1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
|
/* SPDX-License-Identifier: GPL-2.0-or-later */
#include <device/mmio.h>
#include <console/console.h>
#include <delay.h>
#include <string.h>
#include <types.h>
#include "raminit.h"
#include "x4x.h"
static void print_dll_setting(const struct dll_setting *dll_setting,
u8 default_verbose)
{
u8 debug_level = default_verbose ? BIOS_DEBUG : RAM_DEBUG;
printk(debug_level, "%d.%d.%d.%d:%d.%d\n", dll_setting->coarse,
dll_setting->clk_delay, dll_setting->tap,
dll_setting->pi, dll_setting->db_en,
dll_setting->db_sel);
}
struct db_limit {
u8 tap0;
u8 tap1;
u8 pi0;
u8 pi1;
};
static void set_db(const struct sysinfo *s, struct dll_setting *dq_dqs_setting)
{
struct db_limit limit;
switch (s->selected_timings.mem_clk) {
default:
case MEM_CLOCK_800MHz:
limit.tap0 = 3;
limit.tap1 = 10;
limit.pi0 = 2;
limit.pi1 = 3;
break;
case MEM_CLOCK_1066MHz:
limit.tap0 = 2;
limit.tap1 = 8;
limit.pi0 = 6;
limit.pi1 = 7;
break;
case MEM_CLOCK_1333MHz:
limit.tap0 = 3;
limit.tap1 = 11;
/* TO CHECK: Might be reverse since this makes little sense */
limit.pi0 = 6;
limit.pi1 = 4;
break;
}
if (dq_dqs_setting->tap < limit.tap0) {
dq_dqs_setting->db_en = 1;
dq_dqs_setting->db_sel = 1;
} else if ((dq_dqs_setting->tap == limit.tap0)
&& (dq_dqs_setting->pi < limit.pi0)) {
dq_dqs_setting->db_en = 1;
dq_dqs_setting->db_sel = 1;
} else if (dq_dqs_setting->tap < limit.tap1) {
dq_dqs_setting->db_en = 0;
dq_dqs_setting->db_sel = 0;
} else if ((dq_dqs_setting->tap == limit.tap1)
&& (dq_dqs_setting->pi < limit.pi1)) {
dq_dqs_setting->db_en = 0;
dq_dqs_setting->db_sel = 0;
} else {
dq_dqs_setting->db_en = 1;
dq_dqs_setting->db_sel = 0;
}
}
static const u8 max_tap[3] = {12, 10, 13};
static int increment_dq_dqs(const struct sysinfo *s,
struct dll_setting *dq_dqs_setting)
{
u8 max_tap_val = max_tap[s->selected_timings.mem_clk
- MEM_CLOCK_800MHz];
if (dq_dqs_setting->pi < 6) {
dq_dqs_setting->pi += 1;
} else if (dq_dqs_setting->tap < max_tap_val) {
dq_dqs_setting->pi = 0;
dq_dqs_setting->tap += 1;
} else if (dq_dqs_setting->clk_delay < 2) {
dq_dqs_setting->pi = 0;
dq_dqs_setting->tap = 0;
dq_dqs_setting->clk_delay += 1;
} else if (dq_dqs_setting->coarse < 1) {
dq_dqs_setting->pi = 0;
dq_dqs_setting->tap = 0;
dq_dqs_setting->clk_delay -= 1;
dq_dqs_setting->coarse += 1;
} else {
return CB_ERR;
}
set_db(s, dq_dqs_setting);
return CB_SUCCESS;
}
static int decrement_dq_dqs(const struct sysinfo *s,
struct dll_setting *dq_dqs_setting)
{
u8 max_tap_val = max_tap[s->selected_timings.mem_clk
- MEM_CLOCK_800MHz];
if (dq_dqs_setting->pi > 0) {
dq_dqs_setting->pi -= 1;
} else if (dq_dqs_setting->tap > 0) {
dq_dqs_setting->pi = 6;
dq_dqs_setting->tap -= 1;
