1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
|
/* SPDX-License-Identifier: GPL-2.0-only */
#include <commonlib/helpers.h>
#include <stdint.h>
#include <arch/cpu.h>
#include <device/mmio.h>
#include <device/pci_ops.h>
#include <device/pci_def.h>
#include <device/device.h>
#include <device/smbus_host.h>
#include <spd.h>
#include <console/console.h>
#include <lib.h>
#include <delay.h>
#include <timestamp.h>
#include "gm45.h"
#include "chip.h"
static const gmch_gfx_t gmch_gfx_types[][5] = {
/* MAX_667MHz MAX_533MHz MAX_400MHz MAX_333MHz MAX_800MHz */
{ GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_UNKNOWN },
{ GMCH_GM47, GMCH_GM45, GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_GM49 },
{ GMCH_GE45, GMCH_GE45, GMCH_GE45, GMCH_GE45, GMCH_GE45 },
{ GMCH_UNKNOWN, GMCH_GL43, GMCH_GL40, GMCH_UNKNOWN, GMCH_UNKNOWN },
{ GMCH_UNKNOWN, GMCH_GS45, GMCH_GS40, GMCH_UNKNOWN, GMCH_UNKNOWN },
{ GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_UNKNOWN },
{ GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_UNKNOWN },
{ GMCH_PM45, GMCH_PM45, GMCH_PM45, GMCH_PM45, GMCH_PM45 },
};
void get_gmch_info(sysinfo_t *sysinfo)
{
sysinfo->stepping = pci_read_config8(PCI_DEV(0, 0, 0), PCI_CLASS_REVISION);
if ((sysinfo->stepping > STEPPING_B3) &&
(sysinfo->stepping != STEPPING_CONVERSION_A1))
die("Unknown stepping.\n");
if (sysinfo->stepping <= STEPPING_B3)
printk(BIOS_DEBUG, "Stepping %c%d\n", 'A' + sysinfo->stepping / 4, sysinfo->stepping % 4);
else
printk(BIOS_DEBUG, "Conversion stepping A1\n");
const u32 eax = cpuid_ext(0x04, 0).eax;
sysinfo->cores = ((eax >> 26) & 0x3f) + 1;
printk(BIOS_SPEW, "%d CPU cores\n", sysinfo->cores);
u32 capid = pci_read_config16(PCI_DEV(0, 0, 0), D0F0_CAPID0+8);
if (!(capid & (1<<(79-64)))) {
printk(BIOS_SPEW, "iTPM enabled\n");
}
capid = pci_read_config32(PCI_DEV(0, 0, 0), D0F0_CAPID0+4);
if (!(capid & (1<<(57-32)))) {
printk(BIOS_SPEW, "ME enabled\n");
}
if (!(capid & (1<<(56-32)))) {
printk(BIOS_SPEW, "AMT enabled\n");
}
sysinfo->max_ddr2_mt = (capid & (1<<(53-32)))?667:800;
printk(BIOS_SPEW, "capable of DDR2 of %d MHz or lower\n", sysinfo->max_ddr2_mt);
if (!(capid & (1<<(48-32)))) {
printk(BIOS_SPEW, "VT-d enabled\n");
}
const u32 gfx_variant = (capid>>(42-32)) & 0x7;
const u32 render_freq = ((capid>>(50-32) & 0x1) << 2) | ((capid>>(35-32)) & 0x3);
if (render_freq <= 4)
sysinfo->gfx_type = gmch_gfx_types[gfx_variant][render_freq];
else
sysinfo->gfx_type = GMCH_UNKNOWN;
switch (sysinfo->gfx_type) {
case GMCH_GM45:
printk(BIOS_SPEW, "GMCH: GM45\n");
break;
case GMCH_GM47:
printk(BIOS_SPEW, "GMCH: GM47\n");
break;
case GMCH_GM49:
printk(BIOS_SPEW, "GMCH: GM49\n");
break;
case GMCH_GE45:
printk(BIOS_SPEW, "GMCH: GE45\n");
break;
case GMCH_GL40:
printk(BIOS_SPEW, "GMCH: GL40\n");
break;
case GMCH_GL43:
printk(BIOS_SPEW, "GMCH: GL43\n");
break;
case GMCH_GS40:
printk(BIOS_SPEW, "GMCH: GS40\n");
break;
case GMCH_GS45:
printk(BIOS_SPEW, "GMCH: GS45, using %s-power mode\n",
sysinfo->gs45_low_power_mode ? "low" : "high");
break;
case GMCH_PM45:
printk(BIOS_SPEW, "GMCH: PM45\n");
break;
case GMCH_UNKNOWN:
printk(BIOS_SPEW, "unknown GMCH\n");
break;
}
sysinfo->txt_enabled = !(capid & (1 << (37-32)));
if (sysinfo->txt_enabled) {
printk(BIOS_SPEW, "TXT enabled\n");
}
switch (render_freq) {
case 4:
sysinfo->max_render_mhz = 800;
break;
case 0:
sysinfo->max_render_mhz = 667;
break;
case 1:
sysinfo->max_render_mhz = 533;
break;
case 2:
sysinfo->max_render_mhz = 400;
break;
case 3:
sysinfo->max_render_mhz = 333;
break;
default:
printk(BIOS_SPEW, "Unknown render frequency\n");
sysinfo->max_render_mhz = 0;
break;
}
if (sysinfo->max_render_mhz != 0) {
printk(BIOS_SPEW, "Render frequency: %d MHz\n", sysinfo->max_render_mhz);
}
if (!(capid & (1<<(33-32)))) {
printk(BIOS_SPEW, "IGD enabled\n");
}
if (!(capid & (1<<(32-32)))) {
printk(BIOS_SPEW, "PCIe-to-GMCH enabled\n");
}
capid = pci_read_config32(PCI_DEV(0, 0, 0), D0F0_CAPID0);
u32 ddr_cap = capid>>30 & 0x3;
switch (ddr_cap) {
case 0:
sysinfo->max_ddr3_mt = 1067;
break;
case 1:
sysinfo->max_ddr3_mt = 800;
break;
case 2:
case 3:
printk(BIOS_SPEW, "GMCH not DDR3 capable\n");
sysinfo->max_ddr3_mt = 0;
break;
}
if (sysinfo->max_ddr3_mt != 0) {
printk(BIOS_SPEW, "GMCH supports DDR3 with %d MT or less\n", sysinfo->max_ddr3_mt);
}
const unsigned int max_fsb = (capid >> 28) & 0x3;
switch (max_fsb) {
case 1:
sysinfo->max_fsb_mhz = 1067;
break;
case 2:
sysinfo->max_fsb_mhz = 800;
break;
case 3:
sysinfo->max_fsb_mhz = 667;
break;
default:
die("unknown FSB capability\n");
break;
}
if (sysinfo->max_fsb_mhz != 0) {
printk(BIOS_SPEW, "GMCH supports FSB with up to %d MHz\n", sysinfo->max_fsb_mhz);
}
sysinfo->max_fsb = max_fsb - 1;
}
/*
* Detect if the system went through an interrupted RAM init or is incon-
* sistent. If so, initiate a cold reboot. Otherwise mark the system to be
* in RAM init, so this function would detect it on an erroneous reboot.
*/
void enter_raminit_or_reset(void)
{
/* Interrupted RAM init or inconsistent system? */
u8 reg8 = pci_read_config8(PCI_DEV(0, 0x1f, 0), 0xa2);
if (reg8 & (1 << 2)) { /* S4-assertion-width violation */
/* Ignore S4-assertion-width violation like original BIOS. */
printk(BIOS_WARNING, "Ignoring S4-assertion-width violation.\n");
/* Bit2 is R/WC, so it will clear itself below. */
}
if (reg8 & (1 << 7)) { /* interrupted RAM init */
/* Don't enable S4-assertion stretch. Makes trouble on roda/rk9.
reg8 = pci_read_config8(PCI_DEV(0, 0x1f, 0), 0xa4);
pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa4, reg8 | 0x08);
*/
/* Clear bit7. */
pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa2, reg8 & ~(1 << 7));
printk(BIOS_INFO, "Interrupted RAM init, reset required.\n");
gm45_early_reset();
}
/* Mark system to be in RAM init. */
pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa2, reg8 | (1 << 7));
}
/* For a detected DIMM, test the value of an SPD byte to
match the expected value after masking some bits. */
static int test_dimm(sysinfo_t *const sysinfo,
int dimm, int addr, int bitmask, int expected)
{
return (smbus_read_byte(sysinfo->spd_map[dimm], addr) & bitmask) == expected;
}
/* This function dies if dimm is unsuitable for the chipset. */
static void verify_ddr2_dimm(sysinfo_t *const sysinfo, int dimm)
{
if (!test_dimm(sysinfo, dimm, 20, 0x04, 0x04))
die("Chipset only supports SO-DIMM\n");
if (!test_dimm(sysinfo, dimm, 6, 0xff, 0x40) ||
!test_dimm(sysinfo, dimm, 11, 0xff, 0x00))
die("Chipset doesn't support ECC RAM\n");
if (!test_dimm(sysinfo, dimm, 5, 0x07, 0) &&
!test_dimm(sysinfo, dimm, 5, 0x07, 1))
die("Chipset wants single or dual ranked DIMMs\n");
/*
* Generally supports:
* x8/x16
* 4 or 8 banks
* 10 column address bits
* 13, 14 or 15 (x8 only) row address bits
*
* FIXME: There seems to be an exception for 256Gb x16 chips. Not
* covered by the numbers above (9 column address bits?).
*/
if (!test_dimm(sysinfo, dimm, 13, 0xff, 8) &&
!test_dimm(sysinfo, dimm, 13, 0xff, 16))
die("Chipset requires x8 or x16 width\n");
if (!test_dimm(sysinfo, dimm, 17, 0xff, 4) &&
!test_dimm(sysinfo, dimm, 17, 0xff, 8))
die("Chipset requires 4 or 8 banks\n");
if (!test_dimm(sysinfo, dimm, 4, 0xff, 10))
die("Chipset requires 10 column address bits\n");
if (!test_dimm(sysinfo, dimm, 3, 0xff, 13) &&
!test_dimm(sysinfo, dimm, 3, 0xff, 14) &&
!(test_dimm(sysinfo, dimm, 3, 0xff, 15) &&
test_dimm(sysinfo, dimm, 13, 0xff, 8)))
die("Chipset requires 13, 14 or 15 (with x8) row address bits");
}
/* For every detected DIMM, test if it's suitable for the chipset. */
static void verify_ddr2(sysinfo_t *const sysinfo, int mask)
{
int cur;
for (cur = 0; mask; mask >>= 1, ++cur) {
if (mask & 1)
verify_ddr2_dimm(sysinfo, cur);
}
}
/* This function dies if dimm is unsuitable for the chipset. */
static void verify_ddr3_dimm(sysinfo_t *const sysinfo, int dimm)
{
if (!test_dimm(sysinfo, dimm, 3, 15, 3))
die("Chipset only supports SO-DIMM\n");
if (!test_dimm(sysinfo, dimm, 8, 0x18, 0))
die("Chipset doesn't support ECC RAM\n");
if (!test_dimm(sysinfo, dimm, 7, 0x38, 0) &&
!test_dimm(sysinfo, dimm, 7, 0x38, 8))
die("Chipset wants single or double sided DIMMs\n");
if (!test_dimm(sysinfo, dimm, 7, 7, 1) &&
!test_dimm(sysinfo, dimm, 7, 7, 2))
die("Chipset requires x8 or x16 width\n");
if (!test_dimm(sysinfo, dimm, 4, 0x0f, 0) &&
!test_dimm(sysinfo, dimm, 4, 0x0f, 1) &&
!test_dimm(sysinfo, dimm, 4, 0x0f, 2) &&
!test_dimm(sysinfo, dimm, 4, 0x0f, 3))
die("Chipset requires 256Mb, 512Mb, 1Gb or 2Gb chips.");
if (!test_dimm(sysinfo, dimm, 4, 0x70, 0))
die("Chipset requires 8 banks on DDR3\n");
/* How to check if burst length is 8?
