summaryrefslogtreecommitdiff
path: root/src/northbridge/intel/sandybridge/raminit_native.c
blob: e95f154c02a4b10eafafde4003e80ab66d1bd907 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
/* SPDX-License-Identifier: GPL-2.0-only */

#include <commonlib/clamp.h>
#include <console/console.h>
#include <console/usb.h>
#include <delay.h>
#include <device/device.h>
#include <device/pci_def.h>
#include <device/pci_ops.h>
#include <northbridge/intel/sandybridge/chip.h>
#include "raminit_native.h"
#include "raminit_common.h"
#include "raminit_tables.h"

#define SNB_MIN_DCLK_133_MULT	3
#define SNB_MAX_DCLK_133_MULT	8
#define IVB_MIN_DCLK_133_MULT	3
#define IVB_MAX_DCLK_133_MULT	10
#define IVB_MIN_DCLK_100_MULT	7
#define IVB_MAX_DCLK_100_MULT	12

/* Frequency multiplier */
static u32 get_FRQ(const ramctr_timing *ctrl)
{
	const u32 FRQ = 256000 / (ctrl->tCK * ctrl->base_freq);

	if (IS_IVY_CPU(ctrl->cpu)) {
		if (ctrl->base_freq == 100)
			return clamp_u32(IVB_MIN_DCLK_100_MULT, FRQ, IVB_MAX_DCLK_100_MULT);

		if (ctrl->base_freq == 133)
			return clamp_u32(IVB_MIN_DCLK_133_MULT, FRQ, IVB_MAX_DCLK_133_MULT);

	} else if (IS_SANDY_CPU(ctrl->cpu)) {
		if (ctrl->base_freq == 133)
			return clamp_u32(SNB_MIN_DCLK_133_MULT, FRQ, SNB_MAX_DCLK_133_MULT);
	}

	die("Unsupported CPU or base frequency.");
}

/* Get REFI based on frequency index, tREFI = 7.8usec */
static u32 get_REFI(u32 FRQ, u8 base_freq)
{
	if (base_freq == 100)
		return frq_refi_map[1][FRQ - 7];

	else
		return frq_refi_map[0][FRQ - 3];
}

/* Get XSOffset based on frequency index, tXS-Offset: tXS = tRFC + 10ns */
static u8 get_XSOffset(u32 FRQ, u8 base_freq)
{
	if (base_freq == 100)
		return frq_xs_map[1][FRQ - 7];

	else
		return frq_xs_map[0][FRQ - 3];
}

/* Get MOD based on frequency index */
static u8 get_MOD(u32 FRQ, u8 base_freq)
{
	if (base_freq == 100)
		return frq_mod_map[1][FRQ - 7];

	else
		return frq_mod_map[0][FRQ - 3];
}

/* Get Write Leveling Output delay based on frequency index */
static u8 get_WLO(u32 FRQ, u8 base_freq)
{
	if (base_freq == 100)
		return frq_wlo_map[1][FRQ - 7];

	else
		return frq_wlo_map[0][FRQ - 3];
}

/* Get CKE based on frequency index */
static u8 get_CKE(u32 FRQ, u8 base_freq)
{
	if (base_freq == 100)
		return frq_cke_map[1][FRQ - 7];

	else
		return frq_cke_map[0][FRQ - 3];
}

/* Get XPDLL based on frequency index */
static u8 get_XPDLL(u32 FRQ, u8 base_freq)
{
	if (base_freq == 100)
		return frq_xpdll_map[1][FRQ - 7];

	else
		return frq_xpdll_map[0][FRQ - 3];
}

/* Get XP based on frequency index */
static u8 get_XP(u32 FRQ, u8 base_freq)
{
	if (base_freq == 100)
		return frq_xp_map[1][FRQ - 7];

	else
		return frq_xp_map[0][FRQ - 3];
}

/* Get AONPD based on frequency index */
static u8 get_AONPD(u32 FRQ, u8 base_freq)
{
	if (base_freq == 100)
		return frq_aonpd_map[1][FRQ - 7];

	else
		return frq_aonpd_map[0][FRQ - 3];
}

/* Get COMP2 based on frequency index */
static u32 get_COMP2(u32 FRQ, u8 base_freq)
{
	if (base_freq == 100)
		return frq_comp2_map[1][FRQ - 7];