} else if (dq_dqs_setting->clk_delay > 0) {
dq_dqs_setting->pi = 6;
dq_dqs_setting->tap = max_tap_val;
dq_dqs_setting->clk_delay -= 1;
} else if (dq_dqs_setting->coarse > 0) {
dq_dqs_setting->pi = 6;
dq_dqs_setting->tap = max_tap_val;
dq_dqs_setting->clk_delay += 1;
dq_dqs_setting->coarse -= 1;
} else {
return CB_ERR;
}
set_db(s, dq_dqs_setting);
return CB_SUCCESS;
}
#define WT_PATTERN_SIZE 80
static const u32 write_training_schedule[WT_PATTERN_SIZE] = {
0xffffffff, 0x00000000, 0xffffffff, 0x00000000,
0xffffffff, 0x00000000, 0xffffffff, 0x00000000,
0xffffffff, 0x00000000, 0xffffffff, 0x00000000,
0xffffffff, 0x00000000, 0xffffffff, 0x00000000,
0xefefefef, 0x10101010, 0xefefefef, 0x10101010,
0xefefefef, 0x10101010, 0xefefefef, 0x10101010,
0xefefefef, 0x10101010, 0xefefefef, 0x10101010,
0xefefefef, 0x10101010, 0xefefefef, 0x10101010,
0xefefefef, 0xeeeeeeee, 0x11111111, 0x10101010,
0xefefefef, 0xeeeeeeee, 0x11111111, 0x10101010,
0xefefefef, 0xeeeeeeee, 0x11111111, 0x10101010,
0xefefefef, 0xeeeeeeee, 0x11111111, 0x10101010,
0x03030303, 0x04040404, 0x09090909, 0x10101010,
0x21212121, 0x40404040, 0x81818181, 0x00000000,
0x03030303, 0x04040404, 0x09090909, 0x10101010,
0x21212121, 0x40404040, 0x81818181, 0x00000000,
0xfdfdfdfd, 0xfafafafa, 0xf7f7f7f7, 0xeeeeeeee,
0xdfdfdfdf, 0xbebebebe, 0x7f7f7f7f, 0xfefefefe,
0xfdfdfdfd, 0xfafafafa, 0xf7f7f7f7, 0xeeeeeeee,
0xdfdfdfdf, 0xbebebebe, 0x7f7f7f7f, 0xfefefefe,
};
enum training_modes {
SUCCEEDING = 0,
FAILING = 1
};
static u8 test_dq_aligned(const struct sysinfo *s,
const u8 channel)
{
u32 address;
int rank, lane;
u8 count, count1;
u8 data[8];
u8 lane_error = 0;
FOR_EACH_POPULATED_RANK_IN_CHANNEL(s->dimms, channel, rank) {
address = test_address(channel, rank);
for (count = 0; count < WT_PATTERN_SIZE; count++) {
for (count1 = 0; count1 < WT_PATTERN_SIZE; count1++) {
if ((count1 % 16) == 0)
MCHBAR32(0xf90) = 1;
const u32 pattern =
write_training_schedule[count1];
write32((u32 *)address + 8 * count1, pattern);
write32((u32 *)address + 8 * count1 + 4,
pattern);
}
const u32 good = write_training_schedule[count];
write32(&data[0], read32((u32 *)address + 8 * count));
write32(&data[4],
read32((u32 *)address + 8 * count + 4));
FOR_EACH_BYTELANE(lane) {
u8 expected = (good >> ((lane % 4) * 8)) & 0xff;
if (data[lane] != expected)
lane_error |= 1 << lane;
}
}
}
return lane_error;
}
#define CONSISTENCY 10
/*
* This function finds either failing or succeeding writes by increasing DQ.
* When it has found a failing or succeeding setting it will increase DQ
* another 10 times to make sure the result is consistent.
* This is probably done because lanes cannot be trained independent from
* each other.