Other values are not supported, are they even possible? */
if (!test_dimm(sysinfo, dimm, 10, 0xff, 1))
die("Code assumes 1/8ns MTB\n");
if (!test_dimm(sysinfo, dimm, 11, 0xff, 8))
die("Code assumes 1/8ns MTB\n");
if (!test_dimm(sysinfo, dimm, 62, 0x9f, 0) &&
!test_dimm(sysinfo, dimm, 62, 0x9f, 1) &&
!test_dimm(sysinfo, dimm, 62, 0x9f, 2) &&
!test_dimm(sysinfo, dimm, 62, 0x9f, 3) &&
!test_dimm(sysinfo, dimm, 62, 0x9f, 5))
die("Only raw card types A, B, C, D and F are supported.\n");
}
/* For every detected DIMM, test if it's suitable for the chipset. */
static void verify_ddr3(sysinfo_t *const sysinfo, int mask)
{
int cur = 0;
while (mask) {
if (mask & 1) {
verify_ddr3_dimm(sysinfo, cur);
}
mask >>= 1;
cur++;
}
}
typedef struct {
int dimm_mask;
struct spd_dimminfo {
unsigned int rows;
unsigned int cols;
unsigned int chip_capacity;
unsigned int banks;
unsigned int ranks;
unsigned int cas_latencies;
unsigned int tAAmin;
unsigned int tCKmin;
unsigned int width;
unsigned int tRAS;
unsigned int tRP;
unsigned int tRCD;
unsigned int tWR;
unsigned int page_size;
unsigned int raw_card;
unsigned int refresh;
} channel[2];
} spdinfo_t;
/**
* \brief Decode SPD tck cycle time
*
* Decodes a raw SPD data from a DDR2 DIMM.
* Returns cycle time in 1/256th ns.
*/
static unsigned int spd_decode_tck_time(u8 c)
{
u8 high, low;
high = c >> 4;
switch (c & 0xf) {
case 0xa:
low = 25;
break;
case 0xb:
low = 33;
break;
case 0xc:
low = 66;
break;
case 0xd:
low = 75;
break;
case 0xe:
case 0xf:
die("Invalid tck setting. lower nibble is 0x%x\n", c & 0xf);
default:
low = (c & 0xf) * 10;
}
return ((high * 100 + low) << 8) / 100;
}
static void collect_ddr2_dimm(struct spd_dimminfo *const di, const int smb_addr)
{
static const int tCK_offsets[] = { 9, 23, 25 };
di->rows = smbus_read_byte(smb_addr, 3);
di->cols = smbus_read_byte(smb_addr, 4);
di->banks = smbus_read_byte(smb_addr, 17);
di->width = smbus_read_byte(smb_addr, 13) / 8; /* in bytes */
/* 0: 256Mb .. 3: 2Gb */
di->chip_capacity =
di->rows + di->cols
+ (di->width == 1 ? 3 : 4) /* 1B: 2^3 bits, 2B: 2^4 bits */
+ (di->banks == 4 ? 2 : 3) /* 4 banks: 2^2, 8 banks: 2^3 */
- 28;
di->page_size = di->width * (1 << di->cols); /* in bytes */
di->ranks = (smbus_read_byte(smb_addr, 5) & 7) + 1;
di->cas_latencies = smbus_read_byte(smb_addr, 18);
/* assuming tCKmin for the highest CAS is the absolute minimum */
di->tCKmin = spd_decode_tck_time(smbus_read_byte(smb_addr, 9));
/* try to reconstruct tAAmin from available data (I hate DDR2 SPDs) */
unsigned int i;
unsigned int cas = 7;
di->tAAmin = UINT32_MAX; /* we don't have UINT_MAX? */
for (i = 0; i < ARRAY_SIZE(tCK_offsets); ++i, --cas) {
for (; cas > 1; --cas)
if (di->cas_latencies & (1 << cas))
break;
if (cas <= 1)
break;
const unsigned int tCK_enc =
smbus_read_byte(smb_addr, tCK_offsets[i]);
const unsigned int tAA = spd_decode_tck_time(tCK_enc) * cas;
if (tAA < di->tAAmin)
di->tAAmin = tAA;
}
/* convert to 1/256ns */
di->tRAS = smbus_read_byte(smb_addr, 30) << 8; /* given in ns */
di->tRP = smbus_read_byte(smb_addr, 27) << 6; /* given in 1/4ns */
di->tRCD = smbus_read_byte(smb_addr, 29) << 6; /* given in 1/4ns */
di->tWR = smbus_read_byte(smb_addr, 36) << 6; /* given in 1/4ns */
di->raw_card = 0; /* Use same path as for DDR3 type A. */
di->refresh = smbus_read_byte(smb_addr, 12);
}
/*
* This function collects RAM characteristics from SPD, assuming that RAM
* is generally within chipset's requirements, since verify_ddr2() passed.
*/
static void collect_ddr2(sysinfo_t *const sysinfo, spdinfo_t *const config)
{
int cur;
for (cur = 0; cur < 2; ++cur) {
if (config->dimm_mask & (1 << (2 * cur))) {
collect_ddr2_dimm(&config->channel[cur],
sysinfo->spd_map[2 * cur]);
}
}
}
/*
* This function collects RAM characteristics from SPD, assuming that RAM
* is generally within chipset's requirements, since verify_ddr3() passed.
*/
static void collect_ddr3(sysinfo_t *const sysinfo, spdinfo_t *const config)
{
int mask = config->dimm_mask;
int cur = 0;
while (mask != 0) {
/* FIXME: support several dimms on same channel. */
if ((mask & 1) && sysinfo->spd_map[2 * cur]) {
int tmp;
const int smb_addr = sysinfo->spd_map[2 * cur];
config->channel[cur].rows = ((smbus_read_byte(smb_addr, 5) >> 3) & 7) + 12;
config->channel[cur].cols = (smbus_read_byte(smb_addr, 5) & 7) + 9;
config->channel[cur].chip_capacity = smbus_read_byte(smb_addr, 4) & 0xf;
config->channel[cur].banks = 8; /* GM45 only accepts this for DDR3.
verify_ddr3() fails for other values. */
config->channel[cur].ranks = ((smbus_read_byte(smb_addr, 7) >> 3) & 7) + 1;
config->channel[cur].cas_latencies =
((smbus_read_byte(smb_addr, 15) << 8) | smbus_read_byte(smb_addr, 14))
<< 4; /* so bit x is CAS x */
config->channel[cur].tAAmin = smbus_read_byte(smb_addr, 16) * 32; /* convert from MTB to 1/256 ns */
config->channel[cur].tCKmin = smbus_read_byte(smb_addr, 12) * 32; /* convert from MTB to 1/256 ns */
config->channel[cur].width = smbus_read_byte(smb_addr, 7) & 7;
config->channel[cur].page_size = config->channel[cur].width *
(1 << config->channel[cur].cols); /* in Bytes */
tmp = smbus_read_byte(smb_addr, 21);
config->channel[cur].tRAS = (smbus_read_byte(smb_addr, 22) | ((tmp & 0xf) << 8)) * 32;
config->channel[cur].tRP = smbus_read_byte(smb_addr, 20) * 32;
config->channel[cur].tRCD = smbus_read_byte(smb_addr, 18) * 32;
config->channel[cur].tWR = smbus_read_byte(smb_addr, 17) * 32;
config->channel[cur].raw_card = smbus_read_byte(smb_addr, 62) & 0x1f;
config->channel[cur].refresh = REFRESH_7_8;
}
cur++;
mask >>= 2;
}
}
static fsb_clock_t read_fsb_clock(void)
{
switch (mchbar_read32(CLKCFG_MCHBAR) & CLKCFG_FSBCLK_MASK) {
case 6:
return FSB_CLOCK_1067MHz;
case 2:
return FSB_CLOCK_800MHz;
case 3:
return FSB_CLOCK_667MHz;
default:
die("Unsupported FSB clock.\n");
}
}
static mem_clock_t clock_index(const unsigned int clock)
{
switch (clock) {
case 533: return MEM_CLOCK_533MHz;
case 400: return MEM_CLOCK_400MHz;
case 333: return MEM_CLOCK_333MHz;
default: die("Unknown clock value.\n");
}
return -1; /* Won't be reached. */
}
static void normalize_clock(unsigned int *const clock)
{
if (*clock >= 533)
*clock = 533;
else if (*clock >= 400)
*clock = 400;
else if (*clock >= 333)
*clock = 333;
else
*clock = 0;
}
static void lower_clock(unsigned int *const clock)
{
--*clock;
normalize_clock(clock);
}
static unsigned int find_common_clock_cas(sysinfo_t *const sysinfo,
const spdinfo_t *const spdinfo)
{
/* various constraints must be fulfilled:
CAS * tCK < 20ns == 160MTB
tCK_max >= tCK >= tCK_min
CAS >= roundup(tAA_min/tCK)
CAS supported
Clock(MHz) = 1000 / tCK(ns)
Clock(MHz) = 8000 / tCK(MTB)
AND BTW: Clock(MT) = 2000 / tCK(ns) - intel uses MTs but calls them MHz
*/
int i;
/* Calculate common cas_latencies mask, tCKmin and tAAmin. */
unsigned int cas_latencies = (unsigned int)-1;
unsigned int tCKmin = 0, tAAmin = 0;
FOR_EACH_POPULATED_CHANNEL(sysinfo->dimms, i) {
cas_latencies &= spdinfo->channel[i].cas_latencies;
if (spdinfo->channel[i].tCKmin > tCKmin)
tCKmin = spdinfo->channel[i].tCKmin;
if (spdinfo->channel[i].tAAmin > tAAmin)
tAAmin = spdinfo->channel[i].tAAmin;
}
/* Get actual value of fsb clock. */
sysinfo->selected_timings.fsb_clock = read_fsb_clock();
unsigned int fsb_mhz = 0;
switch (sysinfo->selected_timings.fsb_clock) {
case FSB_CLOCK_1067MHz: fsb_mhz = 1067; break;
case FSB_CLOCK_800MHz: fsb_mhz = 800; break;
case FSB_CLOCK_667MHz: fsb_mhz = 667; break;
}
