCK_333MHZ) {
val = 0x05;
ctrl->tCK = TCK_333MHZ;
} else { /*ctrl->tCK <= TCK_266MHZ */
val = 0x04;
ctrl->tCK = TCK_266MHZ;
}
/* Restart the PLL with the desired frequency */
pci_mod_config8(MCU, 0x90, 0x0f, val);
/* Step 3 - Wait for PLL to stabilize */
udelay(2000);
/* Step 4 - Reset the DLL - Clear [7,4] */
pci_mod_config8(MCU, 0x6b, 0x90, 0x00);
udelay(2000);
/* Step 5 - Enable the DLL - Set bits [7,4] to 01b */
pci_mod_config8(MCU, 0x6b, 0x00, 0x10);
udelay(2000);
/* Step 6 - Start DLL Calibration - Set bit [7] */
pci_mod_config8(MCU, 0x6b, 0x00, 0x80);
udelay(5);
/* Step 7 - Finish DLL Calibration - Clear bit [7] */
pci_mod_config8(MCU, 0x6b, 0x80, 0x00);
/* Step 8 - If we have registered DIMMs, we need to set bit[0] */
if (dimm_is_registered(ctrl->dimm_type)) {
printram("Enabling RDIMM support in memory controller\n");
pci_mod_config8(MCU, 0x6c, 0x00, 0x01);
}
}
/*
* The VX900 can send the MRS commands directly through hardware
* It does the MR2->MR3->MR1->MR0->LongZQ JEDEC dance
* The parameters that we don't worry about are extracted from the timing
* registers we have programmed earlier.
*/
static void vx900_dram_ddr3_do_hw_mrs(u8 ma_swap, u8 rtt_nom,
u8 ods, u8 rtt_wr, u8 srt, u8 asr)
{
u16 reg16 = 0;
printram("Using Hardware method for DRAM MRS commands.\n");
reg16 |= ((rtt_wr & 0x03) << 12);
if (srt)
reg16 |= (1 << 9);
if (asr)
reg16 |= (1 << 8);
reg16 |= ((rtt_nom & 0x7) << 4);
reg16 |= ((ods & 0x03) << 2);
if (ma_swap)
reg16 |= (1 << 1);
reg16 |= (1 << 14);
reg16 |= (1 << 0); /* This is the trigger bit */
printram("Hw MRS set is 0x%4x\n", reg16);
pci_write_config16(MCU, 0xcc, reg16);
/* Wait for MRS commands to be sent */
while (pci_read_config8(MCU, 0xcc) & 1);
}
/*
* Translate the MRS command into an address on the CPU bus
*
* Take an MRS command (mrs_cmd_t) and translate it to a read address on the CPU
* bus. Thus, reading from the returned address, will issue the correct MRS
* command, assuming we are in MRS mode, of course.
*
* A read from the returned address will produce the correct MRS command
* provided the following conditions are met:
* - The MA pin mapping is set to VX900_MRS_MA_MAP
* - The memory controller's Fun3_RX6B[2:0] is set to 011b (MSR Enable)
*/
static u32 vx900_get_mrs_addr(mrs_cmd_t cmd)
{
u32 addr = 0;
u8 mrs_type = (cmd >> 16) & 0x07;
/* MA[9:0] <-> A[12:3] */
addr |= ((cmd & 0x3ff) << 3);
/* MA10 <-> A20 */
addr |= (((cmd >> 10) & 0x1) << 20);
/* MA[12:11] <-> A[14:13] */
addr |= (((cmd >> 11) & 0x3) << 13);
/* BA[2:0] <-> A[19:17] */
addr |= mrs_type << 17;
return addr;
}
/*
* Here, we do the MR2->MR3->MR1->MR0->LongZQ JEDEC dance manually
*
* Why would we do this in software, when the VX900 can do it in hardware? The
* problem is the hardware sequence seems to be buggy on ranks with mirrored
* pins. Is this a hardware bug or a misconfigured MCU? No idea.
*
* To maintain API compatibility with the function that implements the hardware
* sequence, we don't ask for all parameters. To keep an overall cleaner code
* structure, we don't try to pass down all that information. Instead, we
* extract the extra parameters from the timing registers we have programmed
* earlier.
