summaryrefslogtreecommitdiff
path: root/src/northbridge/intel/i855/raminit.c
blob: 39e12d2d0fe859a58bc117d76238ec4152a7951c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
/*
 * This file is part of the coreboot project.
 *
 * Copyright (C) 2006 Jon Dufresne <jon.dufresne@gmail.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include <assert.h>
#include <spd.h>
#include <sdram_mode.h>
#include <stdlib.h>
#include <delay.h>
#include "i855.h"

/*-----------------------------------------------------------------------------
Macros and definitions:
-----------------------------------------------------------------------------*/

#define VALIDATE_DIMM_COMPATIBILITY

/* Debugging macros. */
#if CONFIG_DEBUG_RAM_SETUP
#define PRINTK_DEBUG(x...)      printk(BIOS_DEBUG, x)
#define DUMPNORTH()             dump_pci_device(NORTHBRIDGE_MMC)
#else
#define PRINTK_DEBUG(x...)
#define DUMPNORTH()
#endif

#define delay() udelay(200)

#define VG85X_MODE (SDRAM_BURST_4 | SDRAM_BURST_INTERLEAVED | SDRAM_CAS_2_5)

/* DRC[10:8] - Refresh Mode Select (RMS).
 * 0x0 for Refresh Disabled (Self Refresh)
 * 0x1 for Refresh interval 15.6 us for 133MHz
 * 0x2 for Refresh interval 7.8 us for 133MHz
 * 0x7 for Refresh interval 64 Clocks. (Fast Refresh Mode)
 */
#define RAM_COMMAND_REFRESH		0x1

/* DRC[6:4] - SDRAM Mode Select (SMS). */
#define RAM_COMMAND_SELF_REFRESH	0x0
#define RAM_COMMAND_NOP			0x1
#define RAM_COMMAND_PRECHARGE		0x2
#define RAM_COMMAND_MRS			0x3
#define RAM_COMMAND_EMRS		0x4
#define RAM_COMMAND_CBR			0x6
#define RAM_COMMAND_NORMAL		0x7

/* DRC[29] - Initialization Complete (IC). */
#define RAM_COMMAND_IC			0x1

struct dimm_size {
	unsigned int side1;
	unsigned int side2;
};

static const uint32_t refresh_frequency[] = {
	/* Relative frequency (array value) of each E7501 Refresh Mode Select
	 * (RMS) value (array index)
	 * 0 == least frequent refresh (longest interval between refreshes)
	 * [0] disabled  -> 0
	 * [1] 15.6 usec -> 2
	 * [2]  7.8 usec -> 3
	 * [3] 64   usec -> 1
	 * [4] reserved  -> 0
	 * [5] reserved  -> 0
	 * [6] reserved  -> 0
	 * [7] 64 clocks -> 4
	 */
	0, 2, 3, 1, 0, 0, 0, 4
};

static const uint32_t refresh_rate_map[] = {
	/* Map the JEDEC spd refresh rates (array index) to i855 Refresh Mode
	 * Select values (array value)
	 * These are all the rates defined by JESD21-C Appendix D, Rev. 1.0
	 * The i855 supports only 15.6 us (1), 7.8 us (2) and
	 * 64 clock (481 ns) (7) refresh.
	 * [0] ==  15.625 us -> 15.6 us
	 * [1] ==   3.9   us -> 481  ns
	 * [2] ==   7.8   us ->  7.8 us
	 * [3] ==  31.3   us -> 15.6 us
	 * [4] ==  62.5   us -> 15.6 us
	 * [5] == 125     us -> 15.6 us
	 */
	1, 7, 2, 1, 1, 1
};

#define MAX_SPD_REFRESH_RATE ((sizeof(refresh_rate_map) / sizeof(uint32_t)) - 1)

/*-----------------------------------------------------------------------------
SPD functions:
-----------------------------------------------------------------------------*/

static void die_on_spd_error(int spd_return_value)
{
	if (spd_return_value < 0)
		PRINTK_DEBUG("Error reading SPD info: got %d\n", spd_return_value);
/*
	if (spd_return_value < 0)
		die("Error reading SPD info\n");
*/
}

/**
 * Calculate the page size for each physical bank of the DIMM:
 *
 *   log2(page size) = (# columns) + log2(data width)
 *
 * NOTE: Page size is the total number of data bits in a row.
 *
 * @param dimm_socket_address SMBus address of DIMM socket to interrogate.
 * @return log2(page size) for each side of the DIMM.
 */
static struct dimm_size sdram_spd_get_page_size(u8 dimm_socket_address)
{
	uint16_t module_data_width;
	int value;
	struct dimm_size pgsz;

	pgsz.side1 = 0;
	pgsz.side2 = 0;