unsigned int clock = 256000 / tCKmin;
const unsigned int max_ddr_clock = (sysinfo->spd_type == DDR2)
? sysinfo->max_ddr2_mt / 2
: sysinfo->max_ddr3_mt / 2;
if ((clock > max_ddr_clock) || (clock > fsb_mhz / 2)) {
int new_clock = MIN(max_ddr_clock, fsb_mhz / 2);
printk(BIOS_INFO, "DIMMs support %d MHz, but chipset only runs at up to %d. Limiting...\n",
clock, new_clock);
clock = new_clock;
}
normalize_clock(&clock);
/* Find compatible clock / CAS pair. */
unsigned int tCKproposed;
unsigned int CAS;
while (1) {
if (!clock)
die("Couldn't find compatible clock / CAS settings.\n");
tCKproposed = 256000 / clock;
CAS = DIV_ROUND_UP(tAAmin, tCKproposed);
printk(BIOS_SPEW, "Trying CAS %u, tCK %u.\n", CAS, tCKproposed);
for (; CAS <= DDR3_MAX_CAS; ++CAS)
if (cas_latencies & (1 << CAS))
break;
if ((CAS <= DDR3_MAX_CAS) && (CAS * tCKproposed < 32 * 160)) {
/* Found good CAS. */
printk(BIOS_SPEW, "Found compatible clock / CAS pair: %u / %u.\n", clock, CAS);
break;
}
lower_clock(&clock);
}
sysinfo->selected_timings.CAS = CAS;
sysinfo->selected_timings.mem_clock = clock_index(clock);
return tCKproposed;
}
static void calculate_derived_timings(sysinfo_t *const sysinfo,
const unsigned int tCLK,
const spdinfo_t *const spdinfo)
{
int i;
/* Calculate common tRASmin, tRPmin, tRCDmin and tWRmin. */
unsigned int tRASmin = 0, tRPmin = 0, tRCDmin = 0, tWRmin = 0;
FOR_EACH_POPULATED_CHANNEL(sysinfo->dimms, i) {
if (spdinfo->channel[i].tRAS > tRASmin)
tRASmin = spdinfo->channel[i].tRAS;
if (spdinfo->channel[i].tRP > tRPmin)
tRPmin = spdinfo->channel[i].tRP;
if (spdinfo->channel[i].tRCD > tRCDmin)
tRCDmin = spdinfo->channel[i].tRCD;
if (spdinfo->channel[i].tWR > tWRmin)
tWRmin = spdinfo->channel[i].tWR;
}
tRASmin = DIV_ROUND_UP(tRASmin, tCLK);
tRPmin = DIV_ROUND_UP(tRPmin, tCLK);
tRCDmin = DIV_ROUND_UP(tRCDmin, tCLK);
tWRmin = DIV_ROUND_UP(tWRmin, tCLK);
/* Lookup tRFC and calculate common tRFCmin. */
const unsigned int tRFC_from_clock_and_cap[][4] = {
/* CAP_256M CAP_512M CAP_1G CAP_2G */
/* 533MHz */ { 40, 56, 68, 104 },
/* 400MHz */ { 30, 42, 51, 78 },
/* 333MHz */ { 25, 35, 43, 65 },
};
unsigned int tRFCmin = 0;
FOR_EACH_POPULATED_CHANNEL(sysinfo->dimms, i) {
const unsigned int tRFC = tRFC_from_clock_and_cap
[sysinfo->selected_timings.mem_clock][spdinfo->channel[i].chip_capacity];
if (tRFC > tRFCmin)
tRFCmin = tRFC;
}
/* Calculate common tRD from CAS and FSB and DRAM clocks. */
unsigned int tRDmin = sysinfo->selected_timings.CAS;
switch (sysinfo->selected_timings.fsb_clock) {
case FSB_CLOCK_667MHz:
tRDmin += 1;
break;
case FSB_CLOCK_800MHz:
tRDmin += 2;
break;
case FSB_CLOCK_1067MHz:
tRDmin += 3;
if (sysinfo->selected_timings.mem_clock == MEM_CLOCK_1067MT)
tRDmin += 1;
break;
}
/* Calculate common tRRDmin. */
unsigned int tRRDmin = 0;
FOR_EACH_POPULATED_CHANNEL(sysinfo->dimms, i) {
unsigned int tRRD = 2 + (spdinfo->channel[i].page_size / 1024);
if (sysinfo->selected_timings.mem_clock == MEM_CLOCK_1067MT)
tRRD += (spdinfo->channel[i].page_size / 1024);
if (tRRD > tRRDmin)
tRRDmin = tRRD;
}
/* Lookup and calculate common tFAWmin. */
unsigned int tFAW_from_pagesize_and_clock[][3] = {
/* 533MHz 400MHz 333MHz */
/* 1K */ { 20, 15, 13 },
/* 2K */ { 27, 20, 17 },
};
unsigned int tFAWmin = 0;
FOR_EACH_POPULATED_CHANNEL(sysinfo->dimms, i) {
const unsigned int tFAW = tFAW_from_pagesize_and_clock
[spdinfo->channel[i].page_size / 1024 - 1]
[sysinfo->selected_timings.mem_clock];
if (tFAW > tFAWmin)
tFAWmin = tFAW;
}
/* Refresh rate is fixed. */
unsigned int tWL;
if (sysinfo->spd_type == DDR2) {
tWL = sysinfo->selected_timings.CAS - 1;
} else if (sysinfo->selected_timings.mem_clock == MEM_CLOCK_1067MT) {
tWL = 6;
} else {
tWL = 5;
}
printk(BIOS_SPEW, "Timing values:\n"
" tCLK: %3u\n"
" tRAS: %3u\n"
" tRP: %3u\n"
" tRCD: %3u\n"
" tRFC: %3u\n"
" tWR: %3u\n"
" tRD: %3u\n"
" tRRD: %3u\n"
" tFAW: %3u\n"
" tWL: %3u\n",
tCLK, tRASmin, tRPmin, tRCDmin, tRFCmin, tWRmin, tRDmin, tRRDmin, tFAWmin, tWL);
sysinfo->selected_timings.tRAS = tRASmin;
sysinfo->selected_timings.tRP = tRPmin;
sysinfo->selected_timings.tRCD = tRCDmin;
sysinfo->selected_timings.tRFC = tRFCmin;
sysinfo->selected_timings.tWR = tWRmin;
sysinfo->selected_timings.tRD = tRDmin;
sysinfo->selected_timings.tRRD = tRRDmin;
sysinfo->selected_timings.tFAW = tFAWmin;
sysinfo->selected_timings.tWL = tWL;
}
static void collect_dimm_config(sysinfo_t *const sysinfo)
{
int i;
spdinfo_t spdinfo;
spdinfo.dimm_mask = 0;
sysinfo->spd_type = 0;
for (i = 0; i < 4; i++)
if (sysinfo->spd_map[i]) {
const u8 spd = smbus_read_byte(sysinfo->spd_map[i], 2);
printk(BIOS_DEBUG, "%x:%x:%x\n",
i, sysinfo->spd_map[i],
spd);
if ((spd == 7) || (spd == 8) || (spd == 0xb)) {
spdinfo.dimm_mask |= 1 << i;
if (sysinfo->spd_type && sysinfo->spd_type != spd) {
die("Multiple types of DIMM installed in the system, don't do that!\n");
}
sysinfo->spd_type = spd;
}
}
if (spdinfo.dimm_mask == 0) {
die("Could not find any DIMM.\n");
}
/* Normalize spd_type to 1, 2, 3. */
sysinfo->spd_type = (sysinfo->spd_type & 1) | ((sysinfo->spd_type & 8) >> 2);
printk(BIOS_SPEW, "DDR mask %x, DDR %d\n", spdinfo.dimm_mask, sysinfo->spd_type);
if (sysinfo->spd_type == DDR2) {
verify_ddr2(sysinfo, spdinfo.dimm_mask);
collect_ddr2(sysinfo, &spdinfo);
} else if (sysinfo->spd_type == DDR3) {
verify_ddr3(sysinfo, spdinfo.dimm_mask);
collect_ddr3(sysinfo, &spdinfo);
} else {
die("Will never support DDR1.\n");
}
for (i = 0; i < 2; i++) {
if ((spdinfo.dimm_mask >> (i*2)) & 1) {
printk(BIOS_SPEW, "Bank %d populated:\n"
" Raw card type: %4c\n"
" Row addr bits: %4u\n"
" Col addr bits: %4u\n"
" byte width: %4u\n"
" page size: %4u\n"
" banks: %4u\n"
" ranks: %4u\n"
" tAAmin: %3u\n"
" tCKmin: %3u\n"
" Max clock: %3u MHz\n"
" CAS: 0x%04x\n",
i, spdinfo.channel[i].raw_card + 'A',
spdinfo.channel[i].rows, spdinfo.channel[i].cols,
spdinfo.channel[i].width, spdinfo.channel[i].page_size,
spdinfo.channel[i].banks, spdinfo.channel[i].ranks,
spdinfo.channel[i].tAAmin, spdinfo.channel[i].tCKmin,
256000 / spdinfo.channel[i].tCKmin, spdinfo.channel[i].cas_latencies);
}
}
FOR_EACH_CHANNEL(i) {
sysinfo->dimms[i].card_type =
(spdinfo.dimm_mask & (1 << (i * 2))) ? spdinfo.channel[i].raw_card + 0xa : 0;
sysinfo->dimms[i].refresh = spdinfo.channel[i].refresh;
}
/* Find common memory clock and CAS. */
const unsigned int tCLK = find_common_clock_cas(sysinfo, &spdinfo);
/* Calculate other timings from clock and CAS. */
calculate_derived_timings(sysinfo, tCLK, &spdinfo);
/* Initialize DIMM infos. */
/* Always prefer interleaved over async channel mode. */
FOR_EACH_CHANNEL(i) {
IF_CHANNEL_POPULATED(sysinfo->dimms, i) {
sysinfo->dimms[i].banks = spdinfo.channel[i].banks;
sysinfo->dimms[i].ranks = spdinfo.channel[i].ranks;
/* .width is 1 for x8 or 2 for x16, bus width is 8 bytes. */
const unsigned int chips_per_rank = 8 / spdinfo.channel[i].width;
sysinfo->dimms[i].chip_width = spdinfo.channel[i].width;
sysinfo->dimms[i].chip_capacity = spdinfo.channel[i].chip_capacity;
sysinfo->dimms[i].page_size = spdinfo.channel[i].page_size * chips_per_rank;
sysinfo->dimms[i].rank_capacity_mb =
/* offset of chip_capacity is 8 (256M), therefore, add 8
chip_capacity is in Mbit, we want MByte, therefore, subtract 3 */
(1 << (spdinfo.channel[i].chip_capacity + 8 - 3)) * chips_per_rank;
}
}
if (CHANNEL_IS_POPULATED(sysinfo->dimms, 0) &&
CHANNEL_IS_POPULATED(sysinfo->dimms, 1))
sysinfo->selected_timings.channel_mode = CHANNEL_MODE_DUAL_INTERLEAVED;
