1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
|
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2015 Damien Zammit <damien@zamaudio.com>
* Copyright (C) 2017 Arthur Heymans <arthur@aheymans.xyz>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <device/mmio.h>
#include <console/console.h>
#include <delay.h>
#include "iomap.h"
#include "x4x.h"
#define MAX_COARSE 15
#define DQS_HIGH 1
#define DQS_LOW 0
#define RESET_CNTL(channel) (0x5d8 + channel * 0x400)
struct rec_timing {
u8 medium;
u8 coarse;
u8 pi;
u8 tap;
};
static inline void barrier(void)
{
asm volatile("mfence":::);
}
static u8 sampledqs(u32 addr, u8 lane, u8 channel)
{
volatile u32 strobe;
u32 sample_offset = 0x400 * channel + 0x561 + lane * 4;
/* Reset the DQS probe */
MCHBAR8(RESET_CNTL(channel)) &= ~0x2;
udelay(2);
MCHBAR8(RESET_CNTL(channel)) |= 0x2;
udelay(2);
barrier();
strobe = read32((u32 *)addr);
barrier();
return (MCHBAR8(sample_offset) >> 6) & 1;
}
static void program_timing(const struct rec_timing *timing, u8 channel,
u8 lane)
{
u32 reg32;
u16 reg16;
u8 reg8;
printk(RAM_SPEW, " Programming timings:"
"Coarse: %d, Medium: %d, TAP: %d, PI: %d\n",
timing->coarse, timing->medium, timing->tap, timing->pi);
reg32 = MCHBAR32(0x400 * channel + 0x248);
reg32 &= ~0xf0000;
reg32 |= timing->coarse << 16;
MCHBAR32(0x400 * channel + 0x248) = reg32;
reg16 = MCHBAR16(0x400 * channel + 0x58c);
reg16 &= ~(3 << (lane * 2));
reg16 |= timing->medium << (lane * 2);
MCHBAR16(0x400 * channel + 0x58c) = reg16;
reg8 = MCHBAR8(0x400 * channel + 0x560 + lane * 4);
reg8 &= ~0x7f;
reg8 |= timing->tap;
reg8 |= timing->pi << 4;
MCHBAR8(0x400 * channel + 0x560 + lane * 4) = reg8;
}
static int increase_medium(struct rec_timing *timing)
{
if (timing->medium < 3) {
timing->medium++;
} else if (timing->coarse < MAX_COARSE) {
timing->medium = 0;
timing->coarse++;
} else {
printk(BIOS_ERR, "Cannot increase medium any further.\n");
return -1;
}
return 0;
}
static int decrease_medium(struct rec_timing *timing)
{
if (timing->medium > 0) {
timing->medium--;
} else if (timing->coarse > 0) {
timing->medium = 3;
timing->coarse--;
} else {
printk(BIOS_ERR, "Cannot lower medium any further.\n");
return -1;
}
return 0;
}
static int increase_tap(struct rec_timing *timing)
{
if (timing->tap == 14) {
if (increase_medium(timing))
return -1;
timing->tap = 0;
} else {
timing->tap++;
}
return 0;
}
static int decrease_tap(struct rec_timing *timing)
{
if (timing->tap > 0) {
timing->tap--;
} else {
if (decrease_medium(timing))
return -1;
timing->tap = 14;
}
return 0;
}
static int decr_coarse_low(u8 channel, u8 lane, u32 addr,
struct rec_timing *timing)
{
printk(RAM_DEBUG,
" Decreasing coarse until high to low transition is found\n");
while (sampledqs(addr, lane, channel) != DQS_LOW) {
if (timing->coarse == 0) {
printk(BIOS_CRIT,
"Couldn't find DQS-high 0 indicator, halt\n");
return -1;
}
timing->coarse--;
program_timing(timing, channel, lane);
}
printk(RAM_DEBUG, " DQS low at coarse=%d medium=%d\n",
timing->coarse, timing->medium);
return 0;
}
static int fine_search_dqs_high(u8 channel, u8 lane, u32 addr,
struct rec_timing *timing)
{
printk(RAM_DEBUG,
" Increasing TAP until low to high transition is found\n");
/*
* We use a do while loop since it happens that the strobe read
* is inconsistent, with the strobe already high. The current
* code flow results in failure later when finding the preamble,
* at which DQS needs to be high is often not the case if TAP was
* not increased at least once here. Work around this by incrementing
* TAP at least once to guarantee searching for preamble start at
* DQS high.