	else
		return frq_comp2_map[0][FRQ - 3];
}

static void normalize_tclk(ramctr_timing *ctrl, bool ref_100mhz_support)
{
	if (ctrl->tCK <= TCK_1200MHZ) {
		ctrl->tCK = TCK_1200MHZ;
		ctrl->base_freq = 100;
	} else if (ctrl->tCK <= TCK_1100MHZ) {
		ctrl->tCK = TCK_1100MHZ;
		ctrl->base_freq = 100;
	} else if (ctrl->tCK <= TCK_1066MHZ) {
		ctrl->tCK = TCK_1066MHZ;
		ctrl->base_freq = 133;
	} else if (ctrl->tCK <= TCK_1000MHZ) {
		ctrl->tCK = TCK_1000MHZ;
		ctrl->base_freq = 100;
	} else if (ctrl->tCK <= TCK_933MHZ) {
		ctrl->tCK = TCK_933MHZ;
		ctrl->base_freq = 133;
	} else if (ctrl->tCK <= TCK_900MHZ) {
		ctrl->tCK = TCK_900MHZ;
		ctrl->base_freq = 100;
	} else if (ctrl->tCK <= TCK_800MHZ) {
		ctrl->tCK = TCK_800MHZ;
		ctrl->base_freq = 133;
	} else if (ctrl->tCK <= TCK_700MHZ) {
		ctrl->tCK = TCK_700MHZ;
		ctrl->base_freq = 100;
	} else if (ctrl->tCK <= TCK_666MHZ) {
		ctrl->tCK = TCK_666MHZ;
		ctrl->base_freq = 133;
	} else if (ctrl->tCK <= TCK_533MHZ) {
		ctrl->tCK = TCK_533MHZ;
		ctrl->base_freq = 133;
	} else if (ctrl->tCK <= TCK_400MHZ) {
		ctrl->tCK = TCK_400MHZ;
		ctrl->base_freq = 133;
	} else {
		ctrl->tCK = 0;
		return;
	}

	if (!ref_100mhz_support && ctrl->base_freq == 100) {
		/* Skip unsupported frequency */
		ctrl->tCK++;
		normalize_tclk(ctrl, ref_100mhz_support);
	}
}

#define DEFAULT_TCK	TCK_800MHZ

static unsigned int get_mem_min_tck(void)
{
	u32 reg32;
	u8 rev;
	const struct northbridge_intel_sandybridge_config *cfg = NULL;

	/* Actually, config of MCH or Host Bridge */
	cfg = config_of_soc();

	/* If non-zero, it was set in the devicetree */
	if (cfg->max_mem_clock_mhz) {

		if (cfg->max_mem_clock_mhz >= 1066)
			return TCK_1066MHZ;

		else if (cfg->max_mem_clock_mhz >= 933)
			return TCK_933MHZ;

		else if (cfg->max_mem_clock_mhz >= 800)
			return TCK_800MHZ;

		else if (cfg->max_mem_clock_mhz >= 666)
			return TCK_666MHZ;

		else if (cfg->max_mem_clock_mhz >= 533)
			return TCK_533MHZ;

		else
			return TCK_400MHZ;
	}

	if (CONFIG(NATIVE_RAMINIT_IGNORE_MAX_MEM_FUSES))
		return TCK_1333MHZ;

	rev = pci_read_config8(HOST_BRIDGE, PCI_DEVICE_ID);

	if ((rev & BASE_REV_MASK) == BASE_REV_SNB) {
		/* Read Capabilities A Register DMFC bits */
		reg32 = pci_read_config32(HOST_BRIDGE, CAPID0_A);
		reg32 &= 0x7;

		switch (reg32) {
		case 7: return TCK_533MHZ;
		case 6: return TCK_666MHZ;
		case 5: return TCK_800MHZ;
		/* Reserved */
		default:
			break;
		}
	} else {
		/* Read Capabilities B Register DMFC bits */
		reg32 = pci_read_config32(HOST_BRIDGE, CAPID0_B);
		reg32 = (reg32 >> 4) & 0x7;

		switch (reg32) {
		case 7: return TCK_533MHZ;
		case 6: return TCK_666MHZ;
		case 5: return TCK_800MHZ;
		case 4: return TCK_933MHZ;
		case 3: return TCK_1066MHZ;
		case 2: return TCK_1200MHZ;
		case 1: return TCK_1333MHZ;
		/* Reserved */
		default:
			break;
		}
	}
	return DEFAULT_TCK;
}

static void find_cas_tck(ramctr_timing *ctrl)
{
	u8 val;
	u32 reg32;
	u8 ref_100mhz_support;