else
sysinfo->selected_timings.channel_mode = CHANNEL_MODE_SINGLE;
}
static void reset_on_bad_warmboot(void)
{
/* Check self refresh channel status. */
const u32 reg = mchbar_read32(PMSTS_MCHBAR);
/* Clear status bits. R/WC */
mchbar_write32(PMSTS_MCHBAR, reg);
if ((reg & PMSTS_WARM_RESET) && !(reg & PMSTS_BOTH_SELFREFRESH)) {
printk(BIOS_INFO, "DRAM was not in self refresh "
"during warm boot, reset required.\n");
gm45_early_reset();
}
}
static void set_system_memory_frequency(const timings_t *const timings)
{
mchbar_clrbits16(CLKCFG_MCHBAR + 0x60, 1 << 15);
mchbar_clrbits16(CLKCFG_MCHBAR + 0x48, 1 << 15);
/* Calculate wanted frequency setting. */
const int want_freq = 6 - timings->mem_clock;
/* Read current memory frequency. */
const u32 clkcfg = mchbar_read32(CLKCFG_MCHBAR);
int cur_freq = (clkcfg & CLKCFG_MEMCLK_MASK) >> CLKCFG_MEMCLK_SHIFT;
if (0 == cur_freq) {
/* Try memory frequency from scratchpad. */
printk(BIOS_DEBUG, "Reading current memory frequency from scratchpad.\n");
cur_freq = (mchbar_read16(SSKPD_MCHBAR) & SSKPD_CLK_MASK) >> SSKPD_CLK_SHIFT;
}
if (cur_freq != want_freq) {
printk(BIOS_DEBUG, "Changing memory frequency: old %x, new %x.\n", cur_freq, want_freq);
/* When writing new frequency setting, reset, then set update bit. */
mchbar_clrsetbits32(CLKCFG_MCHBAR, CLKCFG_UPDATE | CLKCFG_MEMCLK_MASK,
want_freq << CLKCFG_MEMCLK_SHIFT);
mchbar_clrsetbits32(CLKCFG_MCHBAR, CLKCFG_MEMCLK_MASK,
want_freq << CLKCFG_MEMCLK_SHIFT | CLKCFG_UPDATE);
/* Reset update bit. */
mchbar_clrbits32(CLKCFG_MCHBAR, CLKCFG_UPDATE);
}
if ((timings->fsb_clock == FSB_CLOCK_1067MHz) && (timings->mem_clock == MEM_CLOCK_667MT)) {
mchbar_write32(CLKCFG_MCHBAR + 0x16, 0x000030f0);
mchbar_write32(CLKCFG_MCHBAR + 0x64, 0x000050c1);
mchbar_clrsetbits32(CLKCFG_MCHBAR, 1 << 12, 1 << 17);
mchbar_setbits32(CLKCFG_MCHBAR, 1 << 17 | 1 << 12);
mchbar_clrbits32(CLKCFG_MCHBAR, 1 << 12);
mchbar_write32(CLKCFG_MCHBAR + 0x04, 0x9bad1f1f);
mchbar_write8(CLKCFG_MCHBAR + 0x08, 0xf4);
mchbar_write8(CLKCFG_MCHBAR + 0x0a, 0x43);
mchbar_write8(CLKCFG_MCHBAR + 0x0c, 0x10);
mchbar_write8(CLKCFG_MCHBAR + 0x0d, 0x80);
mchbar_write32(CLKCFG_MCHBAR + 0x50, 0x0b0e151b);
mchbar_write8(CLKCFG_MCHBAR + 0x54, 0xb4);
mchbar_write8(CLKCFG_MCHBAR + 0x55, 0x10);
mchbar_write8(CLKCFG_MCHBAR + 0x56, 0x08);
mchbar_setbits32(CLKCFG_MCHBAR, 1 << 10);
mchbar_setbits32(CLKCFG_MCHBAR, 1 << 11);
mchbar_clrbits32(CLKCFG_MCHBAR, 1 << 10);
mchbar_clrbits32(CLKCFG_MCHBAR, 1 << 11);
}
mchbar_setbits32(CLKCFG_MCHBAR + 0x48, 0x3f << 24);
}
int raminit_read_vco_index(void)
{
switch (mchbar_read8(HPLLVCO_MCHBAR) & 0x7) {
case VCO_2666:
return 0;
case VCO_3200:
return 1;
case VCO_4000:
return 2;
case VCO_5333:
return 3;
default:
die("Unknown VCO frequency.\n");
return 0;
}
}
static void set_igd_memory_frequencies(const sysinfo_t *const sysinfo)
{
const int gfx_idx = ((sysinfo->gfx_type == GMCH_GS45) &&
!sysinfo->gs45_low_power_mode)
? (GMCH_GS45 + 1) : sysinfo->gfx_type;
/* Render and sampler frequency values seem to be some kind of factor. */
const u16 render_freq_from_vco_and_gfxtype[][10] = {
/* GM45 GM47 GM49 GE45 GL40 GL43 GS40 GS45 (perf) */
/* VCO 2666 */ { 0xd, 0xd, 0xe, 0xd, 0xb, 0xd, 0xb, 0xa, 0xd },
/* VCO 3200 */ { 0xd, 0xe, 0xf, 0xd, 0xb, 0xd, 0xb, 0x9, 0xd },
/* VCO 4000 */ { 0xc, 0xd, 0xf, 0xc, 0xa, 0xc, 0xa, 0x9, 0xc },
/* VCO 5333 */ { 0xb, 0xc, 0xe, 0xb, 0x9, 0xb, 0x9, 0x8, 0xb },
};
const u16 sampler_freq_from_vco_and_gfxtype[][10] = {
/* GM45 GM47 GM49 GE45 GL40 GL43 GS40 GS45 (perf) */
/* VCO 2666 */ { 0xc, 0xc, 0xd, 0xc, 0x9, 0xc, 0x9, 0x8, 0xc },
/* VCO 3200 */ { 0xc, 0xd, 0xe, 0xc, 0x9, 0xc, 0x9, 0x8, 0xc },
/* VCO 4000 */ { 0xa, 0xc, 0xd, 0xa, 0x8, 0xa, 0x8, 0x8, 0xa },
/* VCO 5333 */ { 0xa, 0xa, 0xc, 0xa, 0x7, 0xa, 0x7, 0x6, 0xa },
};
const u16 display_clock_select_from_gfxtype[] = {
/* GM45 GM47 GM49 GE45 GL40 GL43 GS40 GS45 (perf) */
1, 1, 1, 1, 1, 1, 1, 0, 1
};
if (pci_read_config16(GCFGC_PCIDEV, 0) != 0x8086) {
printk(BIOS_DEBUG, "Skipping IGD memory frequency setting.\n");
return;
}
mchbar_write16(0x119e, 0xa800);
mchbar_clrsetbits16(0x11c0, 0xff << 8, 0x01 << 8);
mchbar_write16(0x119e, 0xb800);
mchbar_setbits8(0x0f10, 1 << 7);
/* Read VCO. */
const int vco_idx = raminit_read_vco_index();
printk(BIOS_DEBUG, "Setting IGD memory frequencies for VCO #%d.\n", vco_idx);
const u32 freqcfg =
((render_freq_from_vco_and_gfxtype[vco_idx][gfx_idx]
<< GCFGC_CR_SHIFT) & GCFGC_CR_MASK) |
((sampler_freq_from_vco_and_gfxtype[vco_idx][gfx_idx]
<< GCFGC_CS_SHIFT) & GCFGC_CS_MASK);
/* Set frequencies, clear update bit. */
u32 gcfgc = pci_read_config16(GCFGC_PCIDEV, GCFGC_OFFSET);
gcfgc &= ~(GCFGC_CS_MASK | GCFGC_UPDATE | GCFGC_CR_MASK);
gcfgc |= freqcfg;
pci_write_config16(GCFGC_PCIDEV, GCFGC_OFFSET, gcfgc);
/* Set frequencies, set update bit. */
gcfgc = pci_read_config16(GCFGC_PCIDEV, GCFGC_OFFSET);
gcfgc &= ~(GCFGC_CS_MASK | GCFGC_CR_MASK);
gcfgc |= freqcfg | GCFGC_UPDATE;
pci_write_config16(GCFGC_PCIDEV, GCFGC_OFFSET, gcfgc);
/* Clear update bit. */
pci_and_config16(GCFGC_PCIDEV, GCFGC_OFFSET, ~GCFGC_UPDATE);
/* Set display clock select bit. */
pci_write_config16(GCFGC_PCIDEV, GCFGC_OFFSET,
(pci_read_config16(GCFGC_PCIDEV, GCFGC_OFFSET) & ~GCFGC_CD_MASK) |
(display_clock_select_from_gfxtype[gfx_idx] << GCFGC_CD_SHIFT));
}
static void configure_dram_control_mode(const timings_t *const timings, const dimminfo_t *const dimms)
{
int ch, r;
FOR_EACH_CHANNEL(ch) {
unsigned int mchbar = CxDRC0_MCHBAR(ch);
u32 cxdrc = mchbar_read32(mchbar);
cxdrc &= ~CxDRC0_RANKEN_MASK;
FOR_EACH_POPULATED_RANK_IN_CHANNEL(dimms, ch, r)
cxdrc |= CxDRC0_RANKEN(r);
if (dimms[ch].refresh == REFRESH_3_9)
cxdrc = (cxdrc & ~CxDRC0_RMS_MASK) | CxDRC0_RMS_39US;
else
cxdrc = (cxdrc & ~CxDRC0_RMS_MASK) | CxDRC0_RMS_78US;
mchbar_write32(mchbar, cxdrc);
mchbar = CxDRC1_MCHBAR(ch);
cxdrc = mchbar_read32(mchbar);
cxdrc |= CxDRC1_NOTPOP_MASK;
FOR_EACH_POPULATED_RANK_IN_CHANNEL(dimms, ch, r)
cxdrc &= ~CxDRC1_NOTPOP(r);
cxdrc |= CxDRC1_MUSTWR;
mchbar_write32(mchbar, cxdrc);
mchbar = CxDRC2_MCHBAR(ch);
cxdrc = mchbar_read32(mchbar);
cxdrc |= CxDRC2_NOTPOP_MASK;
FOR_EACH_POPULATED_RANK_IN_CHANNEL(dimms, ch, r)
cxdrc &= ~CxDRC2_NOTPOP(r);
cxdrc |= CxDRC2_MUSTWR;
if (timings->mem_clock == MEM_CLOCK_1067MT)
cxdrc |= CxDRC2_CLK1067MT;
mchbar_write32(mchbar, cxdrc);
}
}
static void rcomp_initialization(const int spd_type, const stepping_t stepping, const int sff)
{
/* Program RCOMP codes. */
if (sff)
die("SFF platform unsupported in RCOMP initialization.\n");
if (spd_type == DDR2) {
unsigned int o;
for (o = 0; o <= 0x200; o += 0x40) {
mchbar_clrsetbits8(0x6ac + o, 0x0f, 0x0a);
mchbar_write8(0x6b0 + o, 0x55);
}
/* ODT multiplier bits. */
mchbar_clrsetbits32(0x04d0, 7 << 3 | 7 << 0, 1 << 3 | 1 << 0);
} else {
/* Values are for DDR3. */
mchbar_clrbits8(0x6ac, 0x0f);
mchbar_write8(0x6b0, 0x55);
mchbar_clrbits8(0x6ec, 0x0f);
mchbar_write8(0x6f0, 0x66);
mchbar_clrbits8(0x72c, 0x0f);
mchbar_write8(0x730, 0x66);
mchbar_clrbits8(0x76c, 0x0f);
mchbar_write8(0x770, 0x66);
mchbar_clrbits8(0x7ac, 0x0f);
mchbar_write8(0x7b0, 0x66);
mchbar_clrbits8(0x7ec, 0x0f);
mchbar_write8(0x7f0, 0x66);
mchbar_clrbits8(0x86c, 0x0f);
mchbar_write8(0x870, 0x55);
mchbar_clrbits8(0x8ac, 0x0f);
mchbar_write8(0x8b0, 0x66);
/* ODT multiplier bits. */
mchbar_clrsetbits32(0x04d0, 7 << 3 | 7 << 0, 2 << 3 | 2 << 0);
}
/* Perform RCOMP calibration for DDR3. */
raminit_rcomp_calibration(stepping);
