1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
|
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2007-2008 Uwe Hermann <uwe@hermann-uwe.de>
* Copyright (C) 2010 Keith Hui <buurin@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <spd.h>
#include <delay.h>
#include <stdint.h>
#include <stdlib.h>
#include <arch/io.h>
#include <arch/romcc_io.h>
#include <device/pci_def.h>
#include <console/console.h>
#include "i440bx.h"
#include "raminit.h"
/*-----------------------------------------------------------------------------
Macros and definitions.
-----------------------------------------------------------------------------*/
#define NB PCI_DEV(0, 0, 0)
/* Debugging macros. */
#if CONFIG_DEBUG_RAM_SETUP
#define PRINT_DEBUG(x...) printk(BIOS_DEBUG, x)
#define DUMPNORTH() dump_pci_device(NB)
#else
#define PRINT_DEBUG(x...)
#define DUMPNORTH()
#endif
/* SDRAMC[7:5] - SDRAM Mode Select (SMS). */
#define RAM_COMMAND_NORMAL 0x0
#define RAM_COMMAND_NOP 0x1
#define RAM_COMMAND_PRECHARGE 0x2
#define RAM_COMMAND_MRS 0x3
#define RAM_COMMAND_CBR 0x4
/* Map the JEDEC SPD refresh rates (array index) to 440BX refresh rates as
* defined in DRAMC[2:0].
*
* [0] == Normal 15.625 us -> 15.6 us
* [1] == Reduced(.25X) 3.9 us -> 7.8 ns
* [2] == Reduced(.5X) 7.8 us -> 7.8 us
* [3] == Extended(2x) 31.3 us -> 31.2 us
* [4] == Extended(4x) 62.5 us -> 62.4 us
* [5] == Extended(8x) 125 us -> 124.8 us
*/
static const uint32_t refresh_rate_map[] = {
1, 5, 5, 2, 3, 4
};
/* Table format: register, bitmask, value. */
static const u8 register_values[] = {
/* NBXCFG - NBX Configuration Register
* 0x50 - 0x53
*
* [31:24] SDRAM Row Without ECC
* 0 = ECC components are populated in this row
* 1 = ECC components are not populated in this row
* [23:19] Reserved
* [18:18] Host Bus Fast Data Ready Enable (HBFDRE)
* Assertion of DRAM data on host bus occurs...
* 0 = ...one clock after sampling snoop results (default)
* 1 = ...on the same clock the snoop result is being sampled
* (this mode is faster by one clock cycle)
* [17:17] ECC - EDO static Drive mode
* 0 = Normal mode (default)
* 1 = ECC signals are always driven
* [16:16] IDSEL_REDIRECT
* 0 = IDSEL1 is allocated to this bridge (default)
* 1 = IDSEL7 is allocated to this bridge
* [15:15] WSC# Handshake Disable
* 1 = Uni-processor mode
* 0 = Dual-processor mode with external IOAPIC (default)
* [14:14] Intel Reserved
* [13:12] Host/DRAM Frequency
* 00 = 100 MHz
* 01 = Reserved
* 10 = 66 MHz
* 11 = Reserved
* [11:11] AGP to PCI Access Enable
* 1 = Enable
* 0 = Disable
* [10:10] PCI Agent to Aperture Access Disable
* 1 = Disable
* 0 = Enable (default)
* [09:09] Aperture Access Global Enable
* 1 = Enable
* 0 = Disable
* [08:07] DRAM Data Integrity Mode (DDIM)
* 00 = Non-ECC
* 01 = EC-only
* 10 = ECC Mode
* 11 = ECC Mode with hardware scrubbing enabled
* [06:06] ECC Diagnostic Mode Enable (EDME)
* 1 = Enable
* 0 = Normal operation mode (default)
* [05:05] MDA Present (MDAP)
* Works in conjunction with the VGA_EN bit.
* VGA_EN MDAP
* 0 x All VGA cycles are sent to PCI
* 1 0 All VGA cycles are sent to AGP
* 1 1 All VGA cycles are sent to AGP, except for
* cycles in the MDA range.
* [04:04] Reserved
* [03:03] USWC Write Post During I/O Bridge Access Enable (UWPIO)
* 1 = Enable
* 0 = Disable
* [02:02] In-Order Queue Depth (IOQD)
* 1 = In-order queue = maximum
* 0 = A7# is sampled asserted (i.e., 0)
* [01:00] Reserved
*/
NBXCFG + 0, 0x00, 0x0c,
// TODO: Bit 15 should be 0 for multiprocessor boards
NBXCFG + 1, 0x00, 0x80,
NBXCFG + 2, 0x00, 0x00,
NBXCFG + 3, 0x00, 0xff,
/* DRAMC - DRAM Control Register
* 0x57
*
* [7:6] Reserved
* [5:5] Module Mode Configuration (MMCONFIG)
* The combination of SDRAMPWR and this bit (which is set by an
* external strapping option) determine how CKE works.