*/
static int find_dq_limit(const struct sysinfo *s, const u8 channel,
struct dll_setting dq_setting[TOTAL_BYTELANES],
u8 dq_lim[TOTAL_BYTELANES],
const enum training_modes expected_result)
{
int status = CB_SUCCESS;
int lane;
u8 test_result;
u8 pass_count[TOTAL_BYTELANES];
u8 succes_mask = 0xff;
printk(RAM_DEBUG, "Looking for %s writes on channel %d\n",
expected_result == FAILING ? "failing" : "succeeding", channel);
memset(pass_count, 0, sizeof(pass_count));
while (succes_mask) {
test_result = test_dq_aligned(s, channel);
FOR_EACH_BYTELANE(lane) {
if (((test_result >> lane) & 1) != expected_result) {
status = increment_dq_dqs(s, &dq_setting[lane]);
dqset(channel, lane, &dq_setting[lane]);
dq_lim[lane]++;
} else if (pass_count[lane] < CONSISTENCY) {
status = increment_dq_dqs(s, &dq_setting[lane]);
dqset(channel, lane, &dq_setting[lane]);
dq_lim[lane]++;
pass_count[lane]++;
} else if (pass_count[lane] == CONSISTENCY) {
succes_mask &= ~(1 << lane);
}
if (status == CB_ERR) {
printk(BIOS_CRIT, "Could not find a case of %s "
"writes on CH%d, lane %d\n",
expected_result == FAILING ? "failing"
: "succeeding", channel, lane);
return CB_ERR;
}
}
}
return CB_SUCCESS;
}
/*
* This attempts to find the ideal delay for DQ to account for the skew between
* the DQ and the DQS signal.
* The training works this way:
* - start from the DQS delay values (DQ is always later than DQS)
* - increment the DQ delay until a succeeding write is found on all bytelayes,
* on all ranks on a channel and save these values
* - again increment the DQ delay until write start to fail on all bytelanes and
* save that value
* - use the mean between the saved succeeding and failing value
* - note: bytelanes cannot be trained independently, so the delays need to be
* adjusted and tested for all of them at the same time
*/
int do_write_training(struct sysinfo *s)
{
int i;
u8 channel, lane;
u8 dq_lower[TOTAL_BYTELANES];
u8 dq_upper[TOTAL_BYTELANES];
struct dll_setting dq_setting[TOTAL_BYTELANES];
printk(BIOS_DEBUG, "Starting DQ write training\n");
FOR_EACH_POPULATED_CHANNEL(s->dimms, channel) {
printk(BIOS_DEBUG, "Doing DQ write training on CH%d\n", channel);
/* Start all lanes at DQS values */
FOR_EACH_BYTELANE(lane) {
dqset(channel, lane, &s->dqs_settings[channel][lane]);
s->dq_settings[channel][lane] = s->dqs_settings[channel][lane];
}
memset(dq_lower, 0, sizeof(dq_lower));
/* Start from DQS settings */
memcpy(dq_setting, s->dqs_settings[channel], sizeof(dq_setting));
if (find_dq_limit(s, channel, dq_setting, dq_lower,
SUCCEEDING)) {
printk(BIOS_CRIT,
"Could not find working lower limit DQ setting\n");
return CB_ERR;
}
memcpy(dq_upper, dq_lower, sizeof(dq_lower));
if (find_dq_limit(s, channel, dq_setting, dq_upper,
FAILING)) {
printk(BIOS_WARNING,
"Could not find failing upper limit DQ setting\n");
return CB_ERR;
}
FOR_EACH_BYTELANE(lane) {
dq_lower[lane] -= CONSISTENCY - 1;
dq_upper[lane] -= CONSISTENCY - 1;
u8 dq_center = (dq_upper[lane] + dq_lower[lane]) / 2;
printk(RAM_DEBUG, "Centered value for DQ DLL:"
" ch%d, lane %d, #steps = %d\n",
channel, lane, dq_center);
for (i = 0; i < dq_center; i++) {
/* Should never happen */
if (increment_dq_dqs(s, &s->dq_settings[channel][lane])
== CB_ERR)
printk(BIOS_ERR,
"Huh? write training overflowed!!\n");
}
}
/* Reset DQ DLL settings and increment with centered value*/
printk(BIOS_DEBUG, "Final DQ timings on CH%d\n", channel);
FOR_EACH_BYTELANE(lane) {