/* Run initial RCOMP. */
mchbar_setbits32(0x418, 1 << 17);
mchbar_clrbits32(0x40c, 1 << 23);
mchbar_clrbits32(0x41c, 1 << 7 | 1 << 3);
mchbar_setbits32(0x400, 1);
while (mchbar_read32(0x400) & 1) {}
/* Run second RCOMP. */
mchbar_setbits32(0x40c, 1 << 19);
mchbar_setbits32(0x400, 1);
while (mchbar_read32(0x400) & 1) {}
/* Cleanup and start periodic RCOMP. */
mchbar_clrbits32(0x40c, 1 << 19);
mchbar_setbits32(0x40c, 1 << 23);
mchbar_clrbits32(0x418, 1 << 17);
mchbar_setbits32(0x41c, 1 << 7 | 1 << 3);
mchbar_setbits32(0x400, 1 << 1);
}
static void dram_powerup(const int spd_type, const int stepping, const int resume)
{
u32 tmp;
udelay(200);
tmp = mchbar_read32(CLKCFG_MCHBAR);
tmp &= ~(3 << 21 | 1 << 3);
if (spd_type == DDR2 && stepping < STEPPING_B0)
tmp |= 2 << 21 | 1 << 3;
else
tmp |= 3 << 21;
mchbar_write32(CLKCFG_MCHBAR, tmp);
if (spd_type == DDR3 && !resume) {
mchbar_setbits32(0x1434, 1 << 10);
udelay(1);
}
mchbar_setbits32(0x1434, 1 << 6);
if (spd_type == DDR3 && !resume) {
udelay(1);
mchbar_setbits32(0x1434, 1 << 9);
mchbar_clrbits32(0x1434, 1 << 10);
udelay(500);
}
}
static void dram_program_timings(const int spd_type, const timings_t *const timings)
{
/* Values are for DDR3. */
const int burst_length = 8;
const int tWTR = (spd_type == DDR2) ? 3 : 4, tRTP = 1;
int i;
FOR_EACH_CHANNEL(i) {
u32 reg = mchbar_read32(CxDRT0_MCHBAR(i));
const int btb_wtp = timings->tWL + burst_length/2 + timings->tWR;
const int btb_wtr =
((spd_type == DDR2) ? timings->CAS - 1 : timings->tWL)
+ burst_length/2 + tWTR;
reg = (reg & ~(CxDRT0_BtB_WtP_MASK | CxDRT0_BtB_WtR_MASK)) |
((btb_wtp << CxDRT0_BtB_WtP_SHIFT) & CxDRT0_BtB_WtP_MASK) |
((btb_wtr << CxDRT0_BtB_WtR_SHIFT) & CxDRT0_BtB_WtR_MASK);
if (spd_type == DDR2) {
reg = (reg & ~(0x7 << 15)) | (2 << 15);
if (timings->mem_clock == MEM_CLOCK_667MT)
reg = (reg & ~(0xf << 10)) | (2 << 10);
else
reg = (reg & ~(0xf << 10)) | (3 << 10);
reg = (reg & ~(0x7 << 5)) | (3 << 5);
} else if (timings->mem_clock != MEM_CLOCK_1067MT) {
reg = (reg & ~(0x7 << 15)) | ((9 - timings->CAS) << 15);
reg = (reg & ~(0xf << 10)) | ((timings->CAS - 3) << 10);
reg = (reg & ~(0x7 << 5)) | (3 << 5);
} else {
reg = (reg & ~(0x7 << 15)) | ((10 - timings->CAS) << 15);
reg = (reg & ~(0xf << 10)) | ((timings->CAS - 4) << 10);
reg = (reg & ~(0x7 << 5)) | (3 << 5);
}
reg = (reg & ~(0x7 << 0)) | (1 << 0);
mchbar_write32(CxDRT0_MCHBAR(i), reg);
reg = mchbar_read32(CxDRT1_MCHBAR(i));
reg = (reg & ~(0x03 << 28)) | ((tRTP & 0x03) << 28);
reg = (reg & ~(0x1f << 21)) | ((timings->tRAS & 0x1f) << 21);
reg = (reg & ~(0x07 << 10)) | (((timings->tRRD - 2) & 0x07) << 10);
reg = (reg & ~(0x07 << 5)) | (((timings->tRCD - 2) & 0x07) << 5);
reg = (reg & ~(0x07 << 0)) | (((timings->tRP - 2) & 0x07) << 0);
mchbar_write32(CxDRT1_MCHBAR(i), reg);
reg = mchbar_read32(CxDRT2_MCHBAR(i));
reg = (reg & ~(0x1f << 17)) | ((timings->tFAW & 0x1f) << 17);
if (spd_type == DDR2) {
reg = (reg & ~(0x7 << 12)) | (0x1 << 12);
reg = (reg & ~(0xf << 6)) | (0x1 << 6);
} else if (timings->mem_clock != MEM_CLOCK_1067MT) {
reg = (reg & ~(0x7 << 12)) | (0x2 << 12);
reg = (reg & ~(0xf << 6)) | (0x9 << 6);
} else {
reg = (reg & ~(0x7 << 12)) | (0x3 << 12);
reg = (reg & ~(0xf << 6)) | (0xc << 6);
}
reg = (reg & ~(0x1f << 0)) | (0x13 << 0);
mchbar_write32(CxDRT2_MCHBAR(i), reg);
reg = mchbar_read32(CxDRT3_MCHBAR(i));
if (spd_type == DDR2)
reg &= ~(0x3 << 28);
else
reg |= (0x3 << 28);
reg = (reg & ~(0x03 << 26));
reg = (reg & ~(0x07 << 23)) | (((timings->CAS - 3) & 0x07) << 23);
reg = (reg & ~(0xff << 13)) | ((timings->tRFC & 0xff) << 13);
reg = (reg & ~(0x07 << 0)) | (((timings->tWL - 2) & 0x07) << 0);
mchbar_write32(CxDRT3_MCHBAR(i), reg);
reg = mchbar_read32(CxDRT4_MCHBAR(i));
static const u8 timings_by_clock[4][3] = {
/* 333MHz 400MHz 533MHz
667MT 800MT 1067MT */
{ 0x07, 0x0a, 0x0d },
{ 0x3a, 0x46, 0x5d },
{ 0x0c, 0x0e, 0x18 },
{ 0x21, 0x28, 0x35 },
};
const int clk_idx = 2 - timings->mem_clock;
reg = (reg & ~(0x01f << 27)) | (timings_by_clock[0][clk_idx] << 27);
reg = (reg & ~(0x3ff << 17)) | (timings_by_clock[1][clk_idx] << 17);
reg = (reg & ~(0x03f << 10)) | (timings_by_clock[2][clk_idx] << 10);
reg = (reg & ~(0x1ff << 0)) | (timings_by_clock[3][clk_idx] << 0);
mchbar_write32(CxDRT4_MCHBAR(i), reg);
reg = mchbar_read32(CxDRT5_MCHBAR(i));
if (timings->mem_clock == MEM_CLOCK_1067MT)
reg = (reg & ~(0xf << 28)) | (0x8 << 28);
reg = (reg & ~(0x00f << 22)) | ((burst_length/2 + timings->CAS + 2) << 22);
if (spd_type == DDR2) {
if (timings->mem_clock == MEM_CLOCK_667MT)
reg = (reg & ~(0x1ff << 12)) | (0x21 << 12);
else
reg = (reg & ~(0x1ff << 12)) | (0x28 << 12);
} else {
reg = (reg & ~(0x1ff << 12)) | (0x190 << 12);
}
reg = (reg & ~(0x00f << 4)) | ((timings->CAS - 2) << 4);
reg = (reg & ~(0x003 << 2)) | (0x001 << 2);
reg = (reg & ~(0x003 << 0));
mchbar_write32(CxDRT5_MCHBAR(i), reg);
reg = mchbar_read32(CxDRT6_MCHBAR(i));
if (spd_type == DDR2) {
reg &= ~(1 << 2);
} else {
reg = (reg & ~(0xffff << 16)) | (0x066a << 16); /* always 7.8us refresh rate for DDR3 */
reg |= (1 << 2);
}
mchbar_write32(CxDRT6_MCHBAR(i), reg);
}
}
static void dram_program_banks(const dimminfo_t *const dimms)
{
int ch, r;
FOR_EACH_CHANNEL(ch) {
const int tRPALL = dimms[ch].banks == 8;
u32 reg = mchbar_read32(CxDRT1_MCHBAR(ch)) & ~(0x01 << 15);
IF_CHANNEL_POPULATED(dimms, ch)
reg |= tRPALL << 15;
mchbar_write32(CxDRT1_MCHBAR(ch), reg);
reg = mchbar_read32(CxDRA_MCHBAR(ch)) & ~CxDRA_BANKS_MASK;
FOR_EACH_POPULATED_RANK_IN_CHANNEL(dimms, ch, r) {
reg |= CxDRA_BANKS(r, dimms[ch].banks);
}
mchbar_write32(CxDRA_MCHBAR(ch), reg);
}
}
static void ddr3_odt_setup(const timings_t *const timings, const int sff)
{
int ch;
FOR_EACH_CHANNEL(ch) {
u32 reg = mchbar_read32(CxODT_HIGH(ch));
if (sff && (timings->mem_clock != MEM_CLOCK_1067MT))
reg &= ~(0x3 << (61 - 32));
else
reg |= 0x3 << (61 - 32);
reg = (reg & ~(0x3 << (52 - 32))) | (0x2 << (52 - 32));
reg = (reg & ~(0x7 << (48 - 32))) | ((timings->CAS - 3) << (48 - 32));
reg = (reg & ~(0xf << (44 - 32))) | (0x7 << (44 - 32));
if (timings->mem_clock != MEM_CLOCK_1067MT) {
reg = (reg & ~(0xf << (40 - 32))) | ((12 - timings->CAS) << (40 - 32));
reg = (reg & ~(0xf << (36 - 32))) | (( 2 + timings->CAS) << (36 - 32));
} else {
reg = (reg & ~(0xf << (40 - 32))) | ((13 - timings->CAS) << (40 - 32));
reg = (reg & ~(0xf << (36 - 32))) | (( 1 + timings->CAS) << (36 - 32));
}
reg = (reg & ~(0xf << (32 - 32))) | (0x7 << (32 - 32));
mchbar_write32(CxODT_HIGH(ch), reg);
reg = mchbar_read32(CxODT_LOW(ch));
reg = (reg & ~(0x7 << 28)) | (0x2 << 28);
reg = (reg & ~(0x3 << 22)) | (0x2 << 22);
reg = (reg & ~(0x7 << 12)) | (0x2 << 12);
reg = (reg & ~(0x7 << 4)) | (0x2 << 4);
switch (timings->mem_clock) {
case MEM_CLOCK_667MT:
reg = (reg & ~0x7);
break;
case MEM_CLOCK_800MT:
reg = (reg & ~0x7) | 0x2;
break;
case MEM_CLOCK_1067MT:
reg = (reg & ~0x7) | 0x5;
break;
}
mchbar_write32(CxODT_LOW(ch), reg);
}
}
static void ddr2_odt_setup(const timings_t *const timings, const int sff)
{
int ch;
FOR_EACH_CHANNEL(ch) {
u32 reg = mchbar_read32(CxODT_HIGH(ch));
if (sff && (timings->mem_clock == MEM_CLOCK_667MT))
reg &= ~(0x3 << (61 - 32));
else
reg |= 0x3 << (61 - 32);
reg = (reg & ~(0x3 << (52 - 32))) | (1 << (52 - 32));
reg = (reg & ~(0x7 << (48 - 32))) | ((timings->CAS - 2) << (48 - 32));
reg = (reg & ~(0xf << (44 - 32))) | (8 << (44 - 32));
reg = (reg & ~(0xf << (40 - 32))) | (7 << (40 - 32));