* SDRAMPWR MMCONFIG
* 0 0 = 3 DIMM, CKE0[5:0] driven
* X 1 = 3 DIMM, CKE0 only
* 1 0 = 4 DIMM, GCKE only
* [4:3] DRAM Type (DT)
* 00 = EDO
* 01 = SDRAM
* 10 = Registered SDRAM
* 11 = Reserved
* Note: EDO, SDRAM and Registered SDRAM cannot be mixed.
* [2:0] DRAM Refresh Rate (DRR)
* 000 = Refresh disabled
* 001 = 15.6 us
* 010 = 31.2 us
* 011 = 62.4 us
* 100 = 124.8 us
* 101 = 249.6 us
* 110 = Reserved
* 111 = Reserved
*/
/* Choose SDRAM (not registered), and disable refresh for now. */
DRAMC, 0x00, 0x08,
/*
* PAM[6:0] - Programmable Attribute Map Registers
* 0x59 - 0x5f
*
* 0x59 [3:0] Reserved
* 0x59 [5:4] 0xF0000 - 0xFFFFF BIOS area
* 0x5a [1:0] 0xC0000 - 0xC3FFF ISA add-on BIOS
* 0x5a [5:4] 0xC4000 - 0xC7FFF ISA add-on BIOS
* 0x5b [1:0] 0xC8000 - 0xCBFFF ISA add-on BIOS
* 0x5b [5:4] 0xCC000 - 0xCFFFF ISA add-on BIOS
* 0x5c [1:0] 0xD0000 - 0xD3FFF ISA add-on BIOS
* 0x5c [5:4] 0xD4000 - 0xD7FFF ISA add-on BIOS
* 0x5d [1:0] 0xD8000 - 0xDBFFF ISA add-on BIOS
* 0x5d [5:4] 0xDC000 - 0xDFFFF ISA add-on BIOS
* 0x5e [1:0] 0xE0000 - 0xE3FFF BIOS entension
* 0x5e [5:4] 0xE4000 - 0xE7FFF BIOS entension
* 0x5f [1:0] 0xE8000 - 0xEBFFF BIOS entension
* 0x5f [5:4] 0xEC000 - 0xEFFFF BIOS entension
*
* Bit assignment:
* 00 = DRAM Disabled (all access goes to memory mapped I/O space)
* 01 = Read Only (Reads to DRAM, writes to memory mapped I/O space)
* 10 = Write Only (Writes to DRAM, reads to memory mapped I/O space)
* 11 = Read/Write (all access goes to DRAM)
*/
/*
* Map all legacy regions to RAM (read/write). This is required if
* you want to use the RAM area from 768 KB - 1 MB. If the PAM
* registers are not set here appropriately, the RAM in that region
* will not be accessible, thus a RAM check of it will also fail.
*
* TODO: This was set in sdram_set_spd_registers().
* Test if it still works when set here.
*/
PAM0, 0x00, 0x30,
PAM1, 0x00, 0x33,
PAM2, 0x00, 0x33,
PAM3, 0x00, 0x33,
PAM4, 0x00, 0x33,
PAM5, 0x00, 0x33,
PAM6, 0x00, 0x33,
/* DRB[0:7] - DRAM Row Boundary Registers
* 0x60 - 0x67
*
* An array of 8 byte registers, which hold the ending memory address
* assigned to each pair of DIMMs, in 8MB granularity.
*
* 0x60 DRB0 = Total memory in row0 (in 8 MB)
* 0x61 DRB1 = Total memory in row0+1 (in 8 MB)
* 0x62 DRB2 = Total memory in row0+1+2 (in 8 MB)
* 0x63 DRB3 = Total memory in row0+1+2+3 (in 8 MB)
* 0x64 DRB4 = Total memory in row0+1+2+3+4 (in 8 MB)
* 0x65 DRB5 = Total memory in row0+1+2+3+4+5 (in 8 MB)
* 0x66 DRB6 = Total memory in row0+1+2+3+4+5+6 (in 8 MB)
* 0x67 DRB7 = Total memory in row0+1+2+3+4+5+6+7 (in 8 MB)
*/
/* Set the DRBs to zero for now, this will be fixed later. */
DRB0, 0x00, 0x00,
DRB1, 0x00, 0x00,
DRB2, 0x00, 0x00,
DRB3, 0x00, 0x00,
DRB4, 0x00, 0x00,
DRB5, 0x00, 0x00,
DRB6, 0x00, 0x00,
DRB7, 0x00, 0x00,
/* FDHC - Fixed DRAM Hole Control Register
* 0x68
*
* Controls two fixed DRAM holes: 512 KB - 640 KB and 15 MB - 16 MB.