*/
static void vx900_dram_ddr3_do_sw_mrs(u8 ma_swap, enum ddr3_mr1_rtt_nom rtt_nom,
enum ddr3_mr1_ods ods,
enum ddr3_mr2_rttwr rtt_wr,
enum ddr3_mr2_srt_range srt,
enum ddr3_mr2_asr asr)
{
mrs_cmd_t mrs;
u8 reg8, cas, cwl, twr;
printram("Using Software method for DRAM MRS commands.\n");
/* Get CAS, CWL, and tWR that we programmed earlier */
reg8 = pci_read_config8(MCU, 0xc0);
cas = (reg8 & 0x07) + 4;
cwl = ((reg8 >> 4) & 0x07) + 4;
reg8 = pci_read_config8(MCU, 0xc2);
twr = (reg8 & 0x07) + 4;
/* Step 06 - Set Fun3_RX6B[2:0] to 001b (NOP Command Enable). */
/* Was already done for us before calling us */
/* Step 07 - Read a double word from any address of the DIMM. */
/* Was already done for us before calling us */
/* Step 08 - Set Fun3_RX6B[2:0] to 011b (MSR Enable). */
pci_mod_config8(MCU, 0x6b, 0x07, 0x03); /* MSR Enable */
/* Step 09 - Issue MR2 cycle. Read a double word from the address
* depended on DRAM's Rtt_WR and CWL settings. */
mrs = ddr3_get_mr2(rtt_wr, srt, asr, cwl);
if (ma_swap)
mrs = ddr3_mrs_mirror_pins(mrs);
volatile_read(vx900_get_mrs_addr(mrs));
printram("MR2: %.5x\n", mrs);
udelay(1000);
/* Step 10 - Issue MR3 cycle. Read a double word from the address 60000h
* to set DRAM to normal operation mode. */
mrs = ddr3_get_mr3(0);
if (ma_swap)
mrs = ddr3_mrs_mirror_pins(mrs);
volatile_read(vx900_get_mrs_addr(mrs));
printram("MR3: %.5x\n", mrs);
udelay(1000);
/* Step 11 -Issue MR1 cycle. Read a double word from the address
* depended on DRAM's output driver impedance and Rtt_Nom settings.
* The DLL enable field, TDQS field, write leveling enable field,
* additive latency field and Qoff field should be set to 0. */
mrs = ddr3_get_mr1(DDR3_MR1_QOFF_ENABLE, DDR3_MR1_TQDS_DISABLE, rtt_nom,
DDR3_MR1_WRLVL_DISABLE, ods, DDR3_MR1_AL_DISABLE,
DDR3_MR1_DLL_ENABLE);
if (ma_swap)
mrs = ddr3_mrs_mirror_pins(mrs);
volatile_read(vx900_get_mrs_addr(mrs));
printram("MR1: %.5x\n", mrs);
udelay(1000);
/* Step 12 - Issue MR0 cycle. Read a double word from the address
* depended on DRAM's burst length, CAS latency and write recovery time
* settings.
* The read burst type field should be set to interleave.
* The mode field should be set to normal mode.
* The DLL reset field should be set to No.
* The DLL control for precharge PD field should be set to Fast exit.
*/
mrs = ddr3_get_mr0(DDR3_MR0_PRECHARGE_FAST, twr,
DDR3_MR0_DLL_RESET_NO, DDR3_MR0_MODE_NORMAL, cas,
DDR3_MR0_BURST_TYPE_INTERLEAVED,
DDR3_MR0_BURST_LENGTH_CHOP);
volatile_read(vx900_get_mrs_addr(mrs));
printram("MR0: %.5x\n", mrs);
udelay(1000);
/* Step 13 - Set Fun3_RX6B[2:0] to 110b (Long ZQ calibration cmd) */
pci_mod_config8(MCU, 0x6b, 0x07, 0x06); /* Long ZQ */
/* Step 14 - Read a double word from any address of the DIMM. */
volatile_read(0);
udelay(1000);
}
/*
* This is where we take the DIMMs out of reset and do the JEDEC dance for each
* individual physical rank.
*/
static void vx900_dram_ddr3_dimm_init(const ramctr_timing * ctrl,
const rank_layout * ranks)
{
size_t i;
u8 rtt_nom, rtt_wr, ods, pinswap;
/* Set BA[0/1/2] to [A17/18/19] */
vx900_dram_set_ma_pin_map(VX900_MRS_MA_MAP);
/* Step 01 - Set Fun3_Rx6E[5] to 1b to support burst length. */
pci_mod_config8(MCU, 0x6e, 0, 1 << 5);
/* Step 02 - Set Fun3_RX69[0] to 0b (Disable Multiple Page Mode). */
pci_mod_config8(MCU, 0x69, (1 << 0), 0x00);
/* And set [7:6] to 10b ? */
pci_write_config8(MCU, 0x69, 0x87);
/* Step 03 - Set the target physical rank to virtual rank0 and other
* ranks to virtual rank3. */
vx900_pr_map_all_vr3();
/* Step 04 - Set Fun3_Rx50 to D8h. */
pci_write_config8(MCU, 0x50, 0xd8);
/* Step 05 - Set Fun3_RX6B[5] to 1b to de-assert RESET# and wait for at
* least 500 us. */
pci_mod_config8(MCU, 0x6b, 0x00, (1 << 5));
udelay(500);
/* Step 6 -> 15 - Set the target physical rank to virtual rank 0 and
* other ranks to virtual rank 3.