	// Side 1
	value = spd_read_byte(dimm_socket_address, SPD_NUM_COLUMNS);
	die_on_spd_error(value);

	pgsz.side1 = value & 0xf;	// # columns in bank 1

	/* Get the module data width and convert it to a power of two */
	value = spd_read_byte(dimm_socket_address, SPD_MODULE_DATA_WIDTH_MSB);
	die_on_spd_error(value);

	module_data_width = (value & 0xff) << 8;

	value = spd_read_byte(dimm_socket_address, SPD_MODULE_DATA_WIDTH_LSB);
	die_on_spd_error(value);

	module_data_width |= (value & 0xff);

	pgsz.side1 += log2(module_data_width);

	/* side two */
	value = spd_read_byte(dimm_socket_address, SPD_NUM_DIMM_BANKS);
	die_on_spd_error(value);

/*
	if (value > 2)
		die("Bad SPD value\n");
*/
	if (value > 2)
		PRINTK_DEBUG("Bad SPD value\n");

	if (value == 2) {
		pgsz.side2 = pgsz.side1;	// Assume symmetric banks until we know differently
		value = spd_read_byte(dimm_socket_address, SPD_NUM_COLUMNS);
		die_on_spd_error(value);

		if ((value & 0xf0) != 0) {
			// Asymmetric banks
			pgsz.side2 -= value & 0xf;	/* Subtract out columns on side 1 */
			pgsz.side2 += (value >> 4) & 0xf;	/* Add in columns on side 2 */
		}
	}

	return pgsz;
}

/**
 * Read the width in bits of each DIMM side's DRAMs via SPD (i.e. 4, 8, 16).
 *
 * @param dimm_socket_address SMBus address of DIMM socket to interrogate.
 * @return Width in bits of each DIMM side's DRAMs.
 */
static struct dimm_size sdram_spd_get_width(u8 dimm_socket_address)
{
	int value;
	struct dimm_size width;

	width.side1 = 0;
	width.side2 = 0;

	value = spd_read_byte(dimm_socket_address, SPD_PRIMARY_SDRAM_WIDTH);
	die_on_spd_error(value);

	width.side1 = value & 0x7f;	// Mask off bank 2 flag

	if (value & 0x80) {
		width.side2 = width.side1 << 1;	// Bank 2 exists and is double-width
	} else {
		// If bank 2 exists, it's the same width as bank 1
		value = spd_read_byte(dimm_socket_address, SPD_NUM_DIMM_BANKS);
		die_on_spd_error(value);

#ifdef ROMCC_IF_BUG_FIXED
		if (value == 2)
			width.side2 = width.side1;
#else
		switch (value) {
		case 2:
			width.side2 = width.side1;
			break;

		default:
			break;
		}
#endif
	}

	return width;
}

/**
 * Calculate the log base 2 size in bits of both DIMM sides.
 *
 * log2(# bits) = (# columns) + log2(data width) +
 *                (# rows) + log2(banks per SDRAM)
 *
 * Note that it might be easier to use SPD byte 31 here, it has the DIMM size
 * as a multiple of 4MB. The way we do it now we can size both sides of an
 * asymmetric DIMM.
 *
 * @param dimm SMBus address of DIMM socket to interrogate.
 * @return log2(number of bits) for each side of the DIMM.
 */
static struct dimm_size spd_get_dimm_size(unsigned dimm)
{
	int value;

	// Start with log2(page size)
	struct dimm_size sz = sdram_spd_get_page_size(dimm);

	if (sz.side1 > 0) {
		value = spd_read_byte(dimm, SPD_NUM_ROWS);
		die_on_spd_error(value);

		sz.side1 += value & 0xf;

		if (sz.side2 > 0) {
			// Double-sided DIMM
			if (value & 0xF0)
				sz.side2 += value >> 4;	// Asymmetric
			else
				sz.side2 += value;	// Symmetric
		}

		value = spd_read_byte(dimm, SPD_NUM_BANKS_PER_SDRAM);
		die_on_spd_error(value);

		value = log2(value);
		sz.side1 += value;
		if (sz.side2 > 0)
			sz.side2 += value;
	}

	return sz;
}

/**
 * Scan for compatible DIMMs.
 *
 * @return A bitmask indicating which sockets contain a compatible DIMM.
 */
static uint8_t spd_get_supported_dimms(void)
{
	int i;
	uint8_t dimm_mask = 0;

	for (i = 0; i < DIMM_SOCKETS; i++) {
		u8 dimm = DIMM0 + i;

#ifdef VALIDATE_DIMM_COMPATIBILITY
		struct dimm_size page_size;
		struct dimm_size sdram_width;
#endif
		int spd_value;

		if (dimm == 0)
			continue;	// No such socket on this mainboard

		if (spd_read_byte(dimm, SPD_MEMORY_TYPE) != SPD_MEMORY_TYPE_SDRAM_DDR)
			continue;