	/* 100 MHz reference clock supported */
	reg32 = pci_read_config32(HOST_BRIDGE, CAPID0_B);
	ref_100mhz_support = (reg32 >> 21) & 0x7;
	printk(BIOS_DEBUG, "100MHz reference clock support: %s\n", ref_100mhz_support ? "yes"
										      : "no");

	printk(BIOS_DEBUG, "PLL_REF100_CFG value: 0x%x\n", ref_100mhz_support);

	ctrl->tCK = get_mem_min_tck();

	/* Find CAS latency */
	while (1) {
		/*
		 * Normalising tCK before computing clock could potentially
		 * result in a lower selected CAS, which is desired.
		 */
		normalize_tclk(ctrl, ref_100mhz_support);
		if (!(ctrl->tCK))
			die("Couldn't find compatible clock / CAS settings\n");

		val = DIV_ROUND_UP(ctrl->tAA, ctrl->tCK);
		printk(BIOS_DEBUG, "Trying CAS %u, tCK %u.\n", val, ctrl->tCK);
		for (; val <= MAX_CAS; val++)
			if ((ctrl->cas_supported >> (val - MIN_CAS)) & 1)
				break;

		if (val == (MAX_CAS + 1)) {
			ctrl->tCK++;
			continue;
		} else {
			printk(BIOS_DEBUG, "Found compatible clock, CAS pair.\n");
			break;
		}
	}

	/* Frequency multiplier */
	ctrl->FRQ = get_FRQ(ctrl);

	printk(BIOS_DEBUG, "Selected DRAM frequency: %u MHz\n", NS2MHZ_DIV256 / ctrl->tCK);
	printk(BIOS_DEBUG, "Selected CAS latency   : %uT\n", val);
	ctrl->CAS = val;
}


static void dram_timing(ramctr_timing *ctrl)
{
	/*
	 * On Sandy Bridge, the maximum supported DDR3 frequency is 1066MHz (DDR3 2133).
	 * Cap it for faster DIMMs, and align it to the closest JEDEC standard frequency.
	 */
	/*
	 * On Ivy Bridge, the maximum supported DDR3 frequency is 1400MHz (DDR3 2800).
	 * Cap it at 1200MHz (DDR3 2400), and align it to the closest JEDEC standard frequency.
	 */
	if (ctrl->tCK == TCK_1200MHZ) {
		ctrl->edge_offset[0] = 18; //XXX: guessed
		ctrl->edge_offset[1] = 8;
		ctrl->edge_offset[2] = 8;
		ctrl->timC_offset[0] = 20; //XXX: guessed
		ctrl->timC_offset[1] = 8;
		ctrl->timC_offset[2] = 8;
		ctrl->pi_coding_threshold = 10;

	} else if (ctrl->tCK == TCK_1100MHZ) {
		ctrl->edge_offset[0] = 17; //XXX: guessed
		ctrl->edge_offset[1] = 7;
		ctrl->edge_offset[2] = 7;
		ctrl->timC_offset[0] = 19; //XXX: guessed
		ctrl->timC_offset[1] = 7;
		ctrl->timC_offset[2] = 7;
		ctrl->pi_coding_threshold = 13;

	} else if (ctrl->tCK == TCK_1066MHZ) {
		ctrl->edge_offset[0] = 16;
		ctrl->edge_offset[1] = 7;
		ctrl->edge_offset[2] = 7;
		ctrl->timC_offset[0] = 18;
		ctrl->timC_offset[1] = 7;
		ctrl->timC_offset[2] = 7;
		ctrl->pi_coding_threshold = 13;

	} else if (ctrl->tCK == TCK_1000MHZ) {
		ctrl->edge_offset[0] = 15; //XXX: guessed
		ctrl->edge_offset[1] = 6;
		ctrl->edge_offset[2] = 6;
		ctrl->timC_offset[0] = 17; //XXX: guessed
		ctrl->timC_offset[1] = 6;
		ctrl->timC_offset[2] = 6;
		ctrl->pi_coding_threshold = 13;