* Repeat Step 6 to 14 for every rank present, then jump to Step 16. */
for (i = 0; i < VX900_MAX_MEM_RANKS; i++) {
if (ranks->phys_rank_size_mb[i] == 0)
continue;
printram("Initializing rank %lu\n", i);
/* Set target physical rank to virtual rank 0
* other ranks to virtual rank 3*/
vx900_map_pr_vr(i, 0);
/* FIXME: Is this needed on HW init? */
pci_mod_config8(MCU, 0x6b, 0x07, 0x01); /* Enable NOP */
volatile_read(0x0); /* Do NOP */
pci_mod_config8(MCU, 0x6b, 0x07, 0x03); /* MSR Enable */
/* See init_dram_by_rank.c and get_basic_information.c
* in the VIA provided code */
if (ctrl->n_dimms == 1) {
rtt_nom = DDR3_MR1_RTT_NOM_RZQ2;
rtt_wr = DDR3_MR2_RTTWR_OFF;
} else {
rtt_nom = DDR3_MR1_RTT_NOM_RZQ8;
rtt_wr = DDR3_MR2_RTTWR_RZQ2;
}
ods = ranks->flags[i].rzq7_supported ?
DDR3_MR1_ODS_RZQ7 : DDR3_MR1_ODS_RZQ6;
pinswap = (ranks->flags[i].pins_mirrored);
if (pinswap)
printram("Pins mirrored\n");
printram(" Swap : %x\n", pinswap);
printram(" rtt_nom : %x\n", rtt_nom);
printram(" ods : %x\n", ods);
printram(" rtt_wr : %x\n", rtt_wr);
if (RAMINIT_USE_HW_MRS_SEQ)
vx900_dram_ddr3_do_hw_mrs(pinswap, rtt_nom, ods, rtt_wr,
0, 0);
else
vx900_dram_ddr3_do_sw_mrs(pinswap, rtt_nom, ods, rtt_wr,
0, 0);
/* Normal SDRAM Mode */
pci_mod_config8(MCU, 0x6b, 0x07, 0x00);
/* Step 15, set the rank to virtual rank 3 */
vx900_map_pr_vr(i, 3);
}
/* Step 16 - Set Fun3_Rx6B[2:0] to 000b (Normal SDRAM Mode). */
pci_mod_config8(MCU, 0x6b, 0x07, 0x00);
/* Set BA[0/1/2] to [A13/14/15] */
vx900_dram_set_ma_pin_map(VX900_CALIB_MA_MAP);
/* Step 17 - Set Fun3_Rx69[0] to 1b (Enable Multiple Page Mode). */
pci_mod_config8(MCU, 0x69, 0x00, (1 << 0));
printram("DIMM initialization sequence complete\n");
}
/*
* This a small utility to send a single MRS command, but where we don't want to
* have to worry about changing the MCU mode. It gives the MCU back to us in
* normal operating mode.
*/
static void vx900_dram_send_soft_mrs(mrs_cmd_t cmd, u8 pin_swap)
{
u32 addr;
/* Set Fun3_RX6B[2:0] to 011b (MSR Enable). */
pci_mod_config8(MCU, 0x6b, 0x07, (3 << 0));
/* Is this a funky rank with Address pins swapped? */
if (pin_swap)
cmd = ddr3_mrs_mirror_pins(cmd);
/* Find the address corresponding to the MRS */
addr = vx900_get_mrs_addr(cmd);
/* Execute the MRS */
volatile_read(addr);
/* Set Fun3_Rx6B[2:0] to 000b (Normal SDRAM Mode). */
pci_mod_config8(MCU, 0x6b, 0x07, 0x00);
}
static void vx900_dram_enter_read_leveling(u8 pinswap)
{
/* Precharge all before issuing read leveling MRS to DRAM */
pci_mod_config8(MCU, 0x06b, 0x07, 0x02);
volatile_read(0x0);
udelay(1000);
/* Enable read leveling: Set D0F3Rx71[7]=1 */
pci_mod_config8(MCU, 0x71, 0, (1 << 7));
/* Put DRAM in read leveling mode */
mrs_cmd_t cmd = ddr3_get_mr3(1);
vx900_dram_send_soft_mrs(cmd, pinswap);
}
static void vx900_dram_exit_read_leveling(u8 pinswap)
{
/* Disable read leveling, and put dram in normal operation mode */
mrs_cmd_t cmd = ddr3_get_mr3(0);
vx900_dram_send_soft_mrs(cmd, pinswap);
/* Disable read leveling: Set D0F3Rx71[7]=0 */
pci_mod_config8(MCU, 0x71, (1 << 7), 0);
}
/*
* We need to see if the delay window (difference between minimum and maximum)
* is large enough so that we actually have a valid window. The signal should be
* valid for at least 1/2T in general. If the window is significantly smaller,
* then chances are our window does not latch at the correct time, and the
* calibration will not work.