printk(BIOS_DEBUG, "\tlane%d: ", lane);
print_dll_setting(&s->dq_settings[channel][lane], 1);
dqset(channel, lane, &s->dq_settings[channel][lane]);
}
}
printk(BIOS_DEBUG, "Done DQ write training\n");
return CB_SUCCESS;
}
#define RT_PATTERN_SIZE 40
static const u32 read_training_schedule[RT_PATTERN_SIZE] = {
0xffffffff, 0x00000000, 0xffffffff, 0x00000000,
0xffffffff, 0x00000000, 0xffffffff, 0x00000000,
0xefefefef, 0x10101010, 0xefefefef, 0x10101010,
0xefefefef, 0x10101010, 0xefefefef, 0x10101010,
0xefefefef, 0xeeeeeeee, 0x11111111, 0x10101010,
0xefefefef, 0xeeeeeeee, 0x11111111, 0x10101010,
0x03030303, 0x04040404, 0x09090909, 0x10101010,
0x21212121, 0x40404040, 0x81818181, 0x00000000,
0xfdfdfdfd, 0xfafafafa, 0xf7f7f7f7, 0xeeeeeeee,
0xdfdfdfdf, 0xbebebebe, 0x7f7f7f7f, 0xfefefefe
};
static int rt_increment_dqs(struct rt_dqs_setting *setting)
{
if (setting->pi < 7) {
setting->pi++;
} else if (setting->tap < 14) {
setting->pi = 0;
setting->tap++;
} else {
return CB_ERR;
}
return CB_SUCCESS;
}
static u8 test_dqs_aligned(const struct sysinfo *s, const u8 channel)
{
int i, rank, lane;
volatile u8 data[8];
u32 address;
u8 bytelane_error = 0;
FOR_EACH_POPULATED_RANK_IN_CHANNEL(s->dimms, channel, rank) {
address = test_address(channel, rank);
for (i = 0; i < RT_PATTERN_SIZE; i++) {
const u32 good = read_training_schedule[i];
write32(&data[0], read32((u32 *)address + i * 8));
write32(&data[4], read32((u32 *)address + i * 8 + 4));
FOR_EACH_BYTELANE(lane) {
if (data[lane] != (good & 0xff))
bytelane_error |= 1 << lane;
}
}
}
return bytelane_error;
}
static int rt_find_dqs_limit(struct sysinfo *s, u8 channel,
struct rt_dqs_setting dqs_setting[TOTAL_BYTELANES],
u8 dqs_lim[TOTAL_BYTELANES],
const enum training_modes expected_result)
{
int lane;
u8 test_result;
int status = CB_SUCCESS;
FOR_EACH_BYTELANE(lane)
rt_set_dqs(channel, lane, 0, &dqs_setting[lane]);
while (status == CB_SUCCESS) {
test_result = test_dqs_aligned(s, channel);
if (test_result == (expected_result == SUCCEEDING ? 0 : 0xff))
return CB_SUCCESS;
FOR_EACH_BYTELANE(lane) {
if (((test_result >> lane) & 1) != expected_result) {
status = rt_increment_dqs(&dqs_setting[lane]);
dqs_lim[lane]++;
rt_set_dqs(channel, lane, 0, &dqs_setting[lane]);
}
}
}
if (expected_result == SUCCEEDING) {
printk(BIOS_CRIT,
"Could not find RT DQS setting\n");
return CB_ERR;
} else {
printk(RAM_DEBUG,
"Read succeeded over all DQS"
" settings, continuing\n");
return CB_SUCCESS;
}
}
#define RT_LOOPS 3
/*
* This attempts to find the ideal delay for DQS on reads (rx).
* The training works this way:
* - start from the lowest possible delay (0) on all bytelanes
* - increment the DQS rx delays until a succeeding write is found on all
* bytelayes, on all ranks on a channel and save these values
* - again increment the DQS rx delay until write start to fail on all bytelanes
* and save that value
* - use the mean between the saved succeeding and failing value
* - note0: bytelanes cannot be trained independently, so the delays need to be
* adjusted and tested for all of them at the same time
* - note1: At this stage all ranks effectively use the rank0's rt_dqs settings,
* but later on their respective settings are used (TODO where is the
* 'switch' register??). So programming the results for all ranks at the end
* of the training. Programming on all ranks instead of all populated ranks,
* seems to be required, most likely because the signals can't really be generated
* separately.
