1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
|
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2009 One Laptop per Child, Association, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
void WaitMicroSec(UINTN MicroSeconds)
{
u32 i;
for (i = 0; i < 1024 * MicroSeconds; i++) {
__asm__ volatile ("nop\n\t");
}
return;
}
/*===================================================================
Function : via_write_phys()
Precondition :
Input : addr
value
Output : void
Purpose :
Reference : None
===================================================================*/
void via_write_phys(volatile u32 addr, volatile u32 value)
{
volatile u32 *ptr;
ptr = (volatile u32 *)addr;
*ptr = (volatile u32)value;
}
/*===================================================================
Function : via_read_phys()
Precondition :
Input : addr
Output : u32
Purpose :
Reference : None
===================================================================*/
u32 via_read_phys(volatile u32 addr)
{
volatile u32 y;
y = *(volatile u32 *)addr;
return y;
}
/*===================================================================
Function : DimmRead()
Precondition :
Input : x
Output : u32
Purpose :
Reference : None
===================================================================*/
u32 DimmRead(volatile u32 x)
{ // volatile u32 z;
volatile u32 y;
y = *(volatile u32 *)x;
return y;
}
/*===================================================================
Function : DramBaseTest()
Precondition : this function used to verify memory
Input :
BaseAdd,
length,
mode
Output : u32
Purpose :write into and read out to verify if dram is correct
Reference : None
===================================================================*/
BOOLEAN DramBaseTest(u32 BaseAdd, u32 Length,
DRAM_TEST_MODE Mode, BOOLEAN PrintFlag)
{
u32 TestSpan;
u32 Data, Address, Address2;
u8 i, TestCount;
//decide the test mode is continous or step
if (Mode == EXTENSIVE) {
//the test mode is continuos and must test each unit
TestSpan = 4;
TestCount = 1;
} else if (Mode == SPARE) {
// the test mode is step and test some unit
TestSpan = STEPSPAN;
TestCount = TESTCOUNT;
} else {
PRINT_DEBUG_MEM("the test mode is error\r");
return FALSE;
}
//write each test unit the value with TEST_PATTERN
for (Address = BaseAdd; Address < BaseAdd + Length; Address += TestSpan) {
for (i = 0; i < TestCount; i++)
via_write_phys(Address + i * 4, TEST_PATTERN);
if (PrintFlag) {
if ((u32) Address % 0x10000000 == 0) {
PRINT_DEBUG_MEM("Write in Addr =");
PRINT_DEBUG_MEM_HEX32(Address);
PRINT_DEBUG_MEM("\r");
}
}
}
//compare each test unit with the value of TEST_PATTERN
//and write it with compliment of TEST_PATTERN
for (Address = BaseAdd; Address < BaseAdd + Length; Address += TestSpan) {
for (i = 0; i < TestCount; i++) {
Data = via_read_phys(Address + i * 4);
via_write_phys(Address + i * 4, (u32) (~TEST_PATTERN));
if (Data != TEST_PATTERN) {
PRINT_DEBUG_MEM("TEST_PATTERN ERROR !!!!! ");
Address2 = Address + i * 4;
PRINT_DEBUG_MEM_HEX32(Address2);
PRINT_DEBUG_MEM(" : ");
PRINT_DEBUG_MEM_HEX32(Data);
PRINT_DEBUG_MEM(" \r");
return FALSE;
}
}
if (PrintFlag) {
if ((u32) Address % 0x10000000 == 0) {
PRINT_DEBUG_MEM("Write in Addr =");
PRINT_DEBUG_MEM_HEX32(Address);
PRINT_DEBUG_MEM("\r");
}
}
}
//compare each test unit with the value of ~TEST_PATTERN
for (Address = BaseAdd; Address < BaseAdd + Length; Address += TestSpan) {
for (i = (u8) (TestCount); i > 0; i--) {
Data = via_read_phys(Address + (i - 1) * 4);
if (Data != ~TEST_PATTERN) {
PRINT_DEBUG_MEM("~TEST_PATTERN ERROR !!!!! ");
Address2 = Address + (i - 1) * 4;
PRINT_DEBUG_MEM_HEX32(Address2);
PRINT_DEBUG_MEM(" : ");
PRINT_DEBUG_MEM_HEX32(Data);
PRINT_DEBUG_MEM(" \r");
return FALSE;
}
}
}
return TRUE;
}
/*===================================================================
Function : DumpRegisters()
Precondition :
Input :
pPCIPPI,
DevNum,
FuncNum
Output : Void
Purpose :
Reference : None
===================================================================*/
void DumpRegisters(INTN DevNum, INTN FuncNum)
{
INTN i, j;
u8 ByteVal;
ByteVal = 0;
//pci_write_config8(PCI_DEV(0, DevNum, FuncNum), 0xA1, ByteVal);
PRINT_DEBUG_MEM("\rDev %02x Fun %02x\r");
PRINT_DEBUG_MEM
("\r 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f\r");
PRINT_DEBUG_MEM
("---------------------------------------------------\r");
for (i = 0; i < 0x10; i++) {
PRINT_DEBUG_MEM_HEX32((u32)i);
for (j = 0; j < 0x10; j++) {
ByteVal =
pci_read_config8(PCI_DEV(0, DevNum, FuncNum),
i * 0x10 + j);
PRINT_DEBUG_MEM_HEX8(ByteVal);
PRINT_DEBUG_MEM(" ");
}
PRINT_DEBUG_MEM("\r");
}
return;
}
/*===================================================================
Function : dumpnorth()
Precondition :
Input :
pPCIPPI,
Func
Output : Void
Purpose :
Reference : None
===================================================================*/
void dumpnorth(u8 Func)
{
u16 r, c;
u8 ByteVal;
PRINT_DEBUG_MEM("Dump North!!!\r");
for (r = 0; r < 32; r++) {
for (c = (u16) (r << 3); c < (r << 3) + 8; c++) {
ByteVal = 0;
ByteVal = pci_read_config8(PCI_DEV(0, 0, Func), c);
PRINT_DEBUG_MEM_HEX16(c);
PRINT_DEBUG_MEM("= ");
PRINT_DEBUG_MEM_HEX8(ByteVal);
}
PRINT_DEBUG_MEM("\r");
}
}
|