*/
#define DQSI_THRESHOLD 0x10
#define DQO_THRESHOLD 0x09
#define DQSO_THRESHOLD 0x12
#define DELAY_RANGE_GOOD 0
#define DELAY_RANGE_BAD -1
static u8 vx900_dram_check_calib_range(const delay_range * dly, u8 window)
{
size_t i;
for (i = 0; i < 8; i++) {
if (dly->high[i] - dly->low[i] < window)
return DELAY_RANGE_BAD;
/* When our maximum value is lower than our min, both values
* have overshot, and the window is definitely invalid */
if (dly->high[i] < dly->low[i])
return DELAY_RANGE_BAD;
}
return DELAY_RANGE_GOOD;
}
static void vx900_dram_find_avg_delays(vx900_delay_calib * delays)
{
size_t i;
u16 dq_low, dq_high, dqs_low, dqs_high, dq_final, dqs_final;
/*
* At this point, we have transmit delays for both DIMMA and DIMMB, each
* with a slightly different window We want to find the intersection of
* those windows, so that we have a constrained window which both
* DIMMA and DIMMB can use. The center of our constrained window will
* also be the safest setting for the transmit delays
*
* DIMMA window t:|xxxxxxxxxxxxxx---------------xxxxxxxxxxxxxxxxxxxxxxx|
* DIMMB window t:|xxxxxxxxxxxxxxxxxxx---------------xxxxxxxxxxxxxxxxxx|
* Safe window t:|xxxxxxxxxxxxxxxxxxx----------xxxxxxxxxxxxxxxxxxxxxxx|
*/
delay_range *tx_dq_a = &(delays->tx_dq[0]);
delay_range *tx_dq_b = &(delays->tx_dq[1]);
delay_range *tx_dqs_a = &(delays->tx_dqs[0]);
delay_range *tx_dqs_b = &(delays->tx_dqs[1]);
for (i = 0; i < 8; i++) {
dq_low = MAX(tx_dq_a->low[i], tx_dq_b->low[i]);
dq_high = MIN(tx_dq_a->high[i], tx_dq_b->high[i]);
dqs_low = MAX(tx_dqs_a->low[i], tx_dqs_b->low[i]);
dqs_high = MIN(tx_dqs_a->high[i], tx_dqs_b->high[i]);
/* Find the average */
dq_final = ((dq_low + dq_high) / 2);
dqs_final = ((dqs_low + dqs_high) / 2);
/*
* These adjustments are done in code provided by VIA.
* There is no explanation as to why this is done.
*
* We can get away without doing the DQS adjustment, but doing
* it, brings the values closer to what the vendor BIOS
* calibrates to.
*/
if ((dqs_final & 0x1f) >= 0x1c)
dqs_final -= 0x1c;
else
dqs_final += 0x04;
/*
* The DQ adjustment is more critical. If we don't do this
* adjustment our MCU won't be configured properly, and
* ram_check() will fail.
*/
if ((dq_final & 0x1f) >= 0x14)
dq_final -= 0x14;
else
dq_final += 0x0c;
/* Store our values in the first delay */
delays->tx_dq[0].avg[i] = dq_final;
delays->tx_dqs[0].avg[i] = dqs_final;
}
}
/*
* First calibration: When to receive data from the DRAM
* (MD and MDQS input delay)
*
* This calibration unfortunately does not seem to work. Whether this is due to
* a misconfigured MCU or hardware bug is unknown.
*/
static void vx900_rx_capture_range_calib(u8 pinswap)
{
u8 reg8;
const u32 cal_addr = 0x20;
/* Set IO calibration address */
pci_mod_config16(MCU, 0x8c, 0xfff0, cal_addr & (0xfff0));
/* Data pattern must be 0x00 for this calibration
* See paragraph describing Rx8e */
pci_write_config8(MCU, 0x8e, 0x00);
/* Need to put DRAM and MCU in read leveling */
vx900_dram_enter_read_leveling(pinswap);
/* Data pattern must be 0x00 for this calibration
* See paragraph describing Rx8e */
pci_write_config8(MCU, 0x8e, 0x00);
/* Trigger calibration */
reg8 = 0xa0;
pci_write_config8(MCU, 0x71, reg8);
/* Wait for it */
while (pci_read_config8(MCU, 0x71) & 0x10);
vx900_dram_exit_read_leveling(pinswap);
}
/*
* Second calibration: How much to delay DQS signal by
* (MDQS input delay)
*/
static void vx900_rx_dqs_delay_calib(u8 pinswap)
{
const u32 cal_addr = 0x30;
/* We need to disable refresh commands so that they don't interfere */
const u8 ref_cnt = pci_read_config8(MCU, 0xc7);
pci_write_config8(MCU, 0xc7, 0);
/* Set IO calibration address */
pci_mod_config16(MCU, 0x8c, 0xfff0, cal_addr & (0xfff0));
/* Data pattern must be 0x00 for this calibration
* See paragraph describing Rx8e */
pci_write_config8(MCU, 0x8e, 0x00);
/* Need to put DRAM and MCU in read leveling */
vx900_dram_enter_read_leveling(pinswap);
/* From VIA code; Undocumented
* In theory this enables MODT[3:0] to be asserted */
pci_mod_config8(MCU, 0x9e, 0, 0x80);
/* Trigger calibration: Set D0F3Rx71[1:0]=10b */
pci_mod_config8(MCU, 0x71, 0x03, 0x02);
/* Wait for calibration to complete */
while (pci_read_config8(MCU, 0x71) & 0x02);