#ifdef VALIDATE_DIMM_COMPATIBILITY
		if ((spd_value = spd_read_byte(dimm, SPD_MODULE_VOLTAGE)) != SPD_VOLTAGE_SSTL2) {
			PRINTK_DEBUG("Skipping DIMM with unsupported voltage: %02x\n", spd_value);
			continue;	// Unsupported voltage
		}

/*
		// E7501 does not support unregistered DIMMs
		spd_value = spd_read_byte(dimm, SPD_MODULE_ATTRIBUTES);
		if (!(spd_value & MODULE_REGISTERED) || (spd_value < 0)) {
			PRINTK_DEBUG("Skipping unregistered DIMM: %02x\n", spd_value);
			continue;
		}
*/

		page_size = sdram_spd_get_page_size(dimm);
		sdram_width = sdram_spd_get_width(dimm);

		// Validate DIMM page size
		// The i855 only supports page sizes of 4, 8, 16 KB per channel
		// NOTE:  4 KB =  32 Kb = 2^15
		//       16 KB = 128 Kb = 2^17

		if ((page_size.side1 < 15) || (page_size.side1 > 17)) {
			PRINTK_DEBUG("Skipping DIMM with unsupported page size: %d\n", page_size.side1);
			continue;
		}

		// If DIMM is double-sided, verify side2 page size
		if (page_size.side2 != 0) {
			if ((page_size.side2 < 15) || (page_size.side2 > 17)) {
				PRINTK_DEBUG("Skipping DIMM with unsupported page size: %d\n", page_size.side2);
				continue;
			}
		}
		// Validate SDRAM width
		// The i855 only supports x8 and x16 devices
		if ((sdram_width.side1 != 8) && (sdram_width.side1 != 16)) {
			PRINTK_DEBUG("Skipping DIMM with unsupported width: %d\n", sdram_width.side2);
			continue;
		}

		// If DIMM is double-sided, verify side2 width
		if (sdram_width.side2 != 0) {
			if ((sdram_width.side2 != 8)
			    && (sdram_width.side2 != 16)) {
				PRINTK_DEBUG("Skipping DIMM with unsupported width: %d\n", sdram_width.side2);
				continue;
			}
		}
#endif
		// Made it through all the checks, this DIMM is usable
		dimm_mask |= (1 << i);
	}

	return dimm_mask;
}

/*-----------------------------------------------------------------------------
SDRAM configuration functions:
-----------------------------------------------------------------------------*/

static void do_ram_command(uint8_t command, uint16_t jedec_mode_bits)
{
	int i;
	u32 reg32;
	uint8_t dimm_start_32M_multiple = 0;
	uint16_t i855_mode_bits = jedec_mode_bits;

	/* Configure the RAM command. */
	reg32 = pci_read_config32(NORTHBRIDGE_MMC, DRC);
	reg32 &= ~(7 << 4);
	reg32 |= (command << 4);
	PRINTK_DEBUG("  Sending RAM command 0x%08x\n", reg32);
	pci_write_config32(NORTHBRIDGE_MMC, DRC, reg32);

        // RAM_COMMAND_NORMAL is an exception.
        // It affects only the memory controller and does not need to be "sent" to the DIMMs.

        if (command != RAM_COMMAND_NORMAL) {

                // Send the command to all DIMMs by accessing a memory location within each
                // NOTE: for mode select commands, some of the location address bits
                // are part of the command

                // Map JEDEC mode bits to i855
                if (command == RAM_COMMAND_MRS || command == RAM_COMMAND_EMRS) {
			/* Host address lines [13:3] map to DIMM address lines [11, 9:0] */
			i855_mode_bits = ((jedec_mode_bits & 0x800) << (13 - 11)) | ((jedec_mode_bits & 0x3ff) << (12 - 9));
                }

                for (i = 0; i < (DIMM_SOCKETS * 2); ++i) {
                        uint8_t dimm_end_32M_multiple = pci_read_config8(NORTHBRIDGE_MMC, DRB + i);
                        if (dimm_end_32M_multiple > dimm_start_32M_multiple) {

                                uint32_t dimm_start_address = dimm_start_32M_multiple << 25;
				PRINTK_DEBUG("  Sending RAM command to 0x%08x\n", dimm_start_address + i855_mode_bits);
                                read32(dimm_start_address + i855_mode_bits);

                                // Set the start of the next DIMM
                                dimm_start_32M_multiple = dimm_end_32M_multiple;
                        }
		}
	}
}

static void set_initialize_complete(void)
{
	uint32_t drc_reg;

	drc_reg = pci_read_config32(NORTHBRIDGE_MMC, DRC);
	drc_reg |= (1 << 29);
	pci_write_config32(NORTHBRIDGE_MMC, DRC, drc_reg);
}

static void sdram_enable(void)
{
	int i;

	printk(BIOS_DEBUG, "Ram enable 1\n");
	delay();
	delay();