*
* [7:6] Hole Enable (HEN)
* 00 = None
* 01 = 512 KB - 640 KB (128 KB)
* 10 = 15 MB - 16 MB (1 MB)
* 11 = Reserved
* [5:0] Reserved
*/
/* No memory holes. */
FDHC, 0x00, 0x00,
/* RPS - SDRAM Row Page Size Register
* 0x74 - 0x75
*
* Sets the row page size for SDRAM. For EDO memory, the page
* size is fixed at 2 KB.
*
* Bits[1:0] Page Size
* 00 2 KB
* 01 4 KB
* 10 8 KB
* 11 Reserved
*
* RPS bits Corresponding DRB register
* [01:00] DRB[0], row 0
* [03:02] DRB[1], row 1
* [05:04] DRB[2], row 2
* [07:06] DRB[3], row 3
* [09:08] DRB[4], row 4
* [11:10] DRB[5], row 5
* [13:12] DRB[6], row 6
* [15:14] DRB[7], row 7
*/
/* Power on defaults to 2KB. Will be set later. */
// RPS + 0, 0x00, 0x00,
// RPS + 1, 0x00, 0x00,
/* SDRAMC - SDRAM Control Register
* 0x76 - 0x77
*
* [15:10] Reserved
* [09:08] Idle/Pipeline DRAM Leadoff Timing (IPDLT)
* 00 = Illegal
* 01 = Add a clock delay to the lead-off clock count
* 1x = Illegal
* [07:05] SDRAM Mode Select (SMS)
* 000 = Normal SDRAM Operation (default)
* 001 = NOP Command Enable
* 010 = All Banks Precharge Enable
* 011 = Mode Register Set Enable
* 100 = CBR Enable
* 101 = Reserved
* 110 = Reserved
* 111 = Reserved
* [04:04] SDRAMPWR
* 0 = 3 DIMM configuration
* 1 = 4 DIMM configuration
* [03:03] Leadoff Command Timing (LCT)
* 0 = 4 CS# Clock
* 1 = 3 CS# Clock
* [02:02] CAS# Latency (CL)
* 0 = 3 DCLK CAS# latency
* 1 = 2 DCLK CAS# latency
* [01:01] SDRAM RAS# to CAS# Delay (SRCD)
* 0 = 3 clocks between a row activate and a read or write cmd.
* 1 = 2 clocks between a row activate and a read or write cmd.
* [00:00] SDRAM RAS# Precharge (SRP)
* 0 = 3 clocks of RAS# precharge
* 1 = 2 clocks of RAS# precharge
*/
#if CONFIG_SDRAMPWR_4DIMM
SDRAMC + 0, 0x00, 0x10, /* The board has 4 DIMM slots. */
#else
SDRAMC + 0, 0x00, 0x00, /* The board has 3 DIMM slots. */
#endif
SDRAMC + 1, 0x00, 0x00,
/* PGPOL - Paging Policy Register
* 0x78 - 0x79
*
* [15:08] Banks per Row (BPR)
* Each bit in this field corresponds to one row of the memory
* array. Bit 15 corresponds to row 7 while bit 8 corresponds
* to row 0. Bits for empty rows are "don't care".
* 0 = 2 banks
* 1 = 4 banks
* [07:05] Reserved
* [04:04] Intel Reserved
* [03:00] DRAM Idle Timer (DIT)
* 0000 = 0 clocks
* 0001 = 2 clocks
* 0010 = 4 clocks
* 0011 = 8 clocks
* 0100 = 10 clocks
* 0101 = 12 clocks
* 0110 = 16 clocks
* 0111 = 32 clocks
* 1xxx = Infinite (pages are not closed for idle condition)
*/
PGPOL + 0, 0x00, 0x00,
PGPOL + 1, 0x00, 0xff,
/* PMCR - Power Management Control Register
* 0x7a
*
* [07:07] Power Down SDRAM Enable (PDSE)
* 1 = Enable
* 0 = Disable
* [06:06] ACPI Control Register Enable (SCRE)
* 1 = Enable
* 0 = Disable (default)
* [05:05] Suspend Refresh Type (SRT)
* 1 = Self refresh mode
* 0 = CBR fresh mode
* [04:04] Normal Refresh Enable (NREF_EN)
* 1 = Enable
* 0 = Disable
* [03:03] Quick Start Mode (QSTART)
* 1 = Quick start mode for the processor is enabled
* [02:02] Gated Clock Enable (GCLKEN)
* 1 = Enable
* 0 = Disable
* [01:01] AGP Disable (AGP_DIS)
* 1 = Disable
* 0 = Enable
* [00:00] CPU reset without PCIRST enable (CRst_En)
* 1 = Enable
* 0 = Disable
*/
/* Enable normal refresh and the gated clock. */
// TODO: Only do this later?
