summaryrefslogtreecommitdiff
path: root/src/northbridge/via/cn400/raminit.c
blob: a44196fd90cc579241834b10e6f64f22da5bdbbd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
/*
 * (C) Copyright 2005 Nick Barker <nick.barker9@btinternet.com>
 * (C) Copyright 2009 Jon Harrison <bothlyn@blueyonder.co.uk
 *
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
 * MA 02110-1301 USA
 */

/* 
  Automatically detect and set up ddr dram on the CN400 chipset.
  Assumes DDR400 memory as no attempt is made to clock
  the chipset down if slower memory is installed.
  So far tested on:
	512 Mb DDR400 4 Bank / 2 Rank (1GB) (i.e. double sided)
*/
/* ported from Via VT8263 Code*/

#include <spd.h>
#include <sdram_mode.h>
#include <delay.h>
#include <cpu/x86/mtrr.h>
#include "cn400.h"

static void dimm_read(unsigned long bank,unsigned long x) 
{
	//unsigned long eax; 
	volatile unsigned long y;
	//eax =  x;
	y = * (volatile unsigned long *) (x+ bank) ;

}


static void print_val(char *str, int val)
{
	print_debug(str);
	print_debug_hex8(val);
}

/**
 * Configure the bus between the CPU and the northbridge. This might be able to 
 * be moved to post-ram code in the future. For the most part, these registers
 * should not be messed around with. These are too complex to explain short of
 * copying the datasheets into the comments, but most of these values are from
 * the BIOS Porting Guide, so they should work on any board. If they don't,
 * try the values from your factory BIOS.
 *
 * TODO: Changing the DRAM frequency doesn't work (hard lockup).
 *
 * @param dev The northbridge's CPU Host Interface (D0F2).
 */
static void c3_cpu_setup(device_t dev)
{
	/* Host bus interface registers (D0F2 0x50-0x67) */
	/* Taken from CN700 and updated from running CN400 */
	uint8_t reg8;
	
	/* Host Bus I/O Circuit (see datasheet) */
	/* Host Address Pullup/down Driving */
	pci_write_config8(dev, 0x70, 0x33);
	pci_write_config8(dev, 0x71, 0x44);
	pci_write_config8(dev, 0x72, 0x33);
	pci_write_config8(dev, 0x73, 0x44);
	
	/* Output Delay Stagger Control */
	pci_write_config8(dev, 0x74, 0x70);
	
	/* AGTL+ I/O Circuit */
	pci_write_config8(dev, 0x75, 0x08);
	
	/* AGTL+ Compensation Status */
	pci_write_config8(dev, 0x76, 0x74);
	
	/* AGTL+ Auto Compensation Offest */
	pci_write_config8(dev, 0x77, 0x00);
	pci_write_config8(dev, 0x78, 0x94);
	
	/* Request phase control */
	pci_write_config8(dev, 0x50, 0xA8);

	/* Line DRDY# Timing Control */
	pci_write_config8(dev, 0x60, 0x00);
	pci_write_config8(dev, 0x61, 0x00);
	pci_write_config8(dev, 0x62, 0x00);
	
	/* QW DRDY# Timing Control */
	pci_write_config8(dev, 0x63, 0x00);
	pci_write_config8(dev, 0x64, 0x00);
	pci_write_config8(dev, 0x65, 0x00);
	
	/* Read Line Burst DRDY# Timing Control */
	pci_write_config8(dev, 0x66, 0x00);
	pci_write_config8(dev, 0x67, 0x00);
	
	/* CPU Interface Control */
	pci_write_config8(dev, 0x51, 0xFE);
	pci_write_config8(dev, 0x52, 0xEF);
	
	/* Arbitration */
	pci_write_config8(dev, 0x53, 0x88);
		
	/* Write Policy & Reorder Latecy */
	pci_write_config8(dev, 0x56, 0x00);
	
	/* Delivery-Trigger Control */
	pci_write_config8(dev, 0x58, 0x00);
		