*/
int do_read_training(struct sysinfo *s)
{
int loop, channel, i, lane, rank;
u32 address, content;
u8 dqs_lower[TOTAL_BYTELANES];
u8 dqs_upper[TOTAL_BYTELANES];
struct rt_dqs_setting dqs_setting[TOTAL_BYTELANES];
u16 saved_dqs_center[TOTAL_CHANNELS][TOTAL_BYTELANES];
memset(saved_dqs_center, 0, sizeof(saved_dqs_center));
printk(BIOS_DEBUG, "Starting DQS read training\n");
for (loop = 0; loop < RT_LOOPS; loop++) {
FOR_EACH_POPULATED_CHANNEL(s->dimms, channel) {
printk(RAM_DEBUG, "Doing DQS read training on CH%d\n",
channel);
/* Write pattern to strobe address */
FOR_EACH_POPULATED_RANK_IN_CHANNEL(s->dimms, channel, rank) {
address = test_address(channel, rank);
for (i = 0; i < RT_PATTERN_SIZE; i++) {
content = read_training_schedule[i];
write32((u32 *)address + 8 * i, content);
write32((u32 *)address + 8 * i + 4, content);
}
}
memset(dqs_lower, 0, sizeof(dqs_lower));
memset(&dqs_setting, 0, sizeof(dqs_setting));
if (rt_find_dqs_limit(s, channel, dqs_setting, dqs_lower,
SUCCEEDING)) {
printk(BIOS_CRIT,
"Could not find working lower limit DQS setting\n");
return CB_ERR;
}
FOR_EACH_BYTELANE(lane)
dqs_upper[lane] = dqs_lower[lane];
if (rt_find_dqs_limit(s, channel, dqs_setting, dqs_upper,
FAILING)) {
printk(BIOS_CRIT,
"Could not find failing upper limit DQ setting\n");
return CB_ERR;
}
printk(RAM_DEBUG, "Centered values, loop %d:\n", loop);
FOR_EACH_BYTELANE(lane) {
u8 center = (dqs_lower[lane] + dqs_upper[lane]) / 2;
printk(RAM_DEBUG, "\t lane%d: #%d\n", lane, center);
saved_dqs_center[channel][lane] += center;
}
} /* END FOR_EACH_POPULATED_CHANNEL */
} /* end RT_LOOPS */
memset(s->rt_dqs, 0, sizeof(s->rt_dqs));
FOR_EACH_POPULATED_CHANNEL(s->dimms, channel) {
printk(BIOS_DEBUG, "Final timings on CH%d:\n", channel);
FOR_EACH_BYTELANE(lane) {
saved_dqs_center[channel][lane] /= RT_LOOPS;
while (saved_dqs_center[channel][lane]--) {
if (rt_increment_dqs(&s->rt_dqs[channel][lane])
== CB_ERR)
/* Should never happen */
printk(BIOS_ERR,
"Huh? read training overflowed!!\n");
}
/* Later on separate settings for each rank are used so program
all of them */
FOR_EACH_RANK_IN_CHANNEL(rank)
rt_set_dqs(channel, lane, rank,
&s->rt_dqs[channel][lane]);
printk(BIOS_DEBUG, "\tlane%d: %d.%d\n",
lane, s->rt_dqs[channel][lane].tap,
s->rt_dqs[channel][lane].pi);
}
}
printk(BIOS_DEBUG, "Done DQS read training\n");
return CB_SUCCESS;
}
/* Enable write leveling on selected rank and disable output on other ranks */
static void set_rank_write_level(struct sysinfo *s, u8 channel, u8 config,
u8 config_rank, u8 target_rank, int wl_enable)
{
u32 emrs1;
/* Is shifted by bits 2 later so u8 can be used to reduce size */
static const u8 emrs1_lut[8][4][4] = { /* [Config][Leveling Rank][Rank] */
