1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
|
/* SPDX-License-Identifier: GPL-2.0-only */
#include <console/console.h>
#include <console/usb.h>
#include <string.h>
#include <cbmem.h>
#include <cbfs.h>
#include <cf9_reset.h>
#include <ip_checksum.h>
#include <memory_info.h>
#include <mrc_cache.h>
#include <device/pci_def.h>
#include <device/pci_ops.h>
#include <device/dram/ddr3.h>
#include <smbios.h>
#include <spd.h>
#include <security/vboot/vboot_common.h>
#include <commonlib/region.h>
#include "raminit.h"
#include "pei_data.h"
#include "haswell.h"
#define MRC_CACHE_VERSION 1
void save_mrc_data(struct pei_data *pei_data)
{
/* Save the MRC S3 restore data to cbmem */
mrc_cache_stash_data(MRC_TRAINING_DATA, MRC_CACHE_VERSION, pei_data->mrc_output,
pei_data->mrc_output_len);
}
static void prepare_mrc_cache(struct pei_data *pei_data)
{
size_t mrc_size;
/* Preset just in case there is an error */
pei_data->mrc_input = NULL;
pei_data->mrc_input_len = 0;
pei_data->mrc_input =
mrc_cache_current_mmap_leak(MRC_TRAINING_DATA,
MRC_CACHE_VERSION,
&mrc_size);
if (!pei_data->mrc_input)
/* Error message printed in find_current_mrc_cache */
return;
pei_data->mrc_input_len = mrc_size;
printk(BIOS_DEBUG, "%s: at %p, size %zx\n", __func__,
pei_data->mrc_input, mrc_size);
}
static const char *ecc_decoder[] = {
"inactive",
"active on IO",
"disabled on IO",
"active",
};
/* Print out the memory controller configuration, as per the values in its registers. */
static void report_memory_config(void)
{
u32 addr_decoder_common, addr_decode_chan[2];
int i;
addr_decoder_common = MCHBAR32(MAD_CHNL);
addr_decode_chan[0] = MCHBAR32(MAD_DIMM_CH0);
addr_decode_chan[1] = MCHBAR32(MAD_DIMM_CH1);
printk(BIOS_DEBUG, "memcfg DDR3 clock %d MHz\n",
(MCHBAR32(MC_BIOS_DATA) * 13333 * 2 + 50) / 100);
printk(BIOS_DEBUG, "memcfg channel assignment: A: %d, B % d, C % d\n",
(addr_decoder_common >> 0) & 3,
(addr_decoder_common >> 2) & 3,
(addr_decoder_common >> 4) & 3);
for (i = 0; i < ARRAY_SIZE(addr_decode_chan); i++) {
u32 ch_conf = addr_decode_chan[i];
printk(BIOS_DEBUG, "memcfg channel[%d] config (%8.8x):\n", i, ch_conf);
printk(BIOS_DEBUG, " ECC %s\n", ecc_decoder[(ch_conf >> 24) & 3]);
printk(BIOS_DEBUG, " enhanced interleave mode %s\n",
((ch_conf >> 22) & 1) ? "on" : "off");
printk(BIOS_DEBUG, " rank interleave %s\n",
((ch_conf >> 21) & 1) ? "on" : "off");
printk(BIOS_DEBUG, " DIMMA %d MB width %s %s rank%s\n",
((ch_conf >> 0) & 0xff) * 256,
((ch_conf >> 19) & 1) ? "x16" : "x8 or x32",
((ch_conf >> 17) & 1) ? "dual" : "single",
((ch_conf >> 16) & 1) ? "" : ", selected");
printk(BIOS_DEBUG, " DIMMB %d MB width %s %s rank%s\n",
((ch_conf >> 8) & 0xff) * 256,
((ch_conf >> 20) & 1) ? "x16" : "x8 or x32",
((ch_conf >> 18) & 1) ? "dual" : "single",
((ch_conf >> 16) & 1) ? ", selected" : "");
}
}
/**
* Find PEI executable in coreboot filesystem and execute it.
*
* @param pei_data: configuration data for UEFI PEI reference code
*/
void sdram_initialize(struct pei_data *pei_data)
{
unsigned long entry;
uint32_t type = CBFS_TYPE_MRC;
struct cbfsf f;
printk(BIOS_DEBUG, "Starting UEFI PEI System Agent\n");
/* Do not pass MRC data in for recovery mode boot, always pass it in for S3 resume */
if (!(CONFIG(HASWELL_VBOOT_IN_BOOTBLOCK) && vboot_recovery_mode_enabled())
|| pei_data->boot_mode == 2)
prepare_mrc_cache(pei_data);
/* If MRC data is not found, we cannot continue S3 resume */
if (pei_data->boot_mode == 2 && !pei_data->mrc_input) {
post_code(POST_RESUME_FAILURE);
printk(BIOS_DEBUG, "Giving up in %s: No MRC data\n", __func__);
system_reset();
}
/* Pass console handler in pei_data */
pei_data->tx_byte = do_putchar;
/*
* Locate and call UEFI System Agent binary. The binary needs to be at a fixed offset
* in the flash and can therefore only reside in the COREBOOT fmap region.