	/* IPI Control */
	pci_write_config8(dev, 0x59, 0x30);
	
	/* CPU Misc Control */
	pci_write_config8(dev, 0x5C, 0x00);
	
	/* Write Policy */
	pci_write_config8(dev, 0x5d, 0xb2);
	
	/* Bandwidth Timer */
	pci_write_config8(dev, 0x5e, 0x88);
	
	/* CPU Miscellaneous Control */
	pci_write_config8(dev, 0x5f, 0xc7);
	
	/* CPU Miscellaneous Control */
	pci_write_config8(dev, 0x55, 0x28);
	pci_write_config8(dev, 0x57, 0x69);
	
	/* CPU Host Bus Final Setup */
	reg8 = pci_read_config8(dev, 0x54);
	reg8 |= 0x08;
	pci_write_config8(dev, 0x54, reg8);

}
 
static void ddr_ram_setup(void) 
{
	uint8_t b, c, bank, ma;
	uint16_t i;
	unsigned long bank_address;
	
	
	print_debug("CN400 RAM init starting\r\n");	

	pci_write_config8(ctrl.d0f7, 0x75, 0x08);
	
		
	/* No  Interleaving or Multi Page */
	pci_write_config8(ctrl.d0f3, 0x69, 0x00);
	pci_write_config8(ctrl.d0f3, 0x6b, 0x10);	
	
/*
    DRAM MA Map Type  Device 0  Fn3 Offset 50-51

    Determine memory addressing based on the module's memory technology and
    arrangement.  See Table 4-9 of Intel's 82443GX datasheet for details.

    Bank 1/0 MA map type   50[7-5]
    Bank 1/0 command rate  50[4]
    Bank 3/2 MA map type   50[3-1]
    Bank 3/2 command rate  50[0]


    Read SPD byte 17, Number of banks on SDRAM device.
*/
	c = 0;
	b = smbus_read_byte(0x50, SPD_NUM_BANKS_PER_SDRAM);
	//print_val("Detecting Memory\r\nNumber of Banks ",b);

	// Only supporting 4 bank chips just now
	if( b == 4 ){
		/*
    		Read SPD byte 3, Number of row addresses.
		*/
		c = 0x01;
		bank = 0x40;
		b = smbus_read_byte(0x50, SPD_NUM_ROWS);
		//print_val("\r\nNumber of Rows ", b);
		
		if( b >= 0x0d ){	// 256/512Mb
		
			if (b == 0x0e)
				bank = 0x48;
			else
				bank = 0x44;
			 
			/*
    			Read SPD byte 13, Primary DRAM width.
			*/
			b = smbus_read_byte(0x50, SPD_PRIMARY_SDRAM_WIDTH);
			//print_val("\r\nPrimary DRAM width", b);
			if( b != 4 )   // not 64/128Mb (x4)
				c = 0x81;  // 256Mb
		}

		/*
    		Read SPD byte 4, Number of column addresses.
		*/		
		b = smbus_read_byte(0x50, SPD_NUM_COLUMNS);
		//print_val("\r\nNo Columns ",b);
		if( b == 10 || b == 11 || b == 12) c |= 0x60;   // 10/11 bit col addr
		if( b == 9 ) c |= 0x40;           // 9 bit col addr
		if( b == 8 ) c |= 0x20;           // 8 bit col addr

		//print_val("\r\nMA type ", c);
		pci_write_config8(ctrl.d0f3, 0x50, c);

	}

	/* Disable Upper Banks */
	pci_write_config8(ctrl.d0f3, 0x51, 0x00);

/*	else
	{
		die("DRAM module size is not supported by CN400\r\n");
	}
*/

/*
    DRAM bank size.  See 4.3.1 pg 35

    5a->5d  set to end address for each bank.  1 bit == 32MB
    5a = bank 0
    5b = bank 0 + b1
    5c = bank 0 + b1 + b2
    5d = bank 0 + b1 + b2 + b3
*/