vx900_dram_exit_read_leveling(pinswap);
/* Restore the refresh counter */
pci_write_config8(MCU, 0xc7, ref_cnt);
/* FIXME: should we save it before, or should we just set it as is */
vx900_dram_set_ma_pin_map(VX900_CALIB_MA_MAP);
}
static void vx900_tx_dqs_trigger_calib(u8 pattern)
{
/* Data pattern for calibration */
pci_write_config8(MCU, 0x8e, pattern);
/* Trigger calibration */
pci_mod_config8(MCU, 0x75, 0, 0x20);
/* Wait for calibration */
while (pci_read_config8(MCU, 0x75) & 0x20);
}
/*
* Third calibration: How much to wait before asserting DQS
*/
static void vx900_tx_dqs_delay_calib(void)
{
const u32 cal_addr = 0x00;
/* Set IO calibration address */
pci_mod_config16(MCU, 0x8c, 0xfff0, cal_addr & (0xfff0));
/* Set circuit to use calibration results - Clear Rx75[0] */
pci_mod_config8(MCU, 0x75, 0x01, 0);
/* Run calibration with first data pattern */
vx900_tx_dqs_trigger_calib(0x5a);
/* Run again with different pattern */
vx900_tx_dqs_trigger_calib(0xa5);
}
/*
* Fourt calibration: How much to wait before putting data on DQ lines
*/
static void vx900_tx_dq_delay_calib(void)
{
/* Data pattern for calibration */
pci_write_config8(MCU, 0x8e, 0x5a);
/* Trigger calibration */
pci_mod_config8(MCU, 0x75, 0, 0x02);
/* Wait for calibration */
while (pci_read_config8(MCU, 0x75) & 0x02);
}
static void vx900_rxdqs_adjust(delay_range * dly)
{
/* Adjust Rx DQS delay after calibration has been run. This is
* recommended by VIA, but no explanation was provided as to why */
size_t i;
for (i = 0; i < 8; i++) {
if (dly->low[i] < 3) {
if (i == 2 || i == 4)
dly->avg[i] += 4;
else
dly->avg[i] += 3;
}
if (dly->high[i] > 0x38)
dly->avg[i] -= 6;
else if (dly->high[i] > 0x30)
dly->avg[i] -= 4;
if (dly->avg[i] > 0x20)
dly->avg[i] = 0x20;
}
/* Put Rx DQS delay into manual mode (Set Rx[2,0] to 01) */
pci_mod_config8(MCU, 0x71, 0x05, 0x01);
/* Now write the new settings */
vx900_delay_calib_mode_select(CALIB_RxDQS, CALIB_MANUAL);
vx900_write_0x78_0x7f(dly->avg);
}
static void vx900_dram_calibrate_recieve_delays(vx900_delay_calib * delays,
u8 pinswap)
{
size_t n_tries = 0;
delay_range *rx_dq_cr = &(delays->rx_dq_cr);
delay_range *rx_dqs = &(delays->rx_dqs);
/* We really should be able to finish this in a single pass, but it may
* in very rare circumstances not work the first time. We define a limit
* on the number of tries so that we have a way of warning the user */
const size_t max_tries = 100;
for (;;) {
if (n_tries++ >= max_tries) {
die("Could not calibrate receive delays. Giving up");
}
u8 result;
/* Run calibrations */
if (RAMINIT_USE_HW_RXCR_CALIB) {
vx900_rx_capture_range_calib(pinswap);
vx900_read_delay_range(rx_dq_cr, CALIB_RxDQ_CR);
dump_delay_range(*rx_dq_cr);
} else {
/*FIXME: Cheating with Rx CR setting\
* We need to either use Rx CR calibration
* or set up a table for the calibration */
u8 *override = &(rx_dq_cr->avg[0]);
override[0] = 0x28;
override[1] = 0x1c;
override[2] = 0x28;
override[3] = 0x28;
override[4] = 0x2c;
override[5] = 0x30;
override[6] = 0x30;
override[7] = 0x34;
printram("Bypassing RxCR 78-7f calibration with:\n");
dump_delay(rx_dq_cr->avg);
}
/* We need to put the setting on manual mode */
pci_mod_config8(MCU, 0x71, 0, 1 << 4);
vx900_delay_calib_mode_select(CALIB_RxDQ_CR, CALIB_MANUAL);
vx900_write_0x78_0x7f(rx_dq_cr->avg);
/************* RxDQS *************/
vx900_rx_dqs_delay_calib(pinswap);
vx900_read_delay_range(rx_dqs, CALIB_RxDQS);
vx900_rxdqs_adjust(rx_dqs);
result = vx900_dram_check_calib_range(rx_dqs, DQSI_THRESHOLD);
if (result != DELAY_RANGE_GOOD)
continue;
/* We're good to go. Switch to manual and write the manual
* setting */
pci_mod_config8(MCU, 0x71, 0, 1 << 0);
vx900_delay_calib_mode_select(CALIB_RxDQS, CALIB_MANUAL);
vx900_write_0x78_0x7f(rx_dqs->avg);
break;
}
if (n_tries > 1)
printram("Hmm, we had to try %lu times before our calibration "
"was good.\n", n_tries);
}
static void vx900_dram_calibrate_transmit_delays(delay_range * tx_dq,
delay_range * tx_dqs)
{
/* Same timeout reasoning as in receive delays */
size_t n_tries = 0;
int dq_tries = 0, dqs_tries = 0;
const size_t max_tries = 100;
for (;;) {
if (n_tries++ >= max_tries) {
printram("Tried DQS %i times and DQ %i times\n",
dqs_tries, dq_tries);