	/* NOP command */
	PRINTK_DEBUG(" NOP\n");
	do_ram_command(RAM_COMMAND_NOP, 0);
	delay();
	delay();
	delay();

	/* Pre-charge all banks (at least 200 us after NOP) */
	PRINTK_DEBUG(" Pre-charging all banks\n");
	do_ram_command(RAM_COMMAND_PRECHARGE, 0);
	delay();
	delay();
	delay();

	printk(BIOS_DEBUG, "Ram enable 4\n");
	do_ram_command(RAM_COMMAND_EMRS, SDRAM_EXTMODE_DLL_ENABLE);
	delay();
	delay();
	delay();

	printk(BIOS_DEBUG, "Ram enable 5\n");
	do_ram_command(RAM_COMMAND_MRS, VG85X_MODE | SDRAM_MODE_DLL_RESET);

	printk(BIOS_DEBUG, "Ram enable 6\n");
	do_ram_command(RAM_COMMAND_PRECHARGE, 0);
	delay();
	delay();
	delay();

	/* 8 CBR refreshes (Auto Refresh) */
	PRINTK_DEBUG(" 8 CBR refreshes\n");
	for(i = 0; i < 8; i++) {
		do_ram_command(RAM_COMMAND_CBR, 0);
		delay();
		delay();
		delay();
	}

	printk(BIOS_DEBUG, "Ram enable 8\n");
	do_ram_command(RAM_COMMAND_MRS, VG85X_MODE | SDRAM_MODE_NORMAL);

	/* Set GME-M Mode Select bits back to NORMAL operation mode */
	PRINTK_DEBUG(" Normal operation mode\n");
	do_ram_command(RAM_COMMAND_NORMAL, 0);
	delay();
	delay();
	delay();

	printk(BIOS_DEBUG, "Ram enable 9\n");
	set_initialize_complete();

	delay();
	delay();
	delay();
	delay();
	delay();

	printk(BIOS_DEBUG, "After configuration:\n");
	/* dump_pci_devices(); */

	/*
	printk(BIOS_DEBUG, "\n\n***** RAM TEST *****\n");
	ram_check(0, 0xa0000);
	ram_check(0x100000, 0x40000000);
	*/
}

/*-----------------------------------------------------------------------------
DIMM-independant configuration functions:
-----------------------------------------------------------------------------*/

/**
 * Set only what I need until it works, then make it figure things out on boot
 * assumes only one DIMM is populated.
 */
static void sdram_set_registers(void)
{
	/*
	printk(BIOS_DEBUG, "Before configuration:\n");
	dump_pci_devices();
	*/
}

static void spd_set_row_attributes(uint8_t dimm_mask)
{
	int i;
	uint16_t row_attributes = 0;

	for (i = 0; i < DIMM_SOCKETS; i++) {
		u8 dimm = DIMM0 + i;
		struct dimm_size page_size;
		struct dimm_size sdram_width;

		if (!(dimm_mask & (1 << i))) {
			row_attributes |= 0x77 << (i << 3);
			continue;	// This DIMM not usable
		}

		// Get the relevant parameters via SPD
		page_size = sdram_spd_get_page_size(dimm);
		sdram_width = sdram_spd_get_width(dimm);

		// Update the DRAM Row Attributes.
		// Page size is encoded as log2(page size in bits) - log2(2 KB) or 4 KB == 1, 8 KB == 3, 16KB == 3
		// NOTE:  2 KB =  16 Kb = 2^14
		row_attributes |= (page_size.side1 - 14) << (i << 3);	// Side 1 of each DIMM is an EVEN row

		if (sdram_width.side2 > 0)
			row_attributes |= (page_size.side2 - 14) << ((i << 3) + 4);	// Side 2 is ODD
		else
			row_attributes |= 7 << ((i << 3) + 4);
		/* go to the next DIMM */
	}

	PRINTK_DEBUG("DRA: %04x\n", row_attributes);

	/* Write the new row attributes register */
	pci_write_config16(NORTHBRIDGE_MMC, DRA, row_attributes);
}

static void spd_set_dram_controller_mode(uint8_t dimm_mask)
{
	int i;

	// Initial settings
	u32 controller_mode = pci_read_config32(NORTHBRIDGE_MMC, DRC);
	u32 system_refresh_mode = (controller_mode >> 7) & 7;

	controller_mode |= (1 << 20);  // ECC
	controller_mode |= (1 << 15);  // RAS lockout
	controller_mode |= (1 << 12);  // Address Tri-state enable (ADRTRIEN), FIXME: how is this detected?????
	controller_mode |= (2 << 10);  // FIXME: Undocumented, really needed?????