	// Read SPD byte 31 Module bank density
	//c = 0;
	b = smbus_read_byte(0x50, SPD_DENSITY_OF_EACH_ROW_ON_MODULE);
	if( b & 0x02 )
	{ 
		c = 0x40;         				// 2GB
		bank |= 0x02;
	}
	else if( b & 0x01) 
	{
		c = 0x20;    					// 1GB
		if (bank == 0x48) bank |= 0x01;
		else bank |= 0x03;
	}
	else if( b & 0x80)
	{
		c = 0x10;    					// 512MB
		if (bank == 0x44) bank |= 0x02;
	}
	else if( b & 0x40) 
	{	
		c = 0x08;    					// 256MB
		if (bank == 0x44) bank |= 0x01;
		else bank |= 0x03;
	} 
	else if( b & 0x20)
	{
		c = 0x04;    					// 128MB
		if (bank == 0x40) bank |= 0x02;
	}
	else if( b & 0x10)
	{
		c = 0x02;    					// 64MB
		bank |= 0x01;
	}
	else if( b & 0x08) c = 0x01;    	// 32MB
	else c = 0x01;                  	// Error, use default

	// set bank zero size
	pci_write_config8(ctrl.d0f3, 0x40, c);
	
	// SPD byte 5  # of physical banks
	b = smbus_read_byte(0x50, SPD_NUM_DIMM_BANKS);

	//print_val("\r\nNo Physical Banks ",b);
	if( b == 2)
	{
		c <<=1;
		bank |= 0x80;
	}
/*	else
	{
		die("Only a single DIMM is supported by EPIA-N(L)\r\n");	
	}
*/
	// set banks 1,2,3...
	pci_write_config8(ctrl.d0f3, 0x41,c);
	pci_write_config8(ctrl.d0f3, 0x42,c);
	pci_write_config8(ctrl.d0f3, 0x43,c);
	pci_write_config8(ctrl.d0f3, 0x44,c);
	pci_write_config8(ctrl.d0f3, 0x45,c);
	pci_write_config8(ctrl.d0f3, 0x46,c);
	pci_write_config8(ctrl.d0f3, 0x47,c);
	
	/* Top Rank Address Mirrored to the South Bridge */
	/* over the VLink								 */
	pci_write_config8(ctrl.d0f7, 0x57, (c << 1));

	ma = bank;
		
	/* Read SPD byte 18 CAS Latency */
	b = smbus_read_byte(0x50, SPD_ACCEPTABLE_CAS_LATENCIES);
/*	print_debug("\r\nCAS Supported ");
	if(b & 0x04)
		print_debug("2 ");
	if(b & 0x08)
		print_debug("2.5 ");
	if(b & 0x10)
		print_debug("3");

	c = smbus_read_byte(0x50, SPD_MIN_CYCLE_TIME_AT_CAS_MAX);
	print_val("\r\nCycle time at CL X     (nS)", c);
	c = smbus_read_byte(0x50, SPD_SDRAM_CYCLE_TIME_2ND);
	print_val("\r\nCycle time at CL X-0.5 (nS)", c);
	c = smbus_read_byte(0x50, SPD_SDRAM_CYCLE_TIME_3RD);
	print_val("\r\nCycle time at CL X-1   (nS)", c);
*/	
	/* Scaling of Cycle Time SPD data */
	/* 7      4 3       0             */
	/*    ns     x0.1ns               */
	bank = smbus_read_byte(0x50, SPD_MIN_CYCLE_TIME_AT_CAS_MAX);