// PMCR, 0x00, 0x14,
PMCR, 0x00, 0x00,
/* Enable SCRR.SRRAEN and let BX choose the SRR. */
SCRR + 1, 0x00, 0x10,
};
/*-----------------------------------------------------------------------------
SDRAM configuration functions.
-----------------------------------------------------------------------------*/
/**
* Send the specified RAM command to all DIMMs.
*
* @param command The RAM command to send to the DIMM(s).
*/
static void do_ram_command(u32 command)
{
int i, caslatency;
u8 dimm_start, dimm_end;
u16 reg16;
u32 addr, addr_offset;
/* Configure the RAM command. */
reg16 = pci_read_config16(NB, SDRAMC);
reg16 &= 0xff1f; /* Clear bits 7-5. */
reg16 |= (u16) (command << 5); /* Write command into bits 7-5. */
pci_write_config16(NB, SDRAMC, reg16);
/*
* RAM_COMMAND_NORMAL affects only the memory controller and
* doesn't need to be "sent" to the DIMMs.
*/
if (command == RAM_COMMAND_NORMAL)
return;
/* Send the RAM command to each row of memory. */
dimm_start = 0;
for (i = 0; i < (DIMM_SOCKETS * 2); i++) {
addr_offset = 0;
caslatency = 3; /* TODO: Dynamically get CAS latency later. */
if (command == RAM_COMMAND_MRS) {
/*
* MAA[12:11,9:0] must be inverted when sent to DIMM
* 2 or 3 (no inversion if sent to DIMM 0 or 1).
*/
if ((i >= 0 && i <= 3) && caslatency == 3)
addr_offset = 0x1d0;
if ((i >= 4 && i <= 7) && caslatency == 3)
addr_offset = 0x1e28;
if ((i >= 0 && i <= 3) && caslatency == 2)
addr_offset = 0x150;
if ((i >= 4 && i <= 7) && caslatency == 2)
addr_offset = 0x1ea8;
}
dimm_end = pci_read_config8(NB, DRB + i);
addr = (dimm_start * 8 * 1024 * 1024) + addr_offset;
if (dimm_end > dimm_start) {
#if 0
PRINT_DEBUG(" Sending RAM command 0x%04x to 0x%08x\n",
reg16, addr);
#endif
read32(addr);
}
/* Set the start of the next DIMM. */
dimm_start = dimm_end;
}
}
static void set_dram_buffer_strength(void)
{
/* To give some breathing room for romcc,
* mbsc0 doubles as drb
* mbsc1 doubles as drb1
* mbfs0 doubles as i and reg
*/
uint8_t mbsc0,mbsc1,mbsc3,mbsc4,mbfs0,mbfs2,fsb;
/* Tally how many rows between rows 0-3 and rows 4-7 are populated.
* This determines how to program MBFS and MBSC.
*/
uint8_t dimm03 = 0;
uint8_t dimm47 = 0;
mbsc0 = 0;
for (mbfs0 = DRB0; mbfs0 <= DRB7; mbfs0++) {
mbsc1 = pci_read_config8(NB, mbfs0);
if (mbsc0 != mbsc1) {
if (mbfs0 <= DRB3) {
dimm03++;
} else {
dimm47++;
}
mbsc0 = mbsc1;
}
}
/* Algorithm bitmap for programming MBSC[39:0] and MBFS[23:0].
*
* The 440BX datasheet says buffer frequency is independent from bus
* frequency and mismatch both ways are possible. This is how it is
* programmed in the ASUS P2B-LS mainboard.