	for (i = 0; i < DIMM_SOCKETS; i++) {
		u8 dimm = DIMM0 + i;
		uint32_t dimm_refresh_mode;
		int value;
		u8 tRCD, tRP;

		if (!(dimm_mask & (1 << i))) {
			continue;	// This DIMM not usable
		}

		// Disable ECC mode if any one of the DIMMs does not support ECC
		value = spd_read_byte(dimm, SPD_DIMM_CONFIG_TYPE);
		die_on_spd_error(value);
		if (value != ERROR_SCHEME_ECC)
			controller_mode &= ~(3 << 20);

		value = spd_read_byte(dimm, SPD_REFRESH);
		die_on_spd_error(value);
		value &= 0x7f;	// Mask off self-refresh bit
		if (value > MAX_SPD_REFRESH_RATE) {
			printk(BIOS_ERR, "unsupported refresh rate\n");
			continue;
		}
		// Get the appropriate i855 refresh mode for this DIMM
		dimm_refresh_mode = refresh_rate_map[value];
		if (dimm_refresh_mode > 7) {
			printk(BIOS_ERR, "unsupported refresh rate\n");
			continue;
		}
		// If this DIMM requires more frequent refresh than others,
		// update the system setting
		if (refresh_frequency[dimm_refresh_mode] >
		    refresh_frequency[system_refresh_mode])
			system_refresh_mode = dimm_refresh_mode;

		/* FIXME: is this correct? */
		tRCD = spd_read_byte(dimm, SPD_tRCD);
		tRP = spd_read_byte(dimm, SPD_tRP);
		if (tRCD != tRP) {
			PRINTK_DEBUG(" Disabling RAS lockouk due to tRCD (%d) != tRP (%d)\n", tRCD, tRP);
			controller_mode &= ~(1 << 15);
		}

		/* go to the next DIMM */
	}

	controller_mode &= ~(7 << 7);
	controller_mode |= (system_refresh_mode << 7);
	PRINTK_DEBUG("DRC: %08x\n", controller_mode);

	pci_write_config32(NORTHBRIDGE_MMC, DRC, controller_mode);
}

static void spd_set_dram_timing(uint8_t dimm_mask)
{
	int i;
	u32 dram_timing;

	// CAS# latency bitmasks in SPD_ACCEPTABLE_CAS_LATENCIES format
	// NOTE: i82822 supports only 2.0 and 2.5
	uint32_t system_compatible_cas_latencies = SPD_CAS_LATENCY_2_0 | SPD_CAS_LATENCY_2_5;
	uint8_t slowest_row_precharge = 0;
	uint8_t slowest_ras_cas_delay = 0;
	uint8_t slowest_active_to_precharge_delay = 0;

	for (i = 0; i < DIMM_SOCKETS; i++) {
		u8 dimm = DIMM0 + i;
		int value;
		uint32_t current_cas_latency;
		uint32_t dimm_compatible_cas_latencies;
		if (!(dimm_mask & (1 << i)))
			continue;	// This DIMM not usable

		value = spd_read_byte(dimm, SPD_ACCEPTABLE_CAS_LATENCIES);
		PRINTK_DEBUG("SPD_ACCEPTABLE_CAS_LATENCIES: %d\n", value);
		die_on_spd_error(value);

		dimm_compatible_cas_latencies = value & 0x7f;	// Start with all supported by DIMM
		PRINTK_DEBUG("dimm_compatible_cas_latencies #1: %d\n", dimm_compatible_cas_latencies);

		current_cas_latency = 1 << log2(dimm_compatible_cas_latencies);	// Max supported by DIMM
		PRINTK_DEBUG("current_cas_latency: %d\n", current_cas_latency);

		// Can we support the highest CAS# latency?
		value = spd_read_byte(dimm, SPD_MIN_CYCLE_TIME_AT_CAS_MAX);
		die_on_spd_error(value);
		PRINTK_DEBUG("SPD_MIN_CYCLE_TIME_AT_CAS_MAX: %d.%d\n", value >> 4, value & 0xf);

		// NOTE: At 133 MHz, 1 clock == 7.52 ns
		if (value > 0x75) {
			// Our bus is too fast for this CAS# latency
			// Remove it from the bitmask of those supported by the DIMM that are compatible
			dimm_compatible_cas_latencies &= ~current_cas_latency;
			PRINTK_DEBUG("dimm_compatible_cas_latencies #2: %d\n", dimm_compatible_cas_latencies);
		}
		// Can we support the next-highest CAS# latency (max - 0.5)?