	if( b & 0x10 ){             // DDR offering optional CAS 3
		//print_debug("\r\nStarting at CAS 3");
		c = 0x30;
		/* see if we can better it */
		if( b & 0x08 ){     // DDR mandatory CAS 2.5
			if( smbus_read_byte(0x50, SPD_SDRAM_CYCLE_TIME_2ND) <= bank ){ // we can manage max MHz at CAS 2.5
				//print_debug("\r\nWe can do CAS 2.5");
				c = 0x20;
			}
		}
		if( b & 0x04 ){     // DDR mandatory CAS 2
			if( smbus_read_byte(0x50, SPD_SDRAM_CYCLE_TIME_3RD) <= bank ){ // we can manage max Mhz at CAS 2
				//print_debug("\r\nWe can do CAS 2");
				c = 0x10;
			}
		}
	}else{                     // no optional CAS values just 2 & 2.5
		//print_debug("\r\nStarting at CAS 2.5");
		c = 0x20;          // assume CAS 2.5
		if( b & 0x04){      // Should always happen
			if( smbus_read_byte(0x50, SPD_SDRAM_CYCLE_TIME_2ND) <= bank){ // we can manage max Mhz at CAS 2
				//print_debug("\r\nWe can do CAS 2");
				c = 0x10;
			}
		}
	}	

	/* Scale DRAM Cycle Time to tRP/tRCD */
	/* 7      2 1       0             */
	/*    ns     x0.25ns               */
	if ( bank <= 0x50 ) bank = 0x14;
	else if (bank <= 0x60) bank = 0x18;
	else bank = 0x1E;

/*
    DRAM Timing  Device 0  Fn 3 Offset 56

    RAS Pulse width 56[7,6]
    CAS Latency     56[5,4]
    Row pre-charge  56[1,0]

         SDR  DDR
      00  1T   -
      01  2T   2T
      10  3T   2.5T
      11  -    3T

    RAS/CAS delay   56[3,2]

    Determine row pre-charge time (tRP)


    Read SPD byte 27, min row pre-charge time.
*/

	b = smbus_read_byte(0x50, SPD_MIN_ROW_PRECHARGE_TIME);
	
	//print_val("\r\ntRP ",b);
	if ( b >= (5 * bank)) {
		c |= 0x03;		// set tRP = 5T
	}
	else if ( b >= (4 * bank)) {
		c |= 0x02;		// set tRP = 4T
	}
	else if ( b >= (3 * bank)) {
		c |= 0x01;		// set tRP = 3T
	}

/*
    Determine RAS to CAS delay (tRCD)

    Read SPD byte 29, min row pre-charge time.
*/

	b = smbus_read_byte(0x50, SPD_MIN_RAS_TO_CAS_DELAY);
	//print_val("\r\ntRCD ",b);

	if ( b >= (5 * bank)) c |= 0x0C;		// set tRCD = 5T
	else if ( b >= (4 * bank)) c |= 0x08;	// set tRCD = 4T
	else if ( b >= (3 * bank)) c |= 0x04;	// set tRCD = 3T

/*
    Determine RAS pulse width (tRAS)


    Read SPD byte 30, device min active to pre-charge time.
*/

	/* tRAS is in whole ns */
	bank = bank >> 2;

	b = smbus_read_byte(0x50, SPD_MIN_ACTIVE_TO_PRECHARGE_DELAY);
	//print_val("\r\ntRAS ",b);
	//print_val("\r\nBank ", bank);
	if ( b >= (9 * bank)) c |= 0xC0;		// set tRAS = 9T
	else if ( b >= (8 * bank)) c |= 0x80;	// set tRAS = 8T
	else if ( b >= (7 * bank)) c |= 0x40;	// set tRAS = 7T
	
	/* Write DRAM Timing All Banks I */
	pci_write_config8(ctrl.d0f3, 0x56, c);
	
	/* TWrite DRAM Timing All Banks II */
	pci_write_config8(ctrl.d0f3, 0x57, 0x1a);
	
	/* DRAM arbitration timer */
	pci_write_config8(ctrl.d0f3, 0x65, 0x99);
		
/*
    DRAM Clock  Device 0 Fn 3 Offset 68
*/
	bank = smbus_read_byte(0x50, SPD_MIN_CYCLE_TIME_AT_CAS_MAX);