*
* There are four main conditions to check when programming DRAM buffer
* frequency and strength:
*
* a: >2 rows populated across DIMM0,1
* b: >2 rows populated across DIMM2,3
* c: >4 rows populated across all DIMM slots
* and either one of:
* 1: NBXCFG[13] strapped as 100MHz, or
* 6: NBXCFG[13] strapped as 66MHz
*
* CKE0/FENA ----------------------------------------------------------+
* CKE1/GCKE -------------------[ MBFS ]------------------------+|
* DQMA/CASA[764320]# ----------[ 0 = 66MHz ]-----------------------+||
* DQMB1/CASB1# ----------------[ 1 = 100MHz ]----------------------+|||
* DQMB5/CASB5# ---------------------------------------------------+||||
* DQMA1/CASA1# --------------------------------------------------+|||||
* DQMA5/CASA5# -------------------------------------------------+||||||
* CSA0-5#,CSB0-5# ----------------------------------------++++++|||||||
* CSA6#/CKE2# -------------------------------------------+|||||||||||||
* CSB6#/CKE4# ------------------------------------------+||||||||||||||
* CSA7#/CKE3# -----------------------------------------+|||||||||||||||
* CSB7#/CKE5# ----------------------------------------+||||||||||||||||
* MECC[7:0] #2/#1 (100MHz) -------------------------++|||||||||||||||||
* MD[63:0] #2/#1 (100MHz) ------------------------++|||||||||||||||||||
* MAB[12:11,9:0]#,MAB[13,10],WEB#,SRASB#,SCASB# -+|||||||||||||||||||||
* MAA[13:0],WEA#,SRASA#,SCASA# -----------------+||||||||||||||||||||||
* Reserved ------------------------------------+|||||||||||||||||||||||
* ||||||||||||||||||||||||
* 3 32 21 10 0 * 2 21 10 0
* 9876543210987654321098765432109876543210 * 321098765432109876543210
* a 10------------------------1010---------- * -1---------------11----- a
*!a 11------------------------1111---------- * -0---------------00----- !a
* b --10--------------------------1010------ * --1----------------11--- b
*!b --11--------------------------1111------ * --0----------------00--- !b
* c ----------------------------------1100-- * ----------------------1- c
*!c ----------------------------------1011-- * ----------------------0- !c
* 1 ----1010101000000000000000------------00 * ---11111111111111----1-0 1
* 6 ----000000000000000000000010101010----00 * ---1111111111111100000-0 6
* | | | | | | | | | | ||||||| | | | | | |
* | | | | | | | | | | ||||||| | | | | | +- CKE0/FENA
* | | | | | | | | | | ||||||| | | | | +--- CKE1/GCKE
* | | | | | | | | | | ||||||| | | | +----- DQMA/CASA[764320]#
* | | | | | | | | | | ||||||| | | +------- DQMB1/CASB1#
* | | | | | | | | | | ||||||| | +--------- DQMB5/CASB5#
* | | | | | | | | | | ||||||| +----------- DQMA1/CASA1#
* | | | | | | | | | | ||||||+------------- DQMA5/CASA5#
* | | | | | | | | | | ++++++-------------- CSA0-5#,CSB0-5# [ 0=1x;1=2x ]
* | | | | | | | | | +--------------------- CSA6#/CKE2#
* | | | | | | | | +---[ MBSC ]------ CSB6#/CKE4#
* | | | | | | | +-----[ 00 = 1x ]------ CSA7#/CKE3#
* | | | | | | +-------[ 01 invalid ]------ CSB7#/CKE5#
* | | | | | +---------[ 10 = 2x ]------ MECC[7:0] #1 (2x)
* | | | | +-----------[ 11 = 3x ]------ MECC[7:0] #2 (2x)
* | | | +--------------------------------- MD[63:0] #1 (2x)
* | | +----------------------------------- MD[63:0] #2 (2x)
* | +------------------------------------- MAB[12:11,9:0]#,MAB[13,10],WEB#,SRASB#,SCASB#
* +--------------------------------------- MAA[13:0],WEA#,SRASA#,SCASA#
* MBSC[47:40] and MBFS[23] are reserved.
*
* This algorithm is checked against the ASUS P2B-LS (which has
* 4 DIMM slots) factory BIOS.
* Therefore it assumes a board with 4 slots, and will need testing
* on boards with 3 DIMM slots.