*/
if (cbfs_locate_file_in_region(&f, "COREBOOT", "mrc.bin", &type) < 0)
die("mrc.bin not found!");
/* We don't care about leaking the mapping */
entry = (unsigned long)rdev_mmap_full(&f.data);
if (entry) {
int rv;
asm volatile ("call *%%ecx\n\t"
:"=a" (rv) : "c" (entry), "a" (pei_data));
/* The mrc.bin reconfigures USB, so usbdebug needs to be reinitialized */
if (CONFIG(USBDEBUG_IN_PRE_RAM))
usbdebug_hw_init(true);
if (rv) {
switch (rv) {
case -1:
printk(BIOS_ERR, "PEI version mismatch.\n");
break;
case -2:
printk(BIOS_ERR, "Invalid memory frequency.\n");
break;
default:
printk(BIOS_ERR, "MRC returned %x.\n", rv);
}
die_with_post_code(POST_INVALID_VENDOR_BINARY,
"Nonzero MRC return value.\n");
}
} else {
die("UEFI PEI System Agent not found.\n");
}
/* For reference, print the System Agent version after executing the UEFI PEI stage */
u32 version = MCHBAR32(MRC_REVISION);
printk(BIOS_DEBUG, "System Agent Version %d.%d.%d Build %d\n",
(version >> 24) & 0xff, (version >> 16) & 0xff,
(version >> 8) & 0xff, (version >> 0) & 0xff);
report_memory_config();
}
static bool nb_supports_ecc(const uint32_t capid0_a)
{
return !(capid0_a & CAPID_ECCDIS);
}
static uint16_t nb_slots_per_channel(const uint32_t capid0_a)
{
return !(capid0_a & CAPID_DDPCD) + 1;
}
static uint16_t nb_number_of_channels(const uint32_t capid0_a)
{
return !(capid0_a & CAPID_PDCD) + 1;
}
static uint32_t nb_max_chan_capacity_mib(const uint32_t capid0_a)
{
uint32_t ddrsz;
/* Values from documentation, which assume two DIMMs per channel */
switch (CAPID_DDRSZ(capid0_a)) {
case 1:
ddrsz = 8192;
break;
case 2:
ddrsz = 2048;
break;
case 3:
ddrsz = 512;
break;
default:
ddrsz = 16384;
break;
}
/* Account for the maximum number of DIMMs per channel */
return (ddrsz / 2) * nb_slots_per_channel(capid0_a);
}
void setup_sdram_meminfo(struct pei_data *pei_data)
{
u32 addr_decode_ch[2];
struct memory_info *mem_info;
struct dimm_info *dimm;
int ddr_frequency, dimm_size, ch, d_num;
int dimm_cnt = 0;
mem_info = cbmem_add(CBMEM_ID_MEMINFO, sizeof(struct memory_info));
if (!mem_info)
die("Failed to add memory info to CBMEM.\n");
memset(mem_info, 0, sizeof(struct memory_info));
/* FIXME: Do we need to read MCHBAR32(MAD_CHNL) ? (Answer: Nope) */
MCHBAR32(MAD_CHNL);
addr_decode_ch[0] = MCHBAR32(MAD_DIMM_CH0);
addr_decode_ch[1] = MCHBAR32(MAD_DIMM_CH1);
ddr_frequency = (MCHBAR32(MC_BIOS_DATA) * 13333 * 2 + 50) / 100;
for (ch = 0; ch < ARRAY_SIZE(addr_decode_ch); ch++) {
u32 ch_conf = addr_decode_ch[ch];
/* DIMMs A/B */
for (d_num = 0; d_num < 2; d_num++) {
dimm_size = ((ch_conf >> (d_num * 8)) & 0xff) * 256;
if (dimm_size) {
dimm = &mem_info->dimm[dimm_cnt];
dimm->dimm_size = dimm_size;
dimm->ddr_type = MEMORY_TYPE_DDR3;
dimm->ddr_frequency = ddr_frequency;
dimm->rank_per_dimm = 1 + ((ch_conf >> (17 + d_num)) & 1);
dimm->channel_num = ch;
dimm->dimm_num = d_num;
dimm->bank_locator = ch * 2;
memcpy(dimm->serial,
&pei_data->spd_data[dimm_cnt][SPD_DIMM_SERIAL_NUM],
SPD_DIMM_SERIAL_LEN);
memcpy(dimm->module_part_number,
&pei_data->spd_data[dimm_cnt][SPD_DIMM_PART_NUM],
SPD_DIMM_PART_LEN);
dimm->mod_id =
(pei_data->spd_data[dimm_cnt][SPD_DIMM_MOD_ID2] << 8) |
(pei_data->spd_data[dimm_cnt][SPD_DIMM_MOD_ID1] & 0xff);
dimm->mod_type = SPD_SODIMM;
dimm->bus_width = MEMORY_BUS_WIDTH_64;
dimm_cnt++;
}
}
}
mem_info->dimm_cnt = dimm_cnt;
const uint32_t capid0_a = pci_read_config32(HOST_BRIDGE, CAPID0_A);
const uint16_t channels = nb_number_of_channels(capid0_a);
mem_info->ecc_capable = nb_supports_ecc(capid0_a);
mem_info->max_capacity_mib = channels * nb_max_chan_capacity_mib(capid0_a);
mem_info->number_of_devices = channels * nb_slots_per_channel(capid0_a);
}
|