		current_cas_latency >>= 1;
		if (current_cas_latency != 0) {
			value = spd_read_byte(dimm, SPD_SDRAM_CYCLE_TIME_2ND);
			die_on_spd_error(value);
			PRINTK_DEBUG("SPD_SDRAM_CYCLE_TIME_2ND: %d.%d\n", value >> 4, value & 0xf);
			if (value > 0x75) {
				dimm_compatible_cas_latencies &= ~current_cas_latency;
				PRINTK_DEBUG("dimm_compatible_cas_latencies #2: %d\n", dimm_compatible_cas_latencies);
			}
		}
		// Can we support the next-highest CAS# latency (max - 1.0)?
		current_cas_latency >>= 1;
		if (current_cas_latency != 0) {
			value = spd_read_byte(dimm, SPD_SDRAM_CYCLE_TIME_3RD);
			PRINTK_DEBUG("SPD_SDRAM_CYCLE_TIME_3RD: %d.%d\n", value >> 4, value & 0xf);
			die_on_spd_error(value);
			if (value > 0x75) {
				dimm_compatible_cas_latencies &= ~current_cas_latency;
				PRINTK_DEBUG("dimm_compatible_cas_latencies #2: %d\n", dimm_compatible_cas_latencies);
			}
		}
		// Restrict the system to CAS# latencies compatible with this DIMM
		system_compatible_cas_latencies &= dimm_compatible_cas_latencies;

		value = spd_read_byte(dimm, SPD_MIN_ROW_PRECHARGE_TIME);
		die_on_spd_error(value);
		if (value > slowest_row_precharge)
			slowest_row_precharge = value;

		value = spd_read_byte(dimm, SPD_MIN_RAS_TO_CAS_DELAY);
		die_on_spd_error(value);
		if (value > slowest_ras_cas_delay)
			slowest_ras_cas_delay = value;

		value = spd_read_byte(dimm, SPD_MIN_ACTIVE_TO_PRECHARGE_DELAY);
		die_on_spd_error(value);
		if (value > slowest_active_to_precharge_delay)
			slowest_active_to_precharge_delay = value;

		/* go to the next DIMM */
	}
	PRINTK_DEBUG("CAS latency: %d\n", system_compatible_cas_latencies);

	dram_timing = pci_read_config32(NORTHBRIDGE_MMC, DRT);
	dram_timing &= ~(DRT_CAS_MASK | DRT_TRP_MASK | DRT_RCD_MASK);
	PRINTK_DEBUG("DRT: %08x\n", dram_timing);

	if (system_compatible_cas_latencies & SPD_CAS_LATENCY_2_0) {
		dram_timing |= DRT_CAS_2_0;
	} else if (system_compatible_cas_latencies & SPD_CAS_LATENCY_2_5) {
		dram_timing |= DRT_CAS_2_5;
	} else
		die("No CAS# latencies compatible with all DIMMs!!\n");

	uint32_t current_cas_latency = dram_timing & DRT_CAS_MASK;

	/* tRP */

	PRINTK_DEBUG("slowest_row_precharge: %d.%d\n", slowest_row_precharge >> 2, slowest_row_precharge & 0x3);
	// i855 supports only 2, 3 or 4 clocks for tRP
	if (slowest_row_precharge > ((30 << 2)))
		die("unsupported DIMM tRP");	//  > 30.0 ns: 5 or more clocks
	else if (slowest_row_precharge > ((22 << 2) | (2 << 0)))
		dram_timing |= DRT_TRP_4;	//  > 22.5 ns: 4 or more clocks
	else if (slowest_row_precharge > (15 << 2))
		dram_timing |= DRT_TRP_3;	//  > 15.0 ns: 3 clocks
	else
		dram_timing |= DRT_TRP_2;	// <= 15.0 ns: 2 clocks

	/*  tRCD */

	PRINTK_DEBUG("slowest_ras_cas_delay: %d.%d\n", slowest_ras_cas_delay >> 2, slowest_ras_cas_delay & 0x3);
	// i855 supports only 2, 3 or 4 clocks for tRCD
	if (slowest_ras_cas_delay > ((30 << 2)))
		die("unsupported DIMM tRCD");	//  > 30.0 ns: 5 or more clocks
	else if (slowest_ras_cas_delay > ((22 << 2) | (2 << 0)))
		dram_timing |= DRT_RCD_4;	//  > 22.5 ns: 4 or more clocks
	else if (slowest_ras_cas_delay > (15 << 2))
		dram_timing |= DRT_RCD_3;	//  > 15.0 ns: 3 clocks
	else
		dram_timing |= DRT_RCD_2;	// <= 15.0 ns: 2 clocks