printram("Tx DQS calibration results\n");
dump_delay_range(*tx_dqs);
printram("TX DQ delay calibration results:\n");
dump_delay_range(*tx_dq);
die("Could not calibrate transmit delays. Giving up");
}
u8 result;
/************* TxDQS *************/
dqs_tries++;
vx900_tx_dqs_delay_calib();
vx900_read_delay_range(tx_dqs, CALIB_TxDQS);
result = vx900_dram_check_calib_range(tx_dqs, DQSO_THRESHOLD);
if (result != DELAY_RANGE_GOOD)
continue;
/************* TxDQ *************/
/* FIXME: not sure if multiple page mode should be enabled here
* Vendor BIOS does it */
pci_mod_config8(MCU, 0x69, 0, 0x01);
dq_tries++;
vx900_tx_dq_delay_calib();
vx900_read_delay_range(tx_dq, CALIB_TxDQ);
result = vx900_dram_check_calib_range(tx_dq, DQO_THRESHOLD);
if (result != DELAY_RANGE_GOOD)
continue;
/* At this point, our RAM should give correct read-backs for
* addresses under 64 MB. If it doesn't, it won't work */
if (ram_check_noprint_nodie(1 << 20, 1 << 20)) {
/* No, our RAM is not working, try again */
/* FIXME: Except that we have not yet told the MCU what
* the geometry of the DIMM is, hence we don't trust
* this test for now */
}
/* Good. We should be able to use this DIMM */
/* That's it. We're done */
break;
}
if (n_tries > 1)
printram("Hmm, we had to try %lu times before our calibration "
"was good.\n", n_tries);
}
/*
* The meat and potatoes of getting our MCU to operate the DIMMs properly.
*
* Thank you JEDEC for making us need configurable delays for each set of MD
* signals.
*/
static void vx900_dram_calibrate_delays(const ramctr_timing * ctrl,
const rank_layout * ranks)
{
size_t i;
u8 val;
u8 dimm;
vx900_delay_calib delay_cal;
memset(&delay_cal, 0, sizeof(delay_cal));
printram("Starting delay calibration\n");
/**** Read delay control ****/
/* MD Input Data Push Timing Control;
* use values recommended in datasheet
* Setting this too low causes the Rx window to move below the range we
* need it so we can capture it with Rx_78_7f
* This causes Rx calibrations to be too close to 0, and Tx
* calibrations will fail.
* Setting this too high causes the window to move above the range.
*/
if (ctrl->tCK <= TCK_533MHZ)
val = 2;
else if (ctrl->tCK <= TCK_333MHZ)
val = 1;
else
val = 0;
val++; /* FIXME: vendor BIOS sets this to 3 */
pci_mod_config8(MCU, 0x74, (0x03 << 1), ((val & 0x03) << 1));
/* FIXME: The vendor BIOS increases the MD input delay - WHY ? */
pci_mod_config8(MCU, 0xef, (3 << 4), 3 << 4);
/**** Write delay control ****/
/* FIXME: The vendor BIOS does this, but WHY?
* See check_special_registers in VIA provided code. This value seems
* to depend on the DRAM frequency.
*/
/* Early DQ/DQS for write cycles */
pci_mod_config8(MCU, 0x76, (3 << 2), 2 << 2);
/* FIXME: The vendor BIOS does this - Output preamble ? */
pci_write_config8(MCU, 0x77, 0x10);
/* Set BA[0/1/2] to [A17/18/19] */
vx900_dram_set_ma_pin_map(VX900_MRS_MA_MAP);
/* Disable Multiple Page Mode - Set Rx69[0] to 0 */
pci_mod_config8(MCU, 0x69, (1 << 0), 0x00);
/* It's very important that we keep all ranks which are not calibrated
* mapped to VR3. Even if we disable them, if they are mapped to VR0
* (the rank we use for calibrations), the calibrations may fail in
* unexpected ways. */
vx900_pr_map_all_vr3();
/* We only really need to run the receive calibrations once. They are
* meant to account for signal travel differences in the internal paths
* of the MCU, so it doesn't really matter which rank we use for this.
* Differences between ranks will be accounted for in the transmit
* calibration. */
for (i = 0; i < VX900_MAX_DIMM_SLOTS; i += 2) {
/* Do we have a valid DIMM? */
if (ranks->phys_rank_size_mb[i] +
ranks->phys_rank_size_mb[i + 1] == 0)
continue;
/* Map the first rank of the DIMM to VR0 */
vx900_map_pr_vr(2 * i, 0);
/* Only run on first rank, remember? */
break;
}
vx900_dram_calibrate_recieve_delays(&delay_cal,
ranks->flags[i].pins_mirrored);
printram("RX DQS calibration results\n");
dump_delay_range(delay_cal.rx_dqs);
/* Enable multiple page mode for when calibrating transmit delays */
pci_mod_config8(MCU, 0x69, 0, 1 << 1);
/*
* Unlike the receive delays, we need to run the transmit calibration
* for each DIMM (not rank). We run the calibration on the even rank.