{ /* Config 0: 2R2R */
{0x11, 0x00, 0x91, 0x00},
{0x00, 0x11, 0x91, 0x00},
{0x91, 0x00, 0x11, 0x00},
{0x91, 0x00, 0x00, 0x11}
},
{ /* Config 1: 2R1R */
{0x11, 0x00, 0x91, 0x00},
{0x00, 0x11, 0x91, 0x00},
{0x91, 0x00, 0x11, 0x00},
{0x00, 0x00, 0x00, 0x00}
},
{ /* Config 2: 1R2R */
{0x11, 0x00, 0x91, 0x00},
{0x00, 0x00, 0x00, 0x00},
{0x91, 0x00, 0x11, 0x00},
{0x91, 0x00, 0x00, 0x11}
},
{ /* Config 3: 1R1R */
{0x11, 0x00, 0x91, 0x00},
{0x00, 0x00, 0x00, 0x00},
{0x91, 0x00, 0x11, 0x00},
{0x00, 0x00, 0x00, 0x00}
},
{ /* Config 4: 2R0R */
{0x11, 0x00, 0x00, 0x00},
{0x00, 0x11, 0x00, 0x00},
{0x00, 0x00, 0x00, 0x00},
{0x00, 0x00, 0x00, 0x00}
},
{ /* Config 5: 0R2R */
{0x00, 0x00, 0x00, 0x00},
{0x00, 0x00, 0x00, 0x00},
{0x00, 0x00, 0x11, 0x00},
{0x00, 0x00, 0x00, 0x11}
},
{ /* Config 6: 1R0R */
{0x11, 0x00, 0x00, 0x00},
{0x00, 0x00, 0x00, 0x00},
{0x00, 0x00, 0x00, 0x00},
{0x00, 0x00, 0x00, 0x00}
},
{ /* Config 7: 0R1R */
{0x00, 0x00, 0x00, 0x00},
{0x00, 0x00, 0x00, 0x00},
{0x00, 0x00, 0x11, 0x00},
{0x00, 0x00, 0x00, 0x00}
}
};
if (wl_enable) {
printk(RAM_DEBUG, "Entering WL mode\n");
printk(RAM_DEBUG, "Using WL ODT values\n");
emrs1 = emrs1_lut[config][target_rank][config_rank];
} else {
printk(RAM_DEBUG, "Exiting WL mode\n");
emrs1 = ddr3_emrs1_rtt_nom_config[s->dimm_config[channel]][config_rank];
}
printk(RAM_DEBUG, "Setting ODT for rank%d to ", config_rank);
switch (emrs1) {
case 0:
printk(RAM_DEBUG, "High-Z\n");
break;
case 0x11:
printk(RAM_DEBUG, "40 Ohm\n");
break;
case 0x81:
printk(RAM_DEBUG, "30 Ohm\n");
break;
case 0x80:
printk(RAM_DEBUG, "20 Ohm\n");
break;
case 0x10:
printk(RAM_DEBUG, "120 Ohm\n");
break;
case 0x01:
printk(RAM_DEBUG, "60 Ohm\n");
break;
default:
printk(BIOS_WARNING, "ODT value Undefined!\n");
break;
}
emrs1 <<= 2;
/* Set output drive strength to 34 Ohm during write levelling */
emrs1 |= (1 << 1);
if (wl_enable && (target_rank != config_rank)) {
printk(RAM_DEBUG, "Disabling output for rank%d\n", config_rank);
emrs1 |= (1 << 12);
}
if (wl_enable && (target_rank == config_rank)) {
printk(RAM_DEBUG, "Enabling WL for rank%d\n", config_rank);
emrs1 |= (1 << 7);
}
send_jedec_cmd(s, config_rank, channel, EMRS1_CMD, emrs1);
}
#define N_SAMPLES 5
static void sample_dq(const struct sysinfo *s, u8 channel, u8 rank,
u8 high_found[8]) {
u32 address = test_address(channel, rank);
int samples, lane;
memset(high_found, 0, TOTAL_BYTELANES * sizeof(high_found[0]));
for (samples = 0; samples < N_SAMPLES; samples++) {
write32((u32 *)address, 0x12341234);
write32((u32 *)address + 4, 0x12341234);
udelay(5);
FOR_EACH_BYTELANE(lane) {
u8 dq_high = (MCHBAR8(0x561 + 0x400 * channel
+ (lane * 4)) >> 7) & 1;
high_found[lane] += dq_high;