*/
mbsc0 = 0x80;
mbsc1 = 0x2a;
mbfs2 = 0x1f;
if (pci_read_config8(NB, NBXCFG + 1) & 0x30) {
fsb = 66;
mbsc3 = 0x00;
mbsc4 = 0x00;
mbfs0 = 0x80;
} else {
fsb = 100;
mbsc3 = 0xa0;
mbsc4 = 0x0a;
mbfs0 = 0x84;
}
if (dimm03 > 2) {
mbsc4 = mbsc4 | 0x80;
mbsc1 = mbsc1 | 0x28;
mbfs2 = mbfs2 | 0x40;
mbfs0 = mbfs0 | 0x60;
} else {
mbsc4 = mbsc4 | 0xc0;
if (fsb == 100) {
mbsc1 = mbsc1 | 0x3c;
}
}
if (dimm47 > 2) {
mbsc4 = mbsc4 | 0x20;
mbsc1 = mbsc1 | 0x02;
mbsc0 = mbsc0 | 0x80;
mbfs2 = mbfs2 | 0x20;
mbfs0 = mbfs0 | 0x18;
} else {
mbsc4 = mbsc4 | 0x30;
if (fsb == 100) {
mbsc1 = mbsc1 | 0x03;
mbsc0 = mbsc0 | 0xc0;
}
}
if ((dimm03 + dimm47) > 4) {
mbsc0 = mbsc0 | 0x30;
mbfs0 = mbfs0 | 0x02;
} else {
mbsc0 = mbsc0 | 0x2c;
}
pci_write_config8(NB, MBSC + 0, mbsc0);
pci_write_config8(NB, MBSC + 1, mbsc1);
pci_write_config8(NB, MBSC + 2, 0x00);
pci_write_config8(NB, MBSC + 3, mbsc3);
pci_write_config8(NB, MBSC + 4, mbsc4);
pci_write_config8(NB, MBFS + 0, mbfs0);
pci_write_config8(NB, MBFS + 1, 0xff);
pci_write_config8(NB, MBFS + 2, mbfs2);
}
/*-----------------------------------------------------------------------------
DIMM-independant configuration functions.
-----------------------------------------------------------------------------*/
static void spd_enable_refresh(void)
{
int i, value;
uint8_t reg;
reg = pci_read_config8(NB, DRAMC);
for (i = 0; i < DIMM_SOCKETS; i++) {
value = spd_read_byte(DIMM0 + i, SPD_REFRESH);
if (value < 0)
continue;
reg = (reg & 0xf8) | refresh_rate_map[(value & 0x7f)];
PRINT_DEBUG(" Enabling refresh (DRAMC = 0x%02x) for DIMM %02x\n", reg, i);
}
pci_write_config8(NB, DRAMC, reg);
}
/*-----------------------------------------------------------------------------
Public interface.
-----------------------------------------------------------------------------*/
void sdram_set_registers(void)
{
int i, max;
uint8_t reg;
PRINT_DEBUG("Northbridge prior to SDRAM init:\n");
DUMPNORTH();
max = ARRAY_SIZE(register_values);
/* Set registers as specified in the register_values[] array. */
for (i = 0; i < max; i += 3) {
reg = pci_read_config8(NB, register_values[i]);
reg &= register_values[i + 1];
reg |= register_values[i + 2] & ~(register_values[i + 1]);
pci_write_config8(NB, register_values[i], reg);
#if 0
PRINT_DEBUG(" Set register 0x%02x to 0x%02x\n",
register_values[i], reg);
#endif
}
}
struct dimm_size {
u32 side1;
u32 side2;
};
static struct dimm_size spd_get_dimm_size(unsigned int device)
{
struct dimm_size sz;
int i, module_density, dimm_banks;
sz.side1 = 0;
module_density = spd_read_byte(device, SPD_DENSITY_OF_EACH_ROW_ON_MODULE);
dimm_banks = spd_read_byte(device, SPD_NUM_DIMM_BANKS);
/* Find the size of side1. */
/* Find the larger value. The larger value is always side1. */
for (i = 512; i >= 0; i >>= 1) {
if ((module_density & i) == i) {
sz.side1 = i;
break;
}
}
/* Set to 0 in case it's single sided. */
sz.side2 = 0;
/* Test if it's a dual-sided DIMM. */
if (dimm_banks > 1) {
/* Test if there's a second value. If so it's asymmetrical. */
if (module_density != i) {
/*
* Find second value, picking up where we left off.
* i >>= 1 done initially to make sure we don't get
* the same value again.
*/
for (i >>= 1; i >= 0; i >>= 1) {
if (module_density == (sz.side1 | i)) {
sz.side2 = i;
break;
}
}
/* If not, it's symmetrical. */
} else {
sz.side2 = sz.side1;
}
}
/*
* SPD byte 31 is the memory size divided by 4 so we
* need to muliply by 4 to get the total size.
*/
sz.side1 *= 4;
sz.side2 *= 4;
/* It is possible to partially use larger then supported
* modules by setting them to a supported size.
*/
if(sz.side1 > 128) {
PRINT_DEBUG("Side1 was %dMB but only 128MB will be used.\n",
sz.side1);
sz.side1 = 128;
if(sz.side2 > 128) {
PRINT_DEBUG("Side2 was %dMB but only 128MB will be used.\n",
sz.side2);
sz.side2 = 128;
}
}
return sz;
}
/*
* Sets DRAM attributes one DIMM at a time, based on SPD data.