	} else if (ctrl->tCK == TCK_933MHZ) {
		ctrl->edge_offset[0] = 14;
		ctrl->edge_offset[1] = 6;
		ctrl->edge_offset[2] = 6;
		ctrl->timC_offset[0] = 15;
		ctrl->timC_offset[1] = 6;
		ctrl->timC_offset[2] = 6;
		ctrl->pi_coding_threshold = 15;

	} else if (ctrl->tCK == TCK_900MHZ) {
		ctrl->edge_offset[0] = 14; //XXX: guessed
		ctrl->edge_offset[1] = 6;
		ctrl->edge_offset[2] = 6;
		ctrl->timC_offset[0] = 15; //XXX: guessed
		ctrl->timC_offset[1] = 6;
		ctrl->timC_offset[2] = 6;
		ctrl->pi_coding_threshold = 12;

	} else if (ctrl->tCK == TCK_800MHZ) {
		ctrl->edge_offset[0] = 13;
		ctrl->edge_offset[1] = 5;
		ctrl->edge_offset[2] = 5;
		ctrl->timC_offset[0] = 14;
		ctrl->timC_offset[1] = 5;
		ctrl->timC_offset[2] = 5;
		ctrl->pi_coding_threshold = 15;

	} else if (ctrl->tCK == TCK_700MHZ) {
		ctrl->edge_offset[0] = 13; //XXX: guessed
		ctrl->edge_offset[1] = 5;
		ctrl->edge_offset[2] = 5;
		ctrl->timC_offset[0] = 14; //XXX: guessed
		ctrl->timC_offset[1] = 5;
		ctrl->timC_offset[2] = 5;
		ctrl->pi_coding_threshold = 16;

	} else if (ctrl->tCK == TCK_666MHZ) {
		ctrl->edge_offset[0] = 10;
		ctrl->edge_offset[1] = 4;
		ctrl->edge_offset[2] = 4;
		ctrl->timC_offset[0] = 11;
		ctrl->timC_offset[1] = 4;
		ctrl->timC_offset[2] = 4;
		ctrl->pi_coding_threshold = 16;

	} else if (ctrl->tCK == TCK_533MHZ) {
		ctrl->edge_offset[0] = 8;
		ctrl->edge_offset[1] = 3;
		ctrl->edge_offset[2] = 3;
		ctrl->timC_offset[0] = 9;
		ctrl->timC_offset[1] = 3;
		ctrl->timC_offset[2] = 3;
		ctrl->pi_coding_threshold = 17;

	} else  { /* TCK_400MHZ */
		ctrl->edge_offset[0] = 6;
		ctrl->edge_offset[1] = 2;
		ctrl->edge_offset[2] = 2;
		ctrl->timC_offset[0] = 6;
		ctrl->timC_offset[1] = 2;
		ctrl->timC_offset[2] = 2;
		ctrl->pi_coding_threshold = 17;
	}

	/* Initial phase between CLK/CMD pins */
	ctrl->pi_code_offset = (256000 / ctrl->tCK) / 66;

	/* DLL_CONFIG_MDLL_W_TIMER */
	ctrl->mdll_wake_delay = (128000 / ctrl->tCK) + 3;

	if (ctrl->tCWL)
		ctrl->CWL = DIV_ROUND_UP(ctrl->tCWL, ctrl->tCK);
	else
		ctrl->CWL = get_CWL(ctrl->tCK);

	printk(BIOS_DEBUG, "Selected CWL latency   : %uT\n", ctrl->CWL);

	/* Find tRCD */
	ctrl->tRCD = DIV_ROUND_UP(ctrl->tRCD, ctrl->tCK);
	printk(BIOS_DEBUG, "Selected tRCD          : %uT\n", ctrl->tRCD);

	ctrl->tRP  = DIV_ROUND_UP(ctrl->tRP,  ctrl->tCK);
	printk(BIOS_DEBUG, "Selected tRP           : %uT\n", ctrl->tRP);

	/* Find tRAS */
	ctrl->tRAS = DIV_ROUND_UP(ctrl->tRAS, ctrl->tCK);
	printk(BIOS_DEBUG, "Selected tRAS          : %uT\n", ctrl->tRAS);

	/* Find tWR */
	ctrl->tWR  = DIV_ROUND_UP(ctrl->tWR,  ctrl->tCK);
	printk(BIOS_DEBUG, "Selected tWR           : %uT\n", ctrl->tWR);

	/* Find tFAW */
	ctrl->tFAW = DIV_ROUND_UP(ctrl->tFAW, ctrl->tCK);
	printk(BIOS_DEBUG, "Selected tFAW          : %uT\n", ctrl->tFAW);