	/* Setup DRAM Cycle Time */
	if ( bank <= 0x50 )
	{
		/* DRAM DDR Control Alert! Alert! See also c3_cpu_setup */
		/* This sets to 133MHz FSB / DDR400. */
		pci_write_config8(ctrl.d0f3, 0x68, 0x85);
	}
	else if (bank <= 0x60)
	{
		/* DRAM DDR Control Alert! Alert! This hardwires to */
		/* 133MHz FSB / DDR333.  See also c3_cpu_setup */
		pci_write_config8(ctrl.d0f3, 0x68, 0x81);
	}
	else 
	{
		/* DRAM DDR Control Alert! Alert! This hardwires to */
		/* 133MHz FSB / DDR266.  See also c3_cpu_setup */
		pci_write_config8(ctrl.d0f3, 0x68, 0x80);
	}

	/* Delay >= 100ns after DRAM Frequency adjust, See 4.1.1.3 pg 15 */
	udelay(200);

/*
    Determine bank interleave

    Read SPD byte 17, Number of banks on SDRAM device.
*/
	c = 0x0F;
	b = smbus_read_byte(0x50, SPD_NUM_BANKS_PER_SDRAM);
	if( b == 4) c |= 0x80;
	else if (b == 2) c |= 0x40;

	/* 4-Way Interleave With Multi-Paging (From Running System)*/
	pci_write_config8(ctrl.d0f3, 0x69, c);
	
	/*DRAM Controller Internal Options */
	pci_write_config8(ctrl.d0f3, 0x54, 0x01);

	/* DRAM Arbitration Control */
	pci_write_config8(ctrl.d0f3, 0x66, 0x82);

	/* DRAM Control */
	pci_write_config8(ctrl.d0f3, 0x6e, 0x80);
	
	/* Disable refresh for now */
	pci_write_config8(ctrl.d0f3, 0x6a, 0x00);

	/* DDR Clock Gen Duty Cycle Control */
	pci_write_config8(ctrl.d0f3, 0xEE, 0x01);


	/* DRAM Clock Control */
	pci_write_config8(ctrl.d0f3, 0x6c, 0x00);

	/* DRAM Bus Turn-Around Setting */
	pci_write_config8(ctrl.d0f3, 0x60, 0x01);
	
	/* Disable DRAM refresh */
	pci_write_config8(ctrl.d0f3,0x6a,0x0);


	/* Memory Pads Driving and Range Select */
	pci_write_config8(ctrl.d0f3, 0xe2, 0xAA);
	pci_write_config8(ctrl.d0f3, 0xe3, 0x00);
	pci_write_config8(ctrl.d0f3, 0xe4, 0x99);

	/* DRAM signal timing control */
	pci_write_config8(ctrl.d0f3, 0x74, 0x99);
	pci_write_config8(ctrl.d0f3, 0x76, 0x09);
	pci_write_config8(ctrl.d0f3, 0x77, 0x12);

	pci_write_config8(ctrl.d0f3, 0xe0, 0xAA);
	pci_write_config8(ctrl.d0f3, 0xe1, 0x00);
	pci_write_config8(ctrl.d0f3, 0xe6, 0x00);
	pci_write_config8(ctrl.d0f3, 0xe8, 0xEE);
	pci_write_config8(ctrl.d0f3, 0xea, 0xEE);


	/* SPD byte 5  # of physical banks */
	b = smbus_read_byte(0x50, SPD_NUM_DIMM_BANKS) -1;
	c = b | 0x40;

	pci_write_config8(ctrl.d0f3, 0xb0, c);
	
	/* Set RAM Decode method */
	pci_write_config8(ctrl.d0f3, 0x55, 0x0a);