* Northbridge settings that are set: NBXCFG[31:24], DRB0-DRB7, RPS, DRAMC.
*/
static void set_dram_row_attributes(void)
{
int i, dra, drb, col, width, value, rps;
u8 bpr; /* Top 8 bits of PGPOL */
u8 nbxecc = 0; /* NBXCFG[31:24] */
u8 edo, sd, regsd; /* EDO, SDRAM, registered SDRAM */
edo = 0;
sd = 0;
regsd = 1;
rps = 0;
drb = 0;
bpr = 0;
for (i = 0; i < DIMM_SOCKETS; i++) {
unsigned int device;
device = DIMM0 + i;
bpr >>= 2;
nbxecc >>= 2;
/* First check if a DIMM is actually present. */
value = spd_read_byte(device, SPD_MEMORY_TYPE);
/* This is 440BX! We do EDO too! */
if (value == SPD_MEMORY_TYPE_EDO
|| value == SPD_MEMORY_TYPE_SDRAM) {
if (value == SPD_MEMORY_TYPE_EDO) {
edo = 1;
} else if (value == SPD_MEMORY_TYPE_SDRAM) {
sd = 1;
}
PRINT_DEBUG("Found DIMM in slot %d\n", i);
if (edo && sd) {
print_err("Mixing EDO/SDRAM unsupported!\n");
die("HALT\n");
}
/* "DRA" is our RPS for the two rows on this DIMM. */
dra = 0;
/* Columns */
col = spd_read_byte(device, SPD_NUM_COLUMNS);
/*
* Is this an ECC DIMM? Actually will be a 2 if so.
* TODO: Other register than NBXCFG also needs this
* ECC information.
*/
value = spd_read_byte(device, SPD_DIMM_CONFIG_TYPE);
/* Data width */
width = spd_read_byte(device, SPD_MODULE_DATA_WIDTH_LSB);
/* Exclude error checking data width from page size calculations */
if (value) {
value = spd_read_byte(device,
SPD_ERROR_CHECKING_SDRAM_WIDTH);
width -= value;
/* ### ECC */
/* Clear top 2 bits to help set up NBXCFG. */
nbxecc &= 0x3f;
} else {
/* Without ECC, top 2 bits should be 11. */
nbxecc |= 0xc0;
}
/* If any installed DIMM is *not* registered, this system cannot be
* configured for registered SDRAM.
* By registered, only the address and control lines need to be, which
* we can tell by reading SPD byte 21, bit 1.
*/
value = spd_read_byte(device, SPD_MODULE_ATTRIBUTES);
PRINT_DEBUG("DIMM is ");
if ((value & MODULE_REGISTERED) == 0) {
regsd = 0;
PRINT_DEBUG("not ");
}
PRINT_DEBUG("registered\n");
/* Calculate page size in bits. */
value = ((1 << col) * width);
/* Convert to KB. */
dra = (value >> 13);
/* Number of banks of DIMM (single or double sided). */
value = spd_read_byte(device, SPD_NUM_DIMM_BANKS);
/* Once we have dra, col is done and can be reused.
* So it's reused for number of banks.
*/
col = spd_read_byte(device, SPD_NUM_BANKS_PER_SDRAM);
if (value == 1) {
/*
* Second bank of 1-bank DIMMs "doesn't have
* ECC" - or anything.
*/
if (dra == 2) {
dra = 0x0; /* 2KB */
} else if (dra == 4) {
dra = 0x1; /* 4KB */
} else if (dra == 8) {
dra = 0x2; /* 8KB */
} else if (dra >= 16) {
/* Page sizes larger than supported are
* set to 8KB to use module partially.
*/
PRINT_DEBUG("Page size forced to 8KB.\n");
dra = 0x2; /* 8KB */
} else {
dra = -1;
}
/*
* Sets a flag in PGPOL[BPR] if this DIMM has
* 4 banks per row.
*/
if (col == 4)
bpr |= 0x40;
} else if (value == 2) {
if (dra == 2) {
dra = 0x0; /* 2KB */
} else if (dra == 4) {
dra = 0x05; /* 4KB */
} else if (dra == 8) {
dra = 0x0a; /* 8KB */
} else if (dra >= 16) {
/* Ditto */
PRINT_DEBUG("Page size forced to 8KB.\n");
dra = 0x0a; /* 8KB */
} else {
dra = -1;
}
/* Ditto */
if (col == 4)
bpr |= 0xc0;
} else {
print_err("# of banks of DIMM unsupported!\n");
die("HALT\n");
}
if (dra == -1) {
print_err("Page size not supported\n");
die("HALT\n");
}
/*
* 440BX supports asymmetrical dual-sided DIMMs,
* but can't handle DIMMs smaller than 8MB per
* side.