}
}
}
static enum cb_err increment_to_dqs_edge(struct sysinfo *s, u8 channel, u8 rank)
{
int lane;
u8 saved_24d;
struct dll_setting dqs_setting[TOTAL_BYTELANES];
u8 bytelane_ok = 0;
u8 dq_sample[TOTAL_BYTELANES];
memcpy(dqs_setting, s->dqs_settings[channel], sizeof(dqs_setting));
FOR_EACH_BYTELANE(lane)
dqsset(channel, lane, &dqs_setting[lane]);
saved_24d = MCHBAR8(0x24d + 0x400 * channel);
/* Loop 0: Find DQ sample low, by decreasing */
while (bytelane_ok != 0xff) {
sample_dq(s, channel, rank, dq_sample);
FOR_EACH_BYTELANE(lane) {
if (bytelane_ok & (1 << lane))
continue;
printk(RAM_SPEW, "%d, %d, %02d, %d,"
" lane%d sample: %d\n",
dqs_setting[lane].coarse,
dqs_setting[lane].clk_delay,
dqs_setting[lane].tap,
dqs_setting[lane].pi,
lane,
dq_sample[lane]);
if (dq_sample[lane] > 0) {
if (decrement_dq_dqs(s, &dqs_setting[lane])) {
printk(BIOS_EMERG,
"DQS setting channel%d, "
"lane %d reached a minimum!\n",
channel, lane);
return CB_ERR;
}
} else {
bytelane_ok |= (1 << lane);
}
dqsset(channel, lane, &dqs_setting[lane]);
}
}
printk(RAM_DEBUG, "DQS settings on PASS #0:\n");
FOR_EACH_BYTELANE(lane) {
printk(RAM_DEBUG, "lane %d: ", lane);
print_dll_setting(&dqs_setting[lane], 0);
}
/* Loop 1: Find DQ sample high, by increasing */
bytelane_ok = 0;
while (bytelane_ok != 0xff) {
sample_dq(s, channel, rank, dq_sample);
FOR_EACH_BYTELANE(lane) {
if (bytelane_ok & (1 << lane))
continue;
printk(RAM_SPEW, "%d, %d, %02d, %d, lane%d sample: %d\n",
dqs_setting[lane].coarse,
dqs_setting[lane].clk_delay,
dqs_setting[lane].tap,
dqs_setting[lane].pi,
lane,
dq_sample[lane]);
if (dq_sample[lane] == N_SAMPLES) {
bytelane_ok |= (1 << lane);
} else {
if (increment_dq_dqs(s, &dqs_setting[lane])) {
printk(BIOS_EMERG,
"DQS setting channel%d, "
"lane %d reached a maximum!\n",
channel, lane);
return CB_ERR;
}
}
dqsset(channel, lane, &dqs_setting[lane]);
}
}
printk(RAM_DEBUG, "DQS settings on PASS #1:\n");
FOR_EACH_BYTELANE(lane) {
printk(RAM_DEBUG, "lane %d: ", lane);
print_dll_setting(&dqs_setting[lane], 0);
}
printk(BIOS_DEBUG, "final WL DQS settings on CH%d\n", channel);
FOR_EACH_BYTELANE(lane) {
printk(BIOS_DEBUG, "\tlane%d: ", lane);
print_dll_setting(&dqs_setting[lane], 1);
s->dqs_settings[channel][lane] = dqs_setting[lane];
}
MCHBAR8(0x24d + 0x400 * channel) = saved_24d;
return CB_SUCCESS;
}
/*
* DDR3 uses flyby topology where the clock signal takes a different path
* than the data signal, to allow for better signal intergrity.
* Therefore the delay on the data signals needs to account for this.
* This is done by sampleling the DQS write (tx) signal back over
* the DQ signal and looking for delay values where the sample transitions
* from high to low.