* This seems to be the result of hysteresis on some settings, where
* the DQS probe is influenced by its previous value.
*/
if (sampledqs(addr, lane, channel) == DQS_HIGH) {
printk(BIOS_WARNING,
"DQS already HIGH... DQS probe is inconsistent!\n"
"Continuing....\n");
}
do {
if (increase_tap(timing)) {
printk(BIOS_CRIT,
"Could not find DQS-high on fine search.\n");
return -1;
}
program_timing(timing, channel, lane);
} while (sampledqs(addr, lane, channel) != DQS_HIGH);
printk(RAM_DEBUG, " DQS high at coarse=%d medium=%d tap:%d\n",
timing->coarse, timing->medium, timing->tap);
return 0;
}
static int find_dqs_low(u8 channel, u8 lane, u32 addr,
struct rec_timing *timing)
{
/* Look for DQS low, using quarter steps. */
printk(RAM_DEBUG, " Increasing medium until DQS LOW is found\n");
while (sampledqs(addr, lane, channel) != DQS_LOW) {
if (increase_medium(timing)) {
printk(BIOS_CRIT,
"Coarse > 15: DQS tuning failed, halt\n");
return -1;
}
program_timing(timing, channel, lane);
}
printk(RAM_DEBUG, " DQS low at coarse=%d medium=%d\n",
timing->coarse, timing->medium);
return 0;
}
static int find_dqs_high(u8 channel, u8 lane, u32 addr,
struct rec_timing *timing)
{
/* Look for DQS high, using quarter steps. */
printk(RAM_DEBUG, " Increasing medium until DQS HIGH is found\n");
while (sampledqs(addr, lane, channel) != DQS_HIGH) {
if (increase_medium(timing)) {
printk(BIOS_CRIT,
"Coarse > 16: DQS tuning failed, halt\n");
return -1;
}
program_timing(timing, channel, lane);
}
printk(RAM_DEBUG, " DQS high at coarse=%d medium=%d\n",
timing->coarse, timing->medium);
return 0;
}
static int find_dqs_edge_lowhigh(u8 channel, u8 lane,
u32 addr, struct rec_timing *timing)
{
/* Medium search for DQS high. */
if (find_dqs_high(channel, lane, addr, timing))
return -1;
/* Go back and perform finer search. */
if (decrease_medium(timing))
return -1;
program_timing(timing, channel, lane);
if (fine_search_dqs_high(channel, lane, addr, timing) < 0)
return -1;
return 0;
}
static int find_preamble(u8 channel, u8 lane, u32 addr,
struct rec_timing *timing)
{
/* Add a quarter step */
if (increase_medium(timing))
return -1;
program_timing(timing, channel, lane);
/* Verify we are at high */
if (sampledqs(addr, lane, channel) != DQS_HIGH) {
printk(BIOS_CRIT, "Not at DQS high, d'oh\n");
return -1;
}
/* Decrease coarse until LOW is found */
if (decr_coarse_low(channel, lane, addr, timing))
return -1;
return 0;
}
static int calibrate_receive_enable(u8 channel, u8 lane,
u32 addr, struct rec_timing *timing)
{
program_timing(timing, channel, lane);
/* Set receive enable bit */
MCHBAR16(0x400 * channel + 0x588) = (MCHBAR16(0x400 * channel + 0x588)
& ~(3 << (lane * 2))) | (1 << (lane * 2));
if (find_dqs_low(channel, lane, addr, timing))
return -1;
/* Advance a little further. */
if (increase_medium(timing)) {
/* A finer search could be implemented */
printk(BIOS_WARNING, "Cannot increase medium further");
return -1;
}
program_timing(timing, channel, lane);
if (find_dqs_edge_lowhigh(channel, lane, addr, timing))
return -1;
/* Go back on fine search */
if (decrease_tap(timing))
return -1;
timing->pi = 3;
program_timing(timing, channel, lane);
if (find_preamble(channel, lane, addr, timing))
return -1;
if (find_dqs_edge_lowhigh(channel, lane, addr, timing))
return -1;
if (decrease_tap(timing))
return -1;
timing->pi = 7;
program_timing(timing, channel, lane);
/* Unset receive enable bit */
MCHBAR16(0x400 * channel + 0x588) = MCHBAR16(0x400 * channel + 0x588) &
~(3 << (lane * 2));
return 0;
}
void rcven(struct sysinfo *s)
{
int rank;
u8 channel, lane, reg8;
/*
* Using the macros below the compiler warns about this possibly being
* unitialised.