if (timings->mem_clock == MEM_CLOCK_667MT) {
reg = (reg & ~(0xf << (36 - 32))) | (4 << (36 - 32));
reg = (reg & ~(0xf << (32 - 32))) | (4 << (32 - 32));
} else {
reg = (reg & ~(0xf << (36 - 32))) | (5 << (36 - 32));
reg = (reg & ~(0xf << (32 - 32))) | (5 << (32 - 32));
}
mchbar_write32(CxODT_HIGH(ch), reg);
reg = mchbar_read32(CxODT_LOW(ch));
if (timings->mem_clock == MEM_CLOCK_667MT)
reg = (reg & ~(0x7 << 28)) | (2 << 28);
else
reg = (reg & ~(0x7 << 28)) | (3 << 28);
reg = (reg & ~(0x3 << 22)) | (1 << 22);
if (timings->mem_clock == MEM_CLOCK_667MT)
reg = (reg & ~(0x7 << 12)) | ((timings->tWL - 1) << 12);
else
reg = (reg & ~(0x7 << 12)) | ((timings->tWL - 2) << 12);
reg = (reg & ~(0x7 << 4)) | ((timings->tWL - 1) << 4);
reg = (reg & ~(0x7 << 0));
mchbar_write32(CxODT_LOW(ch), reg);
}
}
static void misc_settings(const timings_t *const timings,
const stepping_t stepping)
{
mchbar_clrsetbits32(0x1260, 1 << 24 | 0x1f, timings->tRD);
mchbar_clrsetbits32(0x1360, 1 << 24 | 0x1f, timings->tRD);
mchbar_clrsetbits8(0x1268, 0xf, timings->tWL);
mchbar_clrsetbits8(0x1368, 0xf, timings->tWL);
mchbar_clrsetbits8(0x12a0, 0xf, 0xa);
mchbar_clrsetbits8(0x13a0, 0xf, 0xa);
mchbar_clrsetbits32(0x218, 7 << 29 | 7 << 25 | 3 << 22 | 3 << 10,
4 << 29 | 3 << 25 | 0 << 22 | 1 << 10);
mchbar_clrsetbits32(0x220, 7 << 16, 1 << 21 | 1 << 16);
mchbar_clrsetbits32(0x224, 7 << 8, 3 << 8);
if (stepping >= STEPPING_B1)
mchbar_setbits8(0x234, 1 << 3);
}
static void clock_crossing_setup(const fsb_clock_t fsb,
const mem_clock_t ddr3clock,
const dimminfo_t *const dimms)
{
int ch;
static const u32 values_from_fsb_and_mem[][3][4] = {
/* FSB 1067MHz */{
/* DDR3-1067 */ { 0x00000000, 0x00000000, 0x00180006, 0x00810060 },
/* DDR3-800 */ { 0x00000000, 0x00000000, 0x0000001c, 0x000300e0 },
/* DDR3-667 */ { 0x00000000, 0x00001c00, 0x03c00038, 0x0007e000 },
},
/* FSB 800MHz */{
/* DDR3-1067 */ { 0, 0, 0, 0 },
/* DDR3-800 */ { 0x00000000, 0x00000000, 0x0030000c, 0x000300c0 },
/* DDR3-667 */ { 0x00000000, 0x00000380, 0x0060001c, 0x00030c00 },
},
/* FSB 667MHz */{
/* DDR3-1067 */ { 0, 0, 0, 0 },
/* DDR3-800 */ { 0, 0, 0, 0 },
/* DDR3-667 */ { 0x00000000, 0x00000000, 0x0030000c, 0x000300c0 },
},
};
const u32 *data = values_from_fsb_and_mem[fsb][ddr3clock];
mchbar_write32(0x0208, data[3]);
mchbar_write32(0x020c, data[2]);
if (((fsb == FSB_CLOCK_1067MHz) || (fsb == FSB_CLOCK_800MHz)) && (ddr3clock == MEM_CLOCK_667MT))
mchbar_write32(0x0210, data[1]);
static const u32 from_fsb_and_mem[][3] = {
/* DDR3-1067 DDR3-800 DDR3-667 */
/* FSB 1067MHz */{ 0x40100401, 0x10040220, 0x08040110, },
/* FSB 800MHz */{ 0x00000000, 0x40100401, 0x00080201, },
/* FSB 667MHz */{ 0x00000000, 0x00000000, 0x40100401, },
};
FOR_EACH_CHANNEL(ch) {
const unsigned int mchbar = 0x1258 + (ch * 0x0100);
if ((fsb == FSB_CLOCK_1067MHz) && (ddr3clock == MEM_CLOCK_800MT) && CHANNEL_IS_CARDF(dimms, ch))
mchbar_write32(mchbar, 0x08040120);
else
mchbar_write32(mchbar, from_fsb_and_mem[fsb][ddr3clock]);
mchbar_write32(mchbar + 4, 0);
}
}
/* Program egress VC1 isoch timings. */
static void vc1_program_timings(const fsb_clock_t fsb)
{
const u32 timings_by_fsb[][2] = {
/* FSB 1067MHz */ { 0x1a, 0x01380138 },
/* FSB 800MHz */ { 0x14, 0x00f000f0 },
/* FSB 667MHz */ { 0x10, 0x00c000c0 },
};
epbar_write8(EPVC1ITC, timings_by_fsb[fsb][0]);
epbar_write32(EPVC1IST + 0, timings_by_fsb[fsb][1]);
epbar_write32(EPVC1IST + 4, timings_by_fsb[fsb][1]);
}
#define DEFAULT_PCI_MMIO_SIZE 2048
#define HOST_BRIDGE PCI_DEVFN(0, 0)
static unsigned int get_mmio_size(void)
{
const struct device *dev;
const struct northbridge_intel_gm45_config *cfg = NULL;
dev = pcidev_path_on_root(HOST_BRIDGE);
if (dev)
cfg = dev->chip_info;
/* If this is zero, it just means devicetree.cb didn't set it */
if (!cfg || cfg->pci_mmio_size == 0)
return DEFAULT_PCI_MMIO_SIZE;
else
return cfg->pci_mmio_size;
}
/* @prejedec if not zero, set rank size to 128MB and page size to 4KB. */
static void program_memory_map(const dimminfo_t *const dimms, const channel_mode_t mode, const int prejedec, u16 ggc)
{
int ch, r;
/* Program rank boundaries (CxDRBy). */
unsigned int base = 0; /* start of next rank in MB */
unsigned int total_mb[2] = { 0, 0 }; /* total memory per channel in MB */
FOR_EACH_CHANNEL(ch) {
if (mode == CHANNEL_MODE_DUAL_INTERLEAVED)
/* In interleaved mode, start every channel from 0. */
base = 0;
for (r = 0; r < RANKS_PER_CHANNEL; r += 2) {
/* Fixed capacity for pre-jedec config. */
const unsigned int rank_capacity_mb =
prejedec ? 128 : dimms[ch].rank_capacity_mb;
u32 reg = 0;
/* Program bounds in CxDRBy. */
IF_RANK_POPULATED(dimms, ch, r) {
base += rank_capacity_mb;
total_mb[ch] += rank_capacity_mb;
}
reg |= CxDRBy_BOUND_MB(r, base);
IF_RANK_POPULATED(dimms, ch, r+1) {
base += rank_capacity_mb;
total_mb[ch] += rank_capacity_mb;
}
reg |= CxDRBy_BOUND_MB(r+1, base);
mchbar_write32(CxDRBy_MCHBAR(ch, r), reg);
}
}
/* Program page size (CxDRA). */
FOR_EACH_CHANNEL(ch) {
u32 reg = mchbar_read32(CxDRA_MCHBAR(ch)) & ~CxDRA_PAGESIZE_MASK;
FOR_EACH_POPULATED_RANK_IN_CHANNEL(dimms, ch, r) {
/* Fixed page size for pre-jedec config. */
const unsigned int page_size = /* dimm page size in bytes */
prejedec ? 4096 : dimms[ch].page_size;
reg |= CxDRA_PAGESIZE(r, log2(page_size));
/* deferred to f5_27: reg |= CxDRA_BANKS(r, dimms[ch].banks); */
}
mchbar_write32(CxDRA_MCHBAR(ch), reg);
}
/* Calculate memory mapping, all values in MB. */
u32 uma_sizem = 0;
if (!prejedec) {
if (!(ggc & 2)) {
printk(BIOS_DEBUG, "IGD decoded, subtracting ");
/* Graphics memory */
const u32 gms_sizek = decode_igd_memory_size((ggc >> 4) & 0xf);
printk(BIOS_DEBUG, "%uM UMA", gms_sizek >> 10);
/* GTT Graphics Stolen Memory Size (GGMS) */
const u32 gsm_sizek = decode_igd_gtt_size((ggc >> 8) & 0xf);
printk(BIOS_DEBUG, " and %uM GTT\n", gsm_sizek >> 10);
uma_sizem = (gms_sizek + gsm_sizek) >> 10;
}
/* TSEG 2M, This amount can easily be covered by SMRR MTRR's,
which requires to have TSEG_BASE aligned to TSEG_SIZE. */
pci_update_config8(PCI_DEV(0, 0, 0), D0F0_ESMRAMC, ~0x07, (1 << 1) | (1 << 0));
uma_sizem += 2;
}
const unsigned int mmio_size = get_mmio_size();
const unsigned int MMIOstart = 4096 - mmio_size + uma_sizem;
const int me_active = pci_read_config8(PCI_DEV(0, 3, 0), PCI_CLASS_REVISION) != 0xff;
const unsigned int ME_SIZE = prejedec || !me_active ? 0 : 32;
const unsigned int usedMEsize = (total_mb[0] != total_mb[1]) ? ME_SIZE : 2 * ME_SIZE;
const unsigned int claimCapable =
!(pci_read_config32(PCI_DEV(0, 0, 0), D0F0_CAPID0 + 4) & (1 << (47 - 32)));
const unsigned int TOM = total_mb[0] + total_mb[1];
unsigned int TOMminusME = TOM - usedMEsize;
unsigned int TOLUD = (TOMminusME < MMIOstart) ? TOMminusME : MMIOstart;
unsigned int TOUUD = TOMminusME;
unsigned int REMAPbase = 0xffff, REMAPlimit = 0;
if (claimCapable && (TOMminusME >= (MMIOstart + 64))) {
/* 64MB alignment: We'll lose some MBs here, if ME is on. */
TOMminusME &= ~(64 - 1);
/* 64MB alignment: Loss will be reclaimed. */
TOLUD &= ~(64 - 1);
if (TOMminusME > 4096) {
REMAPbase = TOMminusME;
REMAPlimit = REMAPbase + (4096 - TOLUD);
} else {
REMAPbase = 4096;
REMAPlimit = REMAPbase + (TOMminusME - TOLUD);
}
TOUUD = REMAPlimit;
/* REMAPlimit is an inclusive bound, all others exclusive. */
REMAPlimit -= 64;
}
pci_write_config16(PCI_DEV(0, 0, 0), D0F0_TOM, (TOM >> 7) & 0x1ff);
pci_write_config16(PCI_DEV(0, 0, 0), D0F0_TOLUD, TOLUD << 4);
pci_write_config16(PCI_DEV(0, 0, 0), D0F0_TOUUD, TOUUD);