	/* Enable DIMM Ranks */
	pci_write_config8(ctrl.d0f3, 0x48, ma);
	udelay(200);

	c = smbus_read_byte(0x50, SPD_SUPPORTED_BURST_LENGTHS);
	c &= 0x08;
	if ( c == 0x08 )
	{
		print_debug("Setting Burst Length 8\r\n");
		/*
    		CPU Frequency  Device 0 Function 2 Offset 54

			CPU FSB Operating Frequency (bits 7:5)
	    	  	000 : 100MHz    001 : 133MHz
	    	  	010 : 200MHz    
			  	011->111 : Reserved
		  
			SDRAM BL8 (4)
			
			Don't change Frequency from power up defaults
			This seems to lockup the RAM interface
		*/	
		c = pci_read_config8(ctrl.d0f2, 0x54);
		c |= 0x10;
		pci_write_config8(ctrl.d0f2, 0x54, c);
		i = 0x008; 		// Used later to set SDRAM MSR
	}


	for( bank = 0 , bank_address=0; bank <= b ; bank++) {
/*
    DDR init described in Via VT8623 BIOS Porting Guide.  Pg 28 (4.2.3.1)
*/

		/* NOP command enable */
		c = pci_read_config8(ctrl.d0f3, DRAM_MISC_CTL);
		c &= 0xf8;		/* Clear bits 2-0. */
		c |= RAM_COMMAND_NOP;
		pci_write_config8(ctrl.d0f3, DRAM_MISC_CTL, c);		

		/* read a double word from any address of the dimm */
		dimm_read(bank_address,0x1f000);
		//udelay(200);

		/* All bank precharge Command Enable */
		c = pci_read_config8(ctrl.d0f3, DRAM_MISC_CTL);
		c &= 0xf8;		/* Clear bits 2-0. */
		c |= RAM_COMMAND_PRECHARGE;
		pci_write_config8(ctrl.d0f3, DRAM_MISC_CTL, c);		
		dimm_read(bank_address,0x1f000);


		/* MSR Enable Low DIMM*/
		c = pci_read_config8(ctrl.d0f3, DRAM_MISC_CTL);
		c &= 0xf8;		/* Clear bits 2-0. */
		c |= RAM_COMMAND_MSR_LOW;
		pci_write_config8(ctrl.d0f3, DRAM_MISC_CTL, c);	
		/* TODO: Bank Addressing for Different Numbers of Row Addresses */	
		dimm_read(bank_address,0x2000);
		udelay(1);
		dimm_read(bank_address,0x800);
		udelay(1);

		/* All banks precharge Command Enable */
		c = pci_read_config8(ctrl.d0f3, DRAM_MISC_CTL);
		c &= 0xf8;		/* Clear bits 2-0. */
		c |= RAM_COMMAND_PRECHARGE;
		pci_write_config8(ctrl.d0f3, DRAM_MISC_CTL, c);		
		dimm_read(bank_address,0x1f200);

		/* CBR Cycle Enable */
		c = pci_read_config8(ctrl.d0f3, DRAM_MISC_CTL);
		c &= 0xf8;		/* Clear bits 2-0. */
		c |= RAM_COMMAND_CBR;
		pci_write_config8(ctrl.d0f3, DRAM_MISC_CTL, c);		

		/* Read 8 times */
		for (c=0;c<8;c++) {
			dimm_read(bank_address,0x1f300);
			udelay(100);
		}

		/* MSR Enable */
		c = pci_read_config8(ctrl.d0f3, DRAM_MISC_CTL);
		c &= 0xf8;		/* Clear bits 2-0. */
		c |= RAM_COMMAND_MSR_LOW;
		pci_write_config8(ctrl.d0f3, DRAM_MISC_CTL, c);		


/* 
    Mode Register Definition
    with adjustement so that address calculation is correct - 64 bit technology, therefore
    a0-a2 refer to byte within a 64 bit long word, and a3 is the first address line presented
    to DIMM as a row or column address.