	/* Find tRRD */
	ctrl->tRRD = DIV_ROUND_UP(ctrl->tRRD, ctrl->tCK);
	printk(BIOS_DEBUG, "Selected tRRD          : %uT\n", ctrl->tRRD);

	/* Find tRTP */
	ctrl->tRTP = DIV_ROUND_UP(ctrl->tRTP, ctrl->tCK);
	printk(BIOS_DEBUG, "Selected tRTP          : %uT\n", ctrl->tRTP);

	/* Find tWTR */
	ctrl->tWTR = DIV_ROUND_UP(ctrl->tWTR, ctrl->tCK);
	printk(BIOS_DEBUG, "Selected tWTR          : %uT\n", ctrl->tWTR);

	/* Refresh-to-Active or Refresh-to-Refresh (tRFC) */
	ctrl->tRFC = DIV_ROUND_UP(ctrl->tRFC, ctrl->tCK);
	printk(BIOS_DEBUG, "Selected tRFC          : %uT\n", ctrl->tRFC);

	ctrl->tREFI     =     get_REFI(ctrl->FRQ, ctrl->base_freq);
	ctrl->tMOD      =      get_MOD(ctrl->FRQ, ctrl->base_freq);
	ctrl->tXSOffset = get_XSOffset(ctrl->FRQ, ctrl->base_freq);
	ctrl->tWLO      =      get_WLO(ctrl->FRQ, ctrl->base_freq);
	ctrl->tCKE      =      get_CKE(ctrl->FRQ, ctrl->base_freq);
	ctrl->tXPDLL    =    get_XPDLL(ctrl->FRQ, ctrl->base_freq);
	ctrl->tXP       =       get_XP(ctrl->FRQ, ctrl->base_freq);
	ctrl->tAONPD    =    get_AONPD(ctrl->FRQ, ctrl->base_freq);
}

static void dram_freq(ramctr_timing *ctrl)
{
	if (ctrl->tCK > TCK_400MHZ) {
		printk(BIOS_ERR,
			"DRAM frequency is under lowest supported frequency (400 MHz). "
			"Increasing to 400 MHz as last resort");
		ctrl->tCK = TCK_400MHZ;
	}

	while (1) {
		u8 val2;
		u32 reg1 = 0;

		/* Step 1 - Set target PCU frequency */
		find_cas_tck(ctrl);

		/*
		 * The PLL will never lock if the required frequency is already set.
		 * Exit early to prevent a system hang.
		 */
		reg1 = MCHBAR32(MC_BIOS_DATA);
		val2 = (u8) reg1;
		if (val2)
			return;

		/* Step 2 - Select frequency in the MCU */
		reg1 = ctrl->FRQ;
		if (ctrl->base_freq == 100)
			reg1 |= 0x100;	/* Enable 100Mhz REF clock */

		reg1 |= 0x80000000;	/* set running bit */
		MCHBAR32(MC_BIOS_REQ) = reg1;
		int i = 0;
		printk(BIOS_DEBUG, "PLL busy... ");
		while (reg1 & 0x80000000) {
			udelay(10);
			i++;
			reg1 = MCHBAR32(MC_BIOS_REQ);
		}
		printk(BIOS_DEBUG, "done in %d us\n", i * 10);

		/* Step 3 - Verify lock frequency */
		reg1 = MCHBAR32(MC_BIOS_DATA);
		val2 = (u8) reg1;
		if (val2 >= ctrl->FRQ) {
			printk(BIOS_DEBUG, "MCU frequency is set at : %d MHz\n",
			       (1000 << 8) / ctrl->tCK);
			return;
		}
		printk(BIOS_DEBUG, "PLL didn't lock. Retrying at lower frequency\n");
		ctrl->tCK++;
	}
}

static void dram_ioregs(ramctr_timing *ctrl)
{
	u32 reg;

	int channel;

	/* IO clock */
	FOR_ALL_CHANNELS {
		MCHBAR32(GDCRCLKRANKSUSED_ch(channel)) = ctrl->rankmap[channel];
	}

	/* IO command */
	FOR_ALL_CHANNELS {
		MCHBAR32(GDCRCTLRANKSUSED_ch(channel)) = ctrl->rankmap[channel];
	}