pci_write_config16(PCI_DEV(0, 0, 0), D0F0_REMAPBASE, (REMAPbase >> 6) & 0x03ff);
pci_write_config16(PCI_DEV(0, 0, 0), D0F0_REMAPLIMIT, (REMAPlimit >> 6) & 0x03ff);
/* Program channel mode. */
switch (mode) {
case CHANNEL_MODE_SINGLE:
printk(BIOS_DEBUG, "Memory configured in single-channel mode.\n");
mchbar_clrbits32(DCC_MCHBAR, DCC_INTERLEAVED);
break;
case CHANNEL_MODE_DUAL_ASYNC:
printk(BIOS_DEBUG, "Memory configured in dual-channel asymmetric mode.\n");
mchbar_clrbits32(DCC_MCHBAR, DCC_INTERLEAVED);
break;
case CHANNEL_MODE_DUAL_INTERLEAVED:
printk(BIOS_DEBUG, "Memory configured in dual-channel interleaved mode.\n");
mchbar_clrbits32(DCC_MCHBAR, DCC_NO_CHANXOR | 1 << 9);
mchbar_setbits32(DCC_MCHBAR, DCC_INTERLEAVED);
break;
}
printk(BIOS_SPEW, "Memory map:\n"
"TOM = %5uMB\n"
"TOLUD = %5uMB\n"
"TOUUD = %5uMB\n"
"REMAP:\t base = %5uMB\n"
"\t limit = %5uMB\n"
"usedMEsize: %dMB\n",
TOM, TOLUD, TOUUD, REMAPbase, REMAPlimit, usedMEsize);
}
static void prejedec_memory_map(const dimminfo_t *const dimms, channel_mode_t mode)
{
/* Never use dual-interleaved mode in pre-jedec config. */
if (CHANNEL_MODE_DUAL_INTERLEAVED == mode)
mode = CHANNEL_MODE_DUAL_ASYNC;
program_memory_map(dimms, mode, 1, 0);
mchbar_setbits32(DCC_MCHBAR, DCC_NO_CHANXOR);
}
static void ddr3_select_clock_mux(const mem_clock_t ddr3clock,
const dimminfo_t *const dimms,
const stepping_t stepping)
{
const int clk1067 = (ddr3clock == MEM_CLOCK_1067MT);
const int cardF[] = { CHANNEL_IS_CARDF(dimms, 0), CHANNEL_IS_CARDF(dimms, 1) };
int ch;
if (stepping < STEPPING_B1)
die("Stepping <B1 unsupported in clock-multiplexer selection.\n");
FOR_EACH_POPULATED_CHANNEL(dimms, ch) {
int mixed = 0;
if ((1 == ch) && (!CHANNEL_IS_POPULATED(dimms, 0) || (cardF[0] != cardF[1])))
mixed = 4 << 11;
const unsigned int b = 0x14b0 + (ch * 0x0100);
mchbar_write32(b + 0x1c, (mchbar_read32(b + 0x1c) & ~(7 << 11)) |
((( cardF[ch])?1:0) << 11) | mixed);
mchbar_write32(b + 0x18, (mchbar_read32(b + 0x18) & ~(7 << 11)) | mixed);
mchbar_write32(b + 0x14, (mchbar_read32(b + 0x14) & ~(7 << 11)) |
(((!clk1067 && !cardF[ch])?0:1) << 11) | mixed);
mchbar_write32(b + 0x10, (mchbar_read32(b + 0x10) & ~(7 << 11)) |
((( clk1067 && !cardF[ch])?1:0) << 11) | mixed);
mchbar_write32(b + 0x0c, (mchbar_read32(b + 0x0c) & ~(7 << 11)) |
((( cardF[ch])?3:2) << 11) | mixed);
mchbar_write32(b + 0x08, (mchbar_read32(b + 0x08) & ~(7 << 11)) |
(2 << 11) | mixed);
mchbar_write32(b + 0x04, (mchbar_read32(b + 0x04) & ~(7 << 11)) |
(((!clk1067 && !cardF[ch])?2:3) << 11) | mixed);
mchbar_write32(b + 0x00, (mchbar_read32(b + 0x00) & ~(7 << 11)) |
((( clk1067 && !cardF[ch])?3:2) << 11) | mixed);
}
}
static void ddr3_write_io_init(const mem_clock_t ddr3clock,
const dimminfo_t *const dimms,
const stepping_t stepping,
const int sff)
{
const int a1step = stepping >= STEPPING_CONVERSION_A1;
const int cardF[] = { CHANNEL_IS_CARDF(dimms, 0), CHANNEL_IS_CARDF(dimms, 1) };
int ch;
if (stepping < STEPPING_B1)
die("Stepping <B1 unsupported in write i/o initialization.\n");
if (sff)
die("SFF platform unsupported in write i/o initialization.\n");
static const u32 ddr3_667_800_by_stepping_ddr3_and_card[][2][2][4] = {
{ /* Stepping B3 and below */
{ /* 667 MHz */
{ 0xa3255008, 0x26888209, 0x26288208, 0x6188040f },
{ 0x7524240b, 0xa5255608, 0x232b8508, 0x5528040f },
},
{ /* 800 MHz */
{ 0xa6255308, 0x26888209, 0x212b7508, 0x6188040f },
{ 0x7524240b, 0xa6255708, 0x132b7508, 0x5528040f },
},
},
{ /* Conversion stepping A1 and above */
{ /* 667 MHz */
{ 0xc5257208, 0x26888209, 0x26288208, 0x6188040f },
{ 0x7524240b, 0xc5257608, 0x232b8508, 0x5528040f },
},
{ /* 800 MHz */
{ 0xb6256308, 0x26888209, 0x212b7508, 0x6188040f },
{ 0x7524240b, 0xb6256708, 0x132b7508, 0x5528040f },
}
}};
static const u32 ddr3_1067_by_channel_and_card[][2][4] = {
{ /* Channel A */
{ 0xb2254708, 0x002b7408, 0x132b8008, 0x7228060f },
{ 0xb0255008, 0xa4254108, 0x4528b409, 0x9428230f },
},
{ /* Channel B */
{ 0xa4254208, 0x022b6108, 0x132b8208, 0x9228210f },
{ 0x6024140b, 0x92244408, 0x252ba409, 0x9328360c },
},
};
FOR_EACH_POPULATED_CHANNEL(dimms, ch) {
if ((1 == ch) && CHANNEL_IS_POPULATED(dimms, 0) && (cardF[0] == cardF[1]))
/* Only write if second channel population differs. */
continue;
const u32 *const data = (ddr3clock != MEM_CLOCK_1067MT)
? ddr3_667_800_by_stepping_ddr3_and_card[a1step][2 - ddr3clock][cardF[ch]]
: ddr3_1067_by_channel_and_card[ch][cardF[ch]];
mchbar_write32(CxWRTy_MCHBAR(ch, 0), data[0]);
mchbar_write32(CxWRTy_MCHBAR(ch, 1), data[1]);
mchbar_write32(CxWRTy_MCHBAR(ch, 2), data[2]);
mchbar_write32(CxWRTy_MCHBAR(ch, 3), data[3]);
}
mchbar_write32(0x1490, 0x00e70067);
mchbar_write32(0x1494, 0x000d8000);
mchbar_write32(0x1590, 0x00e70067);
mchbar_write32(0x1594, 0x000d8000);
}
static void ddr_read_io_init(const mem_clock_t ddr_clock,
const dimminfo_t *const dimms,
const int sff)
{
int ch;
FOR_EACH_POPULATED_CHANNEL(dimms, ch) {
u32 addr, tmp;
const unsigned int base = 0x14b0 + (ch * 0x0100);
for (addr = base + 0x1c; addr >= base; addr -= 4) {
tmp = mchbar_read32(addr);
tmp &= ~((3 << 25) | (1 << 8) | (7 << 16) | (0xf << 20) | (1 << 27));
tmp |= (1 << 27);
switch (ddr_clock) {
case MEM_CLOCK_667MT:
tmp |= (1 << 16) | (4 << 20);
break;
case MEM_CLOCK_800MT:
tmp |= (2 << 16) | (3 << 20);
break;
case MEM_CLOCK_1067MT:
if (!sff)
tmp |= (2 << 16) | (1 << 20);
else
tmp |= (2 << 16) | (2 << 20);
break;
default:
die("Wrong clock");
}
mchbar_write32(addr, tmp);
}
}
}
static void ddr3_memory_io_init(const mem_clock_t ddr3clock,
const dimminfo_t *const dimms,
const stepping_t stepping,
const int sff)
{
u32 tmp;
if (stepping < STEPPING_B1)
die("Stepping <B1 unsupported in "
"system-memory i/o initialization.\n");
tmp = mchbar_read32(0x1400);
tmp &= ~(3<<13);
tmp |= (1<<9) | (1<<13);
mchbar_write32(0x1400, tmp);
tmp = mchbar_read32(0x140c);
tmp &= ~(0xff | (1<<11) | (1<<12) |
(1<<16) | (1<<18) | (1<<27) | (0xf<<28));
tmp |= (1<<7) | (1<<11) | (1<<16);
switch (ddr3clock) {
case MEM_CLOCK_667MT:
tmp |= 9 << 28;
break;
case MEM_CLOCK_800MT:
tmp |= 7 << 28;
break;
case MEM_CLOCK_1067MT:
tmp |= 8 << 28;
break;
}
mchbar_write32(0x140c, tmp);
mchbar_clrbits32(0x1440, 1);
tmp = mchbar_read32(0x1414);
tmp &= ~((1<<20) | (7<<11) | (0xf << 24) | (0xf << 16));
tmp |= (3<<11);
switch (ddr3clock) {
case MEM_CLOCK_667MT:
tmp |= (2 << 24) | (10 << 16);
break;
case MEM_CLOCK_800MT:
tmp |= (3 << 24) | (7 << 16);
break;
case MEM_CLOCK_1067MT:
tmp |= (4 << 24) | (4 << 16);
break;
}
mchbar_write32(0x1414, tmp);
mchbar_clrbits32(0x1418, 1 << 3 | 1 << 11 | 1 << 19 | 1 << 27);
mchbar_clrbits32(0x141c, 1 << 3 | 1 << 11 | 1 << 19 | 1 << 27);
mchbar_setbits32(0x1428, 1 << 14);
tmp = mchbar_read32(0x142c);
tmp &= ~((0xf << 8) | (0x7 << 20) | 0xf | (0xf << 24));
tmp |= (0x3 << 20) | (5 << 24);
switch (ddr3clock) {
case MEM_CLOCK_667MT:
tmp |= (2 << 8) | 0xc;
break;
case MEM_CLOCK_800MT:
tmp |= (3 << 8) | 0xa;
break;
case MEM_CLOCK_1067MT:
tmp |= (4 << 8) | 0x7;
break;
}
mchbar_write32(0x142c, tmp);
tmp = mchbar_read32(0x400);
tmp &= ~((3 << 4) | (3 << 16) | (3 << 30));
tmp |= (2 << 4) | (2 << 16);
mchbar_write32(0x400, tmp);
mchbar_clrbits32(0x404, 0xf << 20);
mchbar_clrbits32(0x40c, 1 << 6);
tmp = mchbar_read32(0x410);
tmp &= ~(7 << 28);
tmp |= 2 << 28;
mchbar_write32(0x410, tmp);
tmp = mchbar_read32(0x41c);
tmp &= ~0x77;
tmp |= 0x11;
mchbar_write32(0x41c, tmp);
ddr3_select_clock_mux(ddr3clock, dimms, stepping);