*/
struct dimm_size sz = spd_get_dimm_size(device);
if ((sz.side1 < 8)) {
print_err("DIMMs smaller than 8MB per side\n"
"are not supported on this NB.\n");
die("HALT\n");
}
/* Divide size by 8 to set up the DRB registers. */
drb += (sz.side1 / 8);
/*
* Build the DRB for the next row in MSB so it gets
* placed in DRB[n+1] where it belongs when written
* as a 16-bit word.
*/
drb &= 0xff;
drb |= (drb + (sz.side2 / 8)) << 8;
} else {
#if 0
PRINT_DEBUG("No DIMM found in slot %d\n", i);
#endif
/* If there's no DIMM in the slot, set dra to 0x00. */
dra = 0x00;
/* Still have to propagate DRB over. */
drb &= 0xff;
drb |= (drb << 8);
}
pci_write_config16(NB, DRB + (2 * i), drb);
#if 0
PRINT_DEBUG("DRB has been set to 0x%04x\n", drb);
#endif
/* Brings the upper DRB back down to be base for
* DRB calculations for the next two rows.
*/
drb >>= 8;
rps |= (dra & 0x0f) << (i * 4);
}
/* Set paging policy register. */
pci_write_config8(NB, PGPOL + 1, bpr);
PRINT_DEBUG("PGPOL[BPR] has been set to 0x%02x\n", bpr);
/* Set DRAM row page size register. */
pci_write_config16(NB, RPS, rps);
PRINT_DEBUG("RPS has been set to 0x%04x\n", rps);
/* ### ECC */
pci_write_config8(NB, NBXCFG + 3, nbxecc);
PRINT_DEBUG("NBXECC[31:24] has been set to 0x%02x\n", nbxecc);
/* Set DRAMC[4:3] to proper memory type (EDO/SDRAM/Registered SDRAM). */
/* i will be used to set DRAMC[4:3]. */
if (regsd && sd) {
i = 0x10; // Registered SDRAM
} else if (sd) {
i = 0x08; // SDRAM
} else {
i = 0; // EDO
}
value = pci_read_config8(NB, DRAMC) & 0xe7;
value |= i;
pci_write_config8(NB, DRAMC, value);
PRINT_DEBUG("DRAMC has been set to 0x%02x\n", value);
}
void sdram_set_spd_registers(void)
{
/* Setup DRAM row boundary registers and other attributes. */
set_dram_row_attributes();
/* Setup DRAM buffer strength. */
set_dram_buffer_strength();
/* TODO: Set PMCR? */
// pci_write_config8(NB, PMCR, 0x14);
pci_write_config8(NB, PMCR, 0x10);
/* TODO: This is for EDO memory only. */
pci_write_config8(NB, DRAMT, 0x03);
}
void sdram_enable(void)
{
int i;
/* 0. Wait until power/voltages and clocks are stable (200us). */
udelay(200);
/* 1. Apply NOP. Wait 200 clock cycles (200us should do). */
PRINT_DEBUG("RAM Enable 1: Apply NOP\n");
do_ram_command(RAM_COMMAND_NOP);
udelay(200);
/* 2. Precharge all. Wait tRP. */
PRINT_DEBUG("RAM Enable 2: Precharge all\n");
do_ram_command(RAM_COMMAND_PRECHARGE);
udelay(1);
/* 3. Perform 8 refresh cycles. Wait tRC each time. */
PRINT_DEBUG("RAM Enable 3: CBR\n");
for (i = 0; i < 8; i++) {
do_ram_command(RAM_COMMAND_CBR);
udelay(1);
}
/* 4. Mode register set. Wait two memory cycles. */
PRINT_DEBUG("RAM Enable 4: Mode register set\n");
do_ram_command(RAM_COMMAND_MRS);
udelay(2);
/* 5. Normal operation. */
PRINT_DEBUG("RAM Enable 5: Normal operation\n");
do_ram_command(RAM_COMMAND_NORMAL);
udelay(1);
/* 6. Finally enable refresh. */
PRINT_DEBUG("RAM Enable 6: Enable refresh\n");
// pci_write_config8(NB, PMCR, 0x10);
spd_enable_refresh();
udelay(1);
PRINT_DEBUG("Northbridge following SDRAM init:\n");
DUMPNORTH();
}
|