	/* IO control */
	FOR_ALL_POPULATED_CHANNELS {
		program_timings(ctrl, channel);
	}

	/* Perform RCOMP */
	printram("RCOMP...");
	while (!(MCHBAR32(RCOMP_TIMER) & (1 << 16)))
		;

	printram("done\n");

	/* Set COMP2 */
	MCHBAR32(CRCOMPOFST2) = get_COMP2(ctrl->FRQ, ctrl->base_freq);
	printram("COMP2 done\n");

	/* Set COMP1 */
	FOR_ALL_POPULATED_CHANNELS {
		reg = MCHBAR32(CRCOMPOFST1_ch(channel));
		reg = (reg & ~0x00000e00) | (1 <<  9);	/* ODT */
		reg = (reg & ~0x00e00000) | (1 << 21);	/* clk drive up */
		reg = (reg & ~0x38000000) | (1 << 27);	/* ctl drive up */
		MCHBAR32(CRCOMPOFST1_ch(channel)) = reg;
	}
	printram("COMP1 done\n");

	printram("FORCE RCOMP and wait 20us...");
	MCHBAR32(M_COMP) |= (1 << 8);
	udelay(20);
	printram("done\n");
}

int try_init_dram_ddr3(ramctr_timing *ctrl, int fast_boot, int s3resume, int me_uma_size)
{
	int err;

	printk(BIOS_DEBUG, "Starting %s Bridge RAM training (%s).\n",
			IS_SANDY_CPU(ctrl->cpu) ? "Sandy" : "Ivy",
			fast_boot ? "fast boot" : "full initialization");

	if (!fast_boot) {
		/* Find fastest common supported parameters */
		dram_find_common_params(ctrl);

		dram_dimm_mapping(ctrl);
	}

	/* Set MC frequency */
	dram_freq(ctrl);

	if (!fast_boot) {
		/* Calculate timings */
		dram_timing(ctrl);
	}

	/* Set version register */
	MCHBAR32(MRC_REVISION) = 0xc04eb002;

	/* Enable crossover */
	dram_xover(ctrl);

	/* Set timing and refresh registers */
	dram_timing_regs(ctrl);

	/* Power mode preset */
	MCHBAR32(PM_THML_STAT) = 0x5500;

	/* Set scheduler chicken bits */
	MCHBAR32(SCHED_CBIT) = 0x10100005;

	/* Set up watermarks and starvation counter */
	set_wmm_behavior(ctrl->cpu);

	/* Clear IO reset bit */
	MCHBAR32(MC_INIT_STATE_G) &= ~(1 << 5);

	/* Set MAD-DIMM registers */
	dram_dimm_set_mapping(ctrl, 1);
	printk(BIOS_DEBUG, "Done dimm mapping\n");

	/* Zone config */
	dram_zones(ctrl, 1);

	/* Set memory map */
	dram_memorymap(ctrl, me_uma_size);
	printk(BIOS_DEBUG, "Done memory map\n");

	/* Set IO registers */
	dram_ioregs(ctrl);
	printk(BIOS_DEBUG, "Done io registers\n");

	udelay(1);

	if (fast_boot) {
		restore_timings(ctrl);
	} else {
		/* Do JEDEC DDR3 reset sequence */
		dram_jedecreset(ctrl);
		printk(BIOS_DEBUG, "Done jedec reset\n");

		/* MRS commands */
		dram_mrscommands(ctrl);
		printk(BIOS_DEBUG, "Done MRS commands\n");

		/* Prepare for memory training */
		prepare_training(ctrl);

		err = read_training(ctrl);
		if (err)
			return err;

		err = write_training(ctrl);
		if (err)
			return err;

		printram("CP5a\n");

		err = discover_edges(ctrl);
		if (err)
			return err;

		printram("CP5b\n");

		err = command_training(ctrl);
		if (err)
			return err;

		printram("CP5c\n");

		err = discover_edges_write(ctrl);
		if (err)
			return err;

		err = discover_timC_write(ctrl);
		if (err)
			return err;

		normalize_training(ctrl);
	}

	set_read_write_timings(ctrl);

	write_controller_mr(ctrl);

	if (!s3resume) {
		err = channel_test(ctrl);
		if (err)
			return err;

		if (ctrl->ecc_enabled)
			channel_scrub(ctrl);
	}

	/* Set MAD-DIMM registers */
	dram_dimm_set_mapping(ctrl, 0);

	return 0;
}