    MR[9-7]   CAS Latency
    MR[6]     Burst Type 0 = sequential, 1 = interleaved
    MR[5-3]   burst length 001 = 2, 010 = 4, 011 = 8, others reserved
    MR[0-2]   dont care 

    CAS Latency 
    000       reserved
    001       reserved
    010       2
    011       3
    100       reserved
    101       1.5
    110       2.5
    111       reserved

    CAS 2     0101011000 = 0x158
    CAS 2.5   1101011000 = 0x358
    CAS 3     0111011000 = 0x1d8

*/
		c = pci_read_config8(ctrl.d0f3, 0x56);
		if( (c & 0x30) == 0x10 )
			dimm_read(bank_address,(0x150 + i));
		else if((c & 0x30) == 0x20 )
			dimm_read(bank_address,(0x350 + i));
		else
			dimm_read(bank_address,(0x1d0 + i));


		/* Normal SDRAM Mode */
		c = pci_read_config8(ctrl.d0f3, DRAM_MISC_CTL);
		c &= 0xf8;		/* Clear bits 2-0. */
		c |= RAM_COMMAND_NORMAL;
		pci_write_config8(ctrl.d0f3, DRAM_MISC_CTL, c);
				
		bank_address = pci_read_config8(ctrl.d0f3,0x40+bank) * 0x2000000;
	} // end of for each bank

	
	/* Set DRAM DQS Output Control */
	pci_write_config8(ctrl.d0f3, 0x79, 0x11);
	
	/* Set DQS A/B Input delay to defaults */
	pci_write_config8(ctrl.d0f3, 0x7A, 0xA1);
	pci_write_config8(ctrl.d0f3, 0x7B, 0x62);	

	/* DQS Duty Cycle Control */
	pci_write_config8(ctrl.d0f3, 0xED, 0x11);

	/* SPD byte 5  # of physical banks */
	b = smbus_read_byte(0x50, SPD_NUM_DIMM_BANKS) -1;
	
	/* determine low bond */
	if( b == 2)
		bank_address = pci_read_config8(ctrl.d0f3,0x40) * 0x2000000;
	else
		bank_address = 0;

	for(i = 0x30 ; i < 0x0ff; i++){
		pci_write_config8(ctrl.d0f3,0x70,i);
		// clear
		*(volatile unsigned long*)(0x4000) = 0;
		*(volatile unsigned long*)(0x4100+bank_address) = 0;
		*(volatile unsigned long*)(0x4200) = 0;
		*(volatile unsigned long*)(0x4300+bank_address) = 0;
		*(volatile unsigned long*)(0x4400) = 0;
		*(volatile unsigned long*)(0x4500+bank_address) = 0;

		// fill
		*(volatile unsigned long*)(0x4000) = 0x12345678;
		*(volatile unsigned long*)(0x4100+bank_address) = 0x81234567;
		*(volatile unsigned long*)(0x4200) = 0x78123456;
		*(volatile unsigned long*)(0x4300+bank_address) = 0x67812345;
		*(volatile unsigned long*)(0x4400) = 0x56781234;
		*(volatile unsigned long*)(0x4500+bank_address) = 0x45678123;

			// verify
		if( *(volatile unsigned long*)(0x4000) != 0x12345678)
			continue;

		if( *(volatile unsigned long*)(0x4100+bank_address) != 0x81234567)
			continue;

		if( *(volatile unsigned long*)(0x4200) != 0x78123456)
			continue;

		if( *(volatile unsigned long*)(0x4300+bank_address) != 0x67812345)
			continue;

		if( *(volatile unsigned long*)(0x4400) != 0x56781234)
			continue;

		if( *(volatile unsigned long*)(0x4500+bank_address) != 0x45678123)
			continue;

		// if everything verified then found low bond
		break;
		