* Here the following is done:
* - enable write levelling on the first populated rank
* - disable output on other populated ranks
* - start from safe DQS (tx) delays (other transitions can be
* found at different starting values but are generally bad)
* - loop0: decrease DQS (tx) delays until low is sampled,
* loop1: increase DQS (tx) delays until high is sampled,
* That way we are sure to hit a low-high transition
* - put all ranks in normal mode of operation again
* - note: All ranks need to be leveled together
*/
void search_write_leveling(struct sysinfo *s)
{
int i, ch, count;
u8 config, rank0, rank1, lane;
struct dll_setting dq_setting;
u8 chanconfig_lut[16]={0, 6, 4, 6, 7, 3, 1, 3, 5, 2, 0, 2, 7, 3, 1, 3};
u8 odt_force[8][4] = { /* [Config][leveling rank] */
{0x5, 0x6, 0x5, 0x9},
{0x5, 0x6, 0x5, 0x0},
{0x5, 0x0, 0x5, 0x9},
{0x5, 0x0, 0x5, 0x0},
{0x1, 0x2, 0x0, 0x0},
{0x0, 0x0, 0x4, 0x8},
{0x1, 0x0, 0x0, 0x0},
{0x0, 0x0, 0x4, 0x0}
};
printk(BIOS_DEBUG, "Starting write levelling.\n");
FOR_EACH_POPULATED_CHANNEL(s->dimms, ch) {
printk(BIOS_DEBUG, "\tCH%d\n", ch);
config = chanconfig_lut[s->dimm_config[ch]];
MCHBAR8(0x5d8 + 0x400 * ch) =
MCHBAR8(0x5d8 + 0x400 * ch) & ~0x0e;
MCHBAR16(0x5c4 + 0x400 * ch) = (MCHBAR16(0x5c4 + 0x400 * ch) &
~0x3fff) | 0x3fff;
MCHBAR8(0x265 + 0x400 * ch) =
MCHBAR8(0x265 + 0x400 * ch) & ~0x1f;
/* find the first populated rank */
FOR_EACH_POPULATED_RANK_IN_CHANNEL(s->dimms, ch, rank0)
break;
/* Enable WL for the first populated rank and disable output
for others */
FOR_EACH_POPULATED_RANK_IN_CHANNEL(s->dimms, ch, rank1)
set_rank_write_level(s, ch, config, rank1, rank0, 1);
MCHBAR8(0x298 + 2 + 0x400 * ch) =
(MCHBAR8(0x298 + 2 + 0x400 * ch) & ~0x0f)
| odt_force[config][rank0];
MCHBAR8(0x271 + 0x400 * ch) = (MCHBAR8(0x271 + 0x400 * ch)
& ~0x7e) | 0x4e;
MCHBAR8(0x5d9 + 0x400 * ch) =
(MCHBAR8(0x5d9 + 0x400 * ch) & ~0x04) | 0x04;
MCHBAR32(0x1a0) = (MCHBAR32(0x1a0) & ~0x07ffffff)
| 0x00014000;
if (increment_to_dqs_edge(s, ch, rank0))
die("Write Leveling failed!");
MCHBAR8(0x298 + 2 + 0x400 * ch) =
MCHBAR8(0x298 + 2 + 0x400 * ch) & ~0x0f;
MCHBAR8(0x271 + 0x400 * ch) =
(MCHBAR8(0x271 + 0x400 * ch) & ~0x7e)
| 0x0e;
MCHBAR8(0x5d9 + 0x400 * ch) =
(MCHBAR8(0x5d9 + 0x400 * ch) & ~0x04);
MCHBAR32(0x1a0) = (MCHBAR32(0x1a0)
& ~0x07ffffff) | 0x00555801;
/* Disable WL on the trained rank */
set_rank_write_level(s, ch, config, rank0, rank0, 0);
send_jedec_cmd(s, rank0, ch, NORMALOP_CMD, 1 << 12);
MCHBAR8(0x5d8 + 0x400 * ch) = (MCHBAR8(0x5d8 + 0x400 * ch)
& ~0x0e) | 0x0e;
MCHBAR16(0x5c4 + 0x400 * ch) = (MCHBAR16(0x5c4 + 0x400 * ch)
& ~0x3fff) | 0x1807;
MCHBAR8(0x265 + 0x400 * ch) = MCHBAR8(0x265 + 0x400 * ch) & ~0x1f;
/* Disable write level mode for all ranks */
FOR_EACH_POPULATED_RANK_IN_CHANNEL(s->dimms, ch, rank0)
set_rank_write_level(s, ch, config, rank0, rank0, 0);
}
MCHBAR8(0x5dc) = (MCHBAR8(0x5dc) & ~0x80) | 0x80;
/* Increment DQ (rx) dll setting by a standard amount past DQS,
This is further trained in write training. */
switch (s->selected_timings.mem_clk) {
default:
case MEM_CLOCK_800MHz:
count = 39;
break;
case MEM_CLOCK_1066MHz:
count = 32;
break;
case MEM_CLOCK_1333MHz:
count = 42;
break;
}
FOR_EACH_POPULATED_CHANNEL_AND_BYTELANE(s->dimms, ch, lane) {
dq_setting = s->dqs_settings[ch][lane];
for (i = 0; i < count; i++)
if (increment_dq_dqs(s, &dq_setting))
die("Can't further increase DQ past DQS delay");
dqset(ch, lane, &dq_setting);
}
printk(BIOS_DEBUG, "Done write levelling.\n");
}
|