*/
u32 addr = 0;
struct rec_timing timing[TOTAL_BYTELANES];
u8 mincoarse;
printk(BIOS_DEBUG, "Starting DQS receiver enable calibration\n");
MCHBAR8(0x5d8) = MCHBAR8(0x5d8) & ~0xc;
MCHBAR8(0x9d8) = MCHBAR8(0x9d8) & ~0xc;
MCHBAR8(0x5dc) = MCHBAR8(0x5dc) & ~0x80;
FOR_EACH_POPULATED_CHANNEL(s->dimms, channel) {
mincoarse = 0xff;
/*
* Receive enable calibration happens on the first populated
* rank on each channel.
*/
FOR_EACH_POPULATED_RANK_IN_CHANNEL(s->dimms, channel, rank) {
addr = test_address(channel, rank);
break;
}
FOR_EACH_BYTELANE(lane) {
printk(BIOS_DEBUG, "Channel %d, Lane %d addr=0x%08x\n",
channel, lane, addr);
timing[lane].coarse = (s->selected_timings.CAS + 1);
switch (lane) {
default:
case 0:
case 1:
timing[lane].medium = 0;
break;
case 2:
case 3:
timing[lane].medium = 1;
break;
case 4:
case 5:
timing[lane].medium = 2;
break;
case 6:
case 7:
timing[lane].medium = 3;
break;
}
timing[lane].tap = 0;
timing[lane].pi = 0;
if (calibrate_receive_enable(channel, lane, addr,
&timing[lane]))
die("Receive enable calibration failed\n");
if (mincoarse > timing[lane].coarse)
mincoarse = timing[lane].coarse;
}
printk(BIOS_DEBUG, "Found min coarse value = %d\n", mincoarse);
s->rcven_t[channel].min_common_coarse = mincoarse;
printk(BIOS_DEBUG, "Receive enable, final timings:\n");
/* Normalise coarse */
FOR_EACH_BYTELANE(lane) {
if (timing[lane].coarse == 0)
reg8 = 0;
else
reg8 = timing[lane].coarse - mincoarse;
printk(BIOS_DEBUG, "ch %d lane %d: coarse offset: %d;"
"medium: %d; tap: %d\n",
channel, lane, reg8, timing[lane].medium,
timing[lane].tap);
s->rcven_t[channel].coarse_offset[lane] = reg8;
s->rcven_t[channel].medium[lane] = timing[lane].medium;
s->rcven_t[channel].tap[lane] = timing[lane].tap;
s->rcven_t[channel].pi[lane] = timing[lane].pi;
MCHBAR16(0x400 * channel + 0x5fa) =
(MCHBAR16(0x400 * channel + 0x5fa) &
~(3 << (lane * 2))) | (reg8 << (lane * 2));
}
/* simply use timing[0] to program mincoarse */
timing[0].coarse = mincoarse;
program_timing(&timing[0], channel, 0);
}
}
|