* The odd rank may have memory pins swapped, and this, it seems,
* confuses the calibration circuit.
*/
dimm = 0;
for (i = 0; i < VX900_MAX_DIMM_SLOTS; i++) {
/* Do we have a valid DIMM? */
u32 dimm_size_mb = ranks->phys_rank_size_mb[2 * i]
+ ranks->phys_rank_size_mb[2 * i + 1];
if (dimm_size_mb == 0)
continue;
/* Map the first rank of the DIMM to VR0 */
vx900_map_pr_vr(2 * i, 0);
vx900_dram_calibrate_transmit_delays(&(delay_cal.tx_dq[dimm]),
&(delay_cal.tx_dqs[dimm]));
/* We run this more than once, so dump delays for each DIMM */
printram("Tx DQS calibration results\n");
dump_delay_range(delay_cal.tx_dqs[dimm]);
printram("TX DQ delay calibration results:\n");
dump_delay_range(delay_cal.tx_dq[dimm]);
/* Now move the DIMM back to VR3 */
vx900_map_pr_vr(2 * i, 3);
/* We use dimm as a counter so that we fill tx_dq[] and tx_dqs[]
* results in order from 0, and do not leave any gaps */
dimm++;
}
/* When we have more dimms, we need to find a tx window with which all
* dimms can safely work */
if (dimm > 1) {
vx900_dram_find_avg_delays(&delay_cal);
printram("Final delay values\n");
printram("Tx DQS: ");
dump_delay(delay_cal.tx_dqs[0].avg);
printram("Tx DQ: ");
dump_delay(delay_cal.tx_dq[0].avg);
}
/* Write manual settings */
pci_mod_config8(MCU, 0x75, 0, 0x01);
vx900_delay_calib_mode_select(CALIB_TxDQS, CALIB_MANUAL);
vx900_write_0x78_0x7f(delay_cal.tx_dqs[0].avg);
vx900_delay_calib_mode_select(CALIB_TxDQ, CALIB_MANUAL);
vx900_write_0x78_0x7f(delay_cal.tx_dq[0].avg);
}
static void vx900_dram_set_refresh_counter(ramctr_timing * ctrl)
{
u8 reg8;
/* Set DRAM refresh counter
* Based on a refresh counter of 0x61 at 400MHz */
reg8 = (TCK_400MHZ * 0x61) / ctrl->tCK;
pci_write_config8(MCU, 0xc7, reg8);
}
/*
* Here, we map each rank somewhere in our address space. We don't really care
* at this point if this will overlap the PCI config space. If needed, remapping
* is done in ramstage, where we actually know how much PCI space we actually
* need.
*/
static void vx900_dram_range(ramctr_timing * ctrl, rank_layout * ranks)
{
size_t i, vrank = 0;
u8 reg8;
u32 ramsize_mb = 0, tolm_mb;
const u32 TOLM_3_5G = (7 << 29);
/* All unused physical ranks go to VR3. Otherwise, the MCU might be
* trying to read or write from unused ranks, or even worse, write some
* bits to the rank we want, and some to the unused ranks, even though
* they are disabled. Since VR3 is the last virtual rank to be used, we
* eliminate any ambiguities that the MCU may face. */
vx900_pr_map_all_vr3();
for (i = 0; i < VX900_MAX_MEM_RANKS; i++) {
u32 rank_size_mb = ranks->phys_rank_size_mb[i];
if (!rank_size_mb)
continue;
/* vvvvvvvvvv FIXME: Fix odd rank init vvvvvvvvvv */
if ((i & 1)) {
printk(BIOS_EMERG, "I cannot initialize rank %zu\n", i);
printk(BIOS_EMERG, "I have to disable it\n");
continue;
}
/* ^^^^^^^^^^ FIXME: Fix odd rank init ^^^^^^^^^^ */
ranks->virt[vrank].start_addr = ramsize_mb;
ramsize_mb += rank_size_mb;
ranks->virt[vrank].end_addr = ramsize_mb;
/* Rank memory range */
reg8 = (ranks->virt[vrank].start_addr >> 6);
pci_write_config8(MCU, 0x48 + vrank, reg8);
reg8 = (ranks->virt[vrank].end_addr >> 6);
pci_write_config8(MCU, 0x40 + vrank, reg8);
vx900_map_pr_vr(i, vrank);
printram("Mapped Physical rank %u, to virtual rank %u\n"
" Start address: 0x%.10llx\n"
" End address: 0x%.10llx\n",
(int)i, (int)vrank,
(u64) ranks->virt[vrank].start_addr << 20,
(u64) ranks->virt[vrank].end_addr << 20);
/* Move on to next virtual rank */
vrank++;
}
/* Limit the Top of Low memory at 3.5G
* Not to worry, we'll set tolm in ramstage, once we have initialized
* all devices and know pci_tolm. */
tolm_mb = MIN(ramsize_mb, TOLM_3_5G >> 20);
u16 reg_tolm = (tolm_mb << 4) & 0xfff0;
pci_mod_config16(MCU, 0x84, 0xfff0, reg_tolm);
printram("Initialized %u virtual ranks, with a total size of %u MB\n",
(int)vrank, ramsize_mb);
}
/*
* Here, we tell the memory controller how to treat a DIMM. This is an extremely
* important step. It tells the MCU how many address bits we have in each DIMM,
* and how to use them. This information is essential for the controller to
* understand the DIMM addressing, and write and read data in the correct place.