	}
	print_val("\r\nLow Bond ",i);	
	if( i < 0xff ){ 
		c = i++;
		for(  ; i <0xff ; i++){
			pci_write_config8(ctrl.d0f3,0x70, i);
			// clear
			*(volatile unsigned long*)(0x8000) = 0;
			*(volatile unsigned long*)(0x8100+bank_address) = 0;
			*(volatile unsigned long*)(0x8200) = 0x0;
			*(volatile unsigned long*)(0x8300+bank_address) = 0;
			*(volatile unsigned long*)(0x8400) = 0x0;
			*(volatile unsigned long*)(0x8500+bank_address) = 0;

			// fill
			*(volatile unsigned long*)(0x8000) = 0x12345678;
			*(volatile unsigned long*)(0x8100+bank_address) = 0x81234567;
			*(volatile unsigned long*)(0x8200) = 0x78123456;
			*(volatile unsigned long*)(0x8300+bank_address) = 0x67812345;
			*(volatile unsigned long*)(0x8400) = 0x56781234;
			*(volatile unsigned long*)(0x8500+bank_address) = 0x45678123;

			// verify
			if( *(volatile unsigned long*)(0x8000) != 0x12345678)
				break;

			if( *(volatile unsigned long*)(0x8100+bank_address) != 0x81234567)
				break;

			if( *(volatile unsigned long*)(0x8200) != 0x78123456)
				break;

			if( *(volatile unsigned long*)(0x8300+bank_address) != 0x67812345)
				break;

			if( *(volatile unsigned long*)(0x8400) != 0x56781234)
				break;

			if( *(volatile unsigned long*)(0x8500+bank_address) != 0x45678123)
				break;

		}
		print_val("  High Bond ",i);
		c = ((i - c)<<1)/3 + c;
		print_val("  Setting DQS delay",c);
		print_debug("\r\n");
		pci_write_config8(ctrl.d0f3,0x70,c);
	}else{
		pci_write_config8(ctrl.d0f3,0x70,0x67);
	}

	/* Set DQS ChA Data Output Delay to the default */
	pci_write_config8(ctrl.d0f3, 0x71, 0x65);
	
	/* Set Ch B DQS Output Delays */
	pci_write_config8(ctrl.d0f3, 0x72, 0x2a);
	pci_write_config8(ctrl.d0f3, 0x73, 0x29);
	
	pci_write_config8(ctrl.d0f3, 0x78, 0x03);

	/* Mystery Value */
	pci_write_config8(ctrl.d0f3, 0x67, 0x50);
	
	/* Enable Toggle Limiting */
	pci_write_config8(ctrl.d0f4, 0xA3, 0x80);
	
/*
    DRAM refresh rate  Device 0 F3 Offset 6a
	TODO :: Fix for different DRAM technologies 
	other than 512Mb and DRAM Freq 
    Units of 16 DRAM clock cycles - 1. 
*/
	//c = pci_read_config8(ctrl.d0f3, 0x68);
	//c &= 0x07;
	//b = smbus_read_byte(0x50, SPD_REFRESH);
	//print_val("SPD_REFRESH = ", b);

	pci_write_config8(ctrl.d0f3,0x6a,0x65);
	
	/* SMM and APIC decoding, we do not use SMM */
	b = 0x29;
	pci_write_config8(ctrl.d0f3, 0x86, b);
	/* SMM and APIC decoding mirror */
	pci_write_config8(ctrl.d0f7, 0xe6, b);
	
	/* Open Up the Rest of the Shadow RAM */
	pci_write_config8(ctrl.d0f3,0x80,0xff);
	pci_write_config8(ctrl.d0f3,0x81,0xff);

	/* pci */
	pci_write_config8(ctrl.d0f7,0x70,0x82);
	pci_write_config8(ctrl.d0f7,0x73,0x01);
	pci_write_config8(ctrl.d0f7,0x76,0x50);

	pci_write_config8(ctrl.d0f7,0x71,0xc8);
	

	/* VGA device. */
	pci_write_config16(ctrl.d0f3, 0xa0, (1 << 15));
	pci_write_config16(ctrl.d0f3, 0xa4, 0x0010);
    print_debug("CN400 raminit.c done\r\n");
}