	/* tRAS, min */

	PRINTK_DEBUG("slowest_active_to_precharge_delay: %d\n", slowest_active_to_precharge_delay);
	// i855 supports only 5, 6, 7 or 8 clocks for tRAS
	// 5 clocks ~= 37.6 ns, 6 clocks ~= 45.1 ns, 7 clocks ~= 52.6 ns, 8 clocks ~= 60.1 ns
	if (slowest_active_to_precharge_delay > 60)
		die("unsupported DIMM tRAS");	// > 52 ns:      8 or more clocks
	else if (slowest_active_to_precharge_delay > 52)
		dram_timing |= DRT_TRAS_MIN_8;	// 46-52 ns:     7 clocks
	else if (slowest_active_to_precharge_delay > 45)
		dram_timing |= DRT_TRAS_MIN_7;	// 46-52 ns:     7 clocks
	else if (slowest_active_to_precharge_delay > 37)
		dram_timing |= DRT_TRAS_MIN_6;	// 38-45 ns:     6 clocks
	else
		dram_timing |= DRT_TRAS_MIN_5;	// < 38 ns:      5 clocks

	/* FIXME: guess work starts here...
	 *
	 * Intel refers to DQ turn-arround values for back to calculate the values,
	 * but i have no idea what this means
	 */

	/*
	 * Back to Back Read-Write command spacing (DDR, different Rows/Bank)
	 */
	/* Set to a 3 clock back to back read to write turn around.
	 *  2 is a good delay if the CAS latency is 2.0 */
	dram_timing &= ~(3 << 28);
	if (current_cas_latency == DRT_CAS_2_0)
		dram_timing |= (2 << 28);	// 2 clocks
	else
		dram_timing |= (1 << 28);	// 3 clocks

	/*
	 * Back to Back Read-Write command spacing (DDR, same or different Rows/Bank)
	 */
	dram_timing &= ~(3 << 26);
	if (current_cas_latency == DRT_CAS_2_0)
		dram_timing |= (2 << 26);	// 5 clocks
	else
		dram_timing |= (1 << 26);	// 6 clocks

	/*
	 * Back To Back Read-Read commands spacing (DDR, different Rows):
	 */
	dram_timing &= ~(1 << 25);
	dram_timing |= (1 << 25);	// 3 clocks

	PRINTK_DEBUG("DRT: %08x\n", dram_timing);
	pci_write_config32(NORTHBRIDGE_MMC, DRT, dram_timing);
}

static void spd_set_dram_size(uint8_t dimm_mask)
{
	int i;
	int total_dram = 0;
	uint32_t drb_reg = 0;

	for (i = 0; i < DIMM_SOCKETS; i++) {
		u8 dimm = DIMM0 + i;
		struct dimm_size sz;

		if (!(dimm_mask & (1 << i))) {
			/* fill values even for not present DIMMs */
			drb_reg |= (total_dram << (i * 16));
			drb_reg |= (total_dram << ((i * 16) + 8));

			continue;	// This DIMM not usable
		}
		sz = spd_get_dimm_size(dimm);

		total_dram += (1 << (sz.side1 - 28));
		drb_reg |= (total_dram << (i * 16));

		total_dram += (1 << (sz.side2 - 28));
		drb_reg |= (total_dram << ((i * 16) + 8));
	}
	PRINTK_DEBUG("DRB: %08x\n", drb_reg);
	pci_write_config32(NORTHBRIDGE_MMC, DRB, drb_reg);
}


static void spd_set_dram_pwr_management(void)
{
	uint32_t pwrmg_reg;

	pwrmg_reg = 0x10f10430;
	pci_write_config32(NORTHBRIDGE_MMC, PWRMG, pwrmg_reg);
}

static void spd_set_dram_throttle_control(void)
{
	uint32_t dtc_reg = 0;

	/* DDR SDRAM Throttle Mode (TMODE):
	 *   0011 = Both Rank and GMCH Thermal Sensor based throttling is enabled. When the external SO-
	 *          DIMM Thermal Sensor is Tripped DDR SDRAM Throttling begins based on the setting in RTT
	 */
	dtc_reg |= (3 << 28);

	/* Read Counter Based Power Throttle Control (RCTC):
	 *   0 = 85%
	 */
	dtc_reg |= (0 << 24);

	/* Write Counter Based Power Throttle Control (WCTC):
	 *   0 = 85%
	 */
	dtc_reg |= (0 << 20);

	/* Read Thermal Based Power Throttle Control (RTTC):
	 *   0xA = 20%
	 */
	dtc_reg |= (0xA << 16);

	/* Write Thermal Based Power Throttle Control (WTTC):
	 *   0xA = 20%
	 */
	dtc_reg |= (0xA << 12);

	/* Counter Based Throttle Lock (CTLOCK): */
	dtc_reg |= (0 << 11);

	/* Thermal Throttle Lock (TTLOCK): */
	dtc_reg |= (0 << 10);