*/
static void vx900_dram_map_row_col_bank(dimm_info * dimms)
{
u8 reg8, rcb_val, col_bits, max_row_bits;
size_t i;
/* Do we have 4Gbit chips? */
/* FIXME: Implement this */
/* Do we have 8Gbit chips? */
/* FIXME: Implement this */
max_row_bits = rcb_val = reg8 = 0;
for (i = 0; i < VX900_MAX_DIMM_SLOTS; i++) {
if (dimms->dimm[i].dram_type == SPD_MEMORY_TYPE_UNDEFINED)
continue;
col_bits = dimms->dimm[i].col_bits;
/*
* DDR3 always uses 3 bank address bits, and MA type 111b cannot
* be used due to chipset limitation. We are left with only two
* options, which we can choose based solely on the number of
* column address bits.
*/
if ((col_bits < 10) || (col_bits > 11)) {
printram("DIMM %ld has %d column address bits.\n",
i, col_bits);
die("Unsupported DIMM. Try booting without this DIMM");
}
rcb_val = col_bits - 5;
reg8 |= (rcb_val << ((i * 3) + 2));
/* */
max_row_bits = MAX(max_row_bits, dimms->dimm[i].row_bits);
}
printram("RCBA map (rx50) <- %.2x\n", reg8);
pci_write_config8(MCU, 0x50, reg8);
printram("Houston, we have %d row address bits\n", max_row_bits);
/* FIXME: Do this properly */
vx900_dram_map_pins(13, 14, 15, 17, 16);
}
/*
* Here, we set some final configuration bits, which should improve the
* performance of the memory slightly (arbitration, expiration counters, etc.)
*
* FIXME: We don't really do much else than the minimum to get the MCU properly
* configured. We don't yet do set the "performance-enhancing" bits referenced
* in the comment above.
*/
static void vx900_dram_write_final_config(ramctr_timing * ctrl)
{
/* FIXME: These are quick cheats */
/* FIXME: Why are we doing this? */
/* Tri-state MCSi# when rank is in self-refresh */
pci_mod_config8(MCU, 0x99, 0, 0x0f);
/* Enable paging mode and 8 page registers */
pci_mod_config8(MCU, 0x69, 0, 0xe5);
/* Enable automatic triggering of short ZQ calibration */
pci_write_config8(MCU, 0xc8, 0x80);
/* And last but not least, Enable A20 line */
outb(inb(0x92) | (1 << 1), 0x92);
}
void vx900_init_dram_ddr3(const dimm_layout * dimm_addr)
{
dimm_info dimm_prop;
ramctr_timing ctrl_prop;
rank_layout ranks;
device_t mcu;
if (!ram_check_noprint_nodie(1 << 20, 1 << 20)) {
printram("RAM is already initialized. Skipping init\n");
return;
}
/* Locate the Memory controller */
mcu = pci_locate_device(PCI_ID(PCI_VENDOR_ID_VIA,
PCI_DEVICE_ID_VIA_VX900_MEMCTRL), 0);
if (mcu == PCI_DEV_INVALID) {
die("Memory Controller not found\n");
}
memset(&dimm_prop, 0, sizeof(dimm_prop));
memset(&ctrl_prop, 0, sizeof(ctrl_prop));
memset(&ranks, 0, sizeof(ranks));
/* 1) Write some initial "safe" parameters */
vx900_dram_write_init_config();
/* 2) Get timing information from SPDs */
dram_find_spds_ddr3(dimm_addr, &dimm_prop);
/* 3) Find lowest common denominator for all modules */
dram_find_common_params(&dimm_prop, &ctrl_prop);
/* 4) Find the size of each memory rank */
vx900_dram_phys_bank_range(&dimm_prop, &ranks);
/* 5) Set DRAM driving strength */
vx900_dram_driving_ctrl(&dimm_prop);
/* 6) Set DRAM frequency and latencies */
vx900_dram_timing(&ctrl_prop);
vx900_dram_freq(&ctrl_prop);
/* 7) Initialize the modules themselves */
vx900_dram_ddr3_dimm_init(&ctrl_prop, &ranks);
/* 8) Set refresh counter based on DRAM frequency */
vx900_dram_set_refresh_counter(&ctrl_prop);
/* 9) Calibrate receive and transmit delays */
vx900_dram_calibrate_delays(&ctrl_prop, &ranks);
/* 10) Enable Physical to Virtual Rank mapping */
vx900_dram_range(&ctrl_prop, &ranks);
/* 11) Map address bits to DRAM pins */
vx900_dram_map_row_col_bank(&dimm_prop);
/* 99) Some final adjustments */
vx900_dram_write_final_config(&ctrl_prop);
/* Take a dump */
dump_pci_device(mcu);
}
|