	/* Thermal Power Throttle Control fields Enable: */
	dtc_reg |= (1 << 9);

	/* High Priority Stream Throttling Enable: */
	dtc_reg |= (0 << 8);

	/* Global DDR SDRAM Sampling Window (GDSW): */
	dtc_reg |= 0xff;
	PRINTK_DEBUG("DTC: %08x\n", dtc_reg);
	pci_write_config32(NORTHBRIDGE_MMC, DTC, dtc_reg);
}

static void spd_update(u8 reg, u32 new_value)
{
#if CONFIG_DEBUG_RAM_SETUP
	u32 value1 = pci_read_config32(NORTHBRIDGE_MMC, reg);
#endif
	pci_write_config32(NORTHBRIDGE_MMC, reg, new_value);
#if CONFIG_DEBUG_RAM_SETUP
	u32 value2 = pci_read_config32(NORTHBRIDGE_MMC, reg);
	PRINTK_DEBUG("update reg %02x, old: %08x, new: %08x, read back: %08x\n", reg, value1, new_value, value2);
#endif
}

/* if ram still doesn't work do this function */
static void spd_set_undocumented_registers(void)
{
	spd_update(0x74, 0x00000001);
	spd_update(0x78, 0x001fe974);
	spd_update(0x80, 0x00af0039);
	spd_update(0x84, 0x0000033c);
	spd_update(0x88, 0x00000010);

	spd_update(0xc0, 0x00000003);
}

static void northbridge_set_registers(void)
{
	u16 value;
	int video_memory = 0;

	printk(BIOS_DEBUG, "Setting initial Northbridge registers....\n");

	/* Set the value for Fixed DRAM Hole Control Register */
	pci_write_config8(NORTHBRIDGE, FDHC, 0x00);

	/* Set the value for Programable Attribute Map Registers
	 * Ideally, this should be R/W for as many ranges as possible.
	 */
	pci_write_config8(NORTHBRIDGE, PAM0, 0x30);
	pci_write_config8(NORTHBRIDGE, PAM1, 0x33);
	pci_write_config8(NORTHBRIDGE, PAM2, 0x33);
	pci_write_config8(NORTHBRIDGE, PAM3, 0x33);
	pci_write_config8(NORTHBRIDGE, PAM4, 0x33);
	pci_write_config8(NORTHBRIDGE, PAM5, 0x33);
	pci_write_config8(NORTHBRIDGE, PAM6, 0x33);

	/* Set the value for System Management RAM Control Register */
	pci_write_config8(NORTHBRIDGE, SMRAM, 0x02);

	/* Set the value for GMCH Control Register #1 */
	switch (CONFIG_VIDEO_MB) {
	case 1: /* 1M of memory */
		video_memory = 0x1;
		break;
	case 4: /* 4M of memory */
		video_memory = 0x2;
		break;
	case 8: /* 8M of memory */
		video_memory = 0x3;
		break;
	case 16: /* 16M of memory */
		video_memory = 0x4;
		break;
	case 32: /* 32M of memory */
		video_memory = 0x5;
		break;
	default: /* No memory */
		pci_write_config16(NORTHBRIDGE, GMC, pci_read_config16(NORTHBRIDGE, GMC) | 1);
		video_memory = 0x0;
	}

	value = pci_read_config16(NORTHBRIDGE, GGC);
	value |= video_memory << 4;
	if (video_memory == 0) {
		value &= ~(1 < 1);
	} else
		value |= (1 < 1);
	pci_write_config16(NORTHBRIDGE, GGC, value);

	/* AGPCMD: disable AGP, Data-Rate: 1x */
	pci_write_config32(NORTHBRIDGE, AGPCMD, 0x00000001);

	pci_write_config8(NORTHBRIDGE, AMTT, 0x20);
	pci_write_config8(NORTHBRIDGE, LPTT, 0x10);

	printk(BIOS_DEBUG, "Initial Northbridge registers have been set.\n");
}

static void sdram_set_spd_registers(void)
{
	uint8_t dimm_mask;

	PRINTK_DEBUG("Reading SPD data...\n");

	dimm_mask = spd_get_supported_dimms();

	if (dimm_mask == 0) {
		printk(BIOS_DEBUG, "No usable memory for this controller\n");
	} else {
		PRINTK_DEBUG("DIMM MASK: %02x\n", dimm_mask);

		spd_set_row_attributes(dimm_mask);
		spd_set_dram_controller_mode(dimm_mask);
		spd_set_dram_timing(dimm_mask);
		spd_set_dram_size(dimm_mask);
		spd_set_dram_pwr_management();
		spd_set_dram_throttle_control();
		spd_set_undocumented_registers();
	}

	/* Setup Initial Northbridge Registers */
	northbridge_set_registers();
}