ddr3_write_io_init(ddr3clock, dimms, stepping, sff);
ddr_read_io_init(ddr3clock, dimms, sff);
}
static void ddr2_select_clock_mux(const dimminfo_t *const dimms)
{
int ch;
unsigned int o;
FOR_EACH_POPULATED_CHANNEL(dimms, ch) {
const unsigned int b = 0x14b0 + (ch * 0x0100);
for (o = 0; o < 0x20; o += 4)
mchbar_clrbits32(b + o, 7 << 11);
}
}
static void ddr2_write_io_init(const dimminfo_t *const dimms)
{
int s;
mchbar_clrsetbits32(CxWRTy_MCHBAR(0, 0), 0xf7bff71f, 0x008b0008);
for (s = 1; s < 4; ++s) {
mchbar_clrsetbits32(CxWRTy_MCHBAR(0, s), 0xf7bff71f, 0x00800000);
}
mchbar_clrsetbits32(0x1490, 0xf7fff77f, 0x00800000);
mchbar_clrsetbits32(0x1494, 0xf71f8000, 0x00040000);
mchbar_clrsetbits32(CxWRTy_MCHBAR(1, 0), 0xf7bff71f, 0x00890008);
for (s = 1; s < 4; ++s) {
mchbar_clrsetbits32(CxWRTy_MCHBAR(1, s), 0xf7bff71f, 0x00890000);
}
mchbar_clrsetbits32(0x1590, 0xf7fff77f, 0x00800000);
mchbar_clrsetbits32(0x1594, 0xf71f8000, 0x00040000);
}
static void ddr2_memory_io_init(const mem_clock_t ddr2clock,
const dimminfo_t *const dimms,
const stepping_t stepping,
const int sff)
{
u32 tmp;
u32 tmp2;
if (stepping < STEPPING_B1)
die("Stepping <B1 unsupported in DDR2 memory i/o initialization.\n");
if (sff)
die("SFF platform unsupported in DDR2 memory i/o initialization.\n");
tmp = mchbar_read32(0x140c);
tmp &= ~(0xff | (1<<11) | (0xf<<28));
tmp |= (1<<0) | (1<<12) | (1<<16) | (1<<18) | (1<<27);
mchbar_write32(0x140c, tmp);
tmp = mchbar_read32(0x1440);
tmp &= ~(1<<5);
tmp |= (1<<0) | (1<<2) | (1<<3) | (1<<4) | (1<<6);
mchbar_write32(0x1440, tmp);
tmp = mchbar_read32(0x1414);
tmp &= ~((1<<20) | (7<<11) | (0xf << 24) | (0xf << 16));
tmp |= (3<<11);
tmp2 = mchbar_read32(0x142c);
tmp2 &= ~((0xf << 8) | (0x7 << 20) | 0xf);
tmp2 |= (0x3 << 20);
switch (ddr2clock) {
case MEM_CLOCK_667MT:
tmp |= (2 << 24) | (10 << 16);
tmp2 |= (2 << 8) | 0xc;
break;
case MEM_CLOCK_800MT:
tmp |= (3 << 24) | (7 << 16);
tmp2 |= (3 << 8) | 0xa;
break;
default:
die("Wrong clock");
}
mchbar_write32(0x1414, tmp);
mchbar_write32(0x142c, tmp2);
mchbar_clrbits32(0x1418, (1<<3) | (1<<11) | (1<<19) | (1<<27));
mchbar_clrbits32(0x141c, (1<<3) | (1<<11) | (1<<19) | (1<<27));
tmp = mchbar_read32(0x400);
tmp &= ~((3 << 4) | (3 << 16) | (3 << 30));
tmp |= (2 << 4) | (2 << 16);
mchbar_write32(0x400, tmp);
mchbar_clrbits32(0x404, 0xf << 20);
mchbar_clrbits32(0x40c, 1 << 6);
tmp = mchbar_read32(0x410);
tmp &= ~(0xf << 28);
tmp |= 2 << 28;
mchbar_write32(0x410, tmp);
tmp = mchbar_read32(0x41c);
tmp &= ~((7<<0) | (7<<4));
tmp |= (1<<0) | (1<<3) | (1<<4) | (1<<7);
mchbar_write32(0x41c, tmp);
ddr2_select_clock_mux(dimms);
ddr2_write_io_init(dimms);
ddr_read_io_init(ddr2clock, dimms, sff);
}
static void jedec_command(const uintptr_t rankaddr, const u32 cmd, const u32 val)
{
mchbar_clrsetbits32(DCC_MCHBAR, DCC_SET_EREG_MASK, cmd);
read32p(rankaddr | val);
}
static void jedec_init_ddr3(const timings_t *const timings,
const dimminfo_t *const dimms)
{
if ((timings->tWR < 5) || (timings->tWR > 12))
die("tWR value unsupported in Jedec initialization.\n");
/* 5 6 7 8 9 10 11 12 */
static const u8 wr_lut[] = { 1, 2, 3, 4, 5, 5, 6, 6 };
const int WL = ((timings->tWL - 5) & 7) << 6;
const int ODT_120OHMS = (1 << 9);
const int ODS_34OHMS = (1 << 4);
const int WR = (wr_lut[timings->tWR - 5] & 7) << 12;
const int DLL1 = 1 << 11;
const int CAS = ((timings->CAS - 4) & 7) << 7;
const int INTERLEAVED = 1 << 6;/* This is READ Burst Type == interleaved. */
int ch, r;
FOR_EACH_POPULATED_RANK(dimms, ch, r) {
/* We won't do this in dual-interleaved mode,
so don't care about the offset.
Mirrored ranks aren't taken into account here. */
const uintptr_t rankaddr = raminit_get_rank_addr(ch, r);
printk(BIOS_DEBUG, "JEDEC init @0x%08x\n", (u32)rankaddr);
jedec_command(rankaddr, DCC_SET_EREGx(2), WL);
jedec_command(rankaddr, DCC_SET_EREGx(3), 0);
jedec_command(rankaddr, DCC_SET_EREGx(1), ODT_120OHMS | ODS_34OHMS);
jedec_command(rankaddr, DCC_SET_MREG, WR | DLL1 | CAS | INTERLEAVED);
jedec_command(rankaddr, DCC_SET_MREG, WR | CAS | INTERLEAVED);
}
}
static void jedec_init_ddr2(const timings_t *const timings,
const dimminfo_t *const dimms)
{
/* All bit offsets are off by 3 (2^3 bytes bus width). */
/* Mode Register (MR) settings */
const int WR = ((timings->tWR - 1) & 7) << 12;
const int DLLreset = 1 << 11;
const int CAS = (timings->CAS & 7) << 7;
const int BTinterleaved = 1 << 6;
const int BL8 = 3 << 3;
/* Extended Mode Register 1 (EMR1) */
const int OCDdefault = 7 << 10;
const int ODT_150OHMS = 1 << 9 | 0 << 5;
int ch, r;
FOR_EACH_POPULATED_RANK(dimms, ch, r) {
/* We won't do this in dual-interleaved mode,
so don't care about the offset.
Mirrored ranks aren't taken into account here. */
const uintptr_t rankaddr = raminit_get_rank_addr(ch, r);
printk(BIOS_DEBUG, "JEDEC init @0x%08x\n", (u32)rankaddr);
jedec_command(rankaddr, DCC_CMD_ABP, 0);
jedec_command(rankaddr, DCC_SET_EREGx(2), 0);
jedec_command(rankaddr, DCC_SET_EREGx(3), 0);
jedec_command(rankaddr, DCC_SET_EREGx(1), ODT_150OHMS);
jedec_command(rankaddr, DCC_SET_MREG, WR | DLLreset | CAS | BTinterleaved | BL8);
jedec_command(rankaddr, DCC_CMD_ABP, 0);
jedec_command(rankaddr, DCC_CMD_CBR, 0);
udelay(1);
read32((void *)(rankaddr));
jedec_command(rankaddr, DCC_SET_MREG, WR | CAS | BTinterleaved | BL8);
jedec_command(rankaddr, DCC_SET_EREGx(1), OCDdefault | ODT_150OHMS);
jedec_command(rankaddr, DCC_SET_EREGx(1), ODT_150OHMS);
}
}
static void jedec_init(const int spd_type,
const timings_t *const timings,
const dimminfo_t *const dimms)
{
/* Pre-jedec settings */
mchbar_setbits32(0x40, 1 << 1);
mchbar_setbits32(0x230, 3 << 1);
mchbar_setbits32(0x238, 3 << 24);
mchbar_setbits32(0x23c, 3 << 24);
/* Normal write pointer operation */
mchbar_setbits32(0x14f0, 1 << 9);
mchbar_setbits32(0x15f0, 1 << 9);
mchbar_clrsetbits32(DCC_MCHBAR, DCC_CMD_MASK, DCC_CMD_NOP);
pci_and_config8(PCI_DEV(0, 0, 0), 0xf0, ~(1 << 2));
pci_or_config8(PCI_DEV(0, 0, 0), 0xf0, 1 << 2);
udelay(2);
if (spd_type == DDR2) {
jedec_init_ddr2(timings, dimms);
} else if (spd_type == DDR3) {
jedec_init_ddr3(timings, dimms);
}
}
static void ddr3_calibrate_zq(void) {
udelay(2);
u32 tmp = mchbar_read32(DCC_MCHBAR);
tmp &= ~(7 << 16);
tmp |= (5 << 16); /* ZQ calibration mode */
mchbar_write32(DCC_MCHBAR, tmp);
mchbar_setbits32(CxDRT6_MCHBAR(0), 1 << 3);
mchbar_setbits32(CxDRT6_MCHBAR(1), 1 << 3);
udelay(1);
mchbar_clrbits32(CxDRT6_MCHBAR(0), 1 << 3);
mchbar_clrbits32(CxDRT6_MCHBAR(1), 1 << 3);
mchbar_setbits32(DCC_MCHBAR, 7 << 16); /* Normal operation */
}
static void post_jedec_sequence(const int cores) {
const int quadcore = cores == 4;
mchbar_clrbits32(0x0040, 1 << 1);
mchbar_clrbits32(0x0230, 3 << 1);
mchbar_setbits32(0x0230, 1 << 15);
mchbar_clrbits32(0x0230, 1 << 19);
mchbar_write32(0x1250, 0x6c4);
mchbar_write32(0x1350, 0x6c4);
mchbar_write32(0x1254, 0x871a066d);
mchbar_write32(0x1354, 0x871a066d);
mchbar_setbits32(0x0238, 1 << 26);
mchbar_clrbits32(0x0238, 3 << 24);
mchbar_setbits32(0x0238, 1 << 23);
mchbar_clrsetbits32(0x0238, 7 << 20, 3 << 20);
mchbar_clrsetbits32(0x0238, 7 << 17, 6 << 17);
mchbar_clrsetbits32(0x0238, 7 << 14, 6 << 14);
mchbar_clrsetbits32(0x0238, 7 << 11, 6 << 11);
mchbar_clrsetbits32(0x0238, 7 << 8, 6 << 8);
mchbar_clrbits32(0x023c, 3 << 24);
mchbar_clrbits32(0x023c, 1 << 23);
mchbar_clrsetbits32(0x023c, 7 << 20, 3 << 20);
mchbar_clrsetbits32(0x023c, 7 << 17, 6 << 17);
mchbar_clrsetbits32(0x023c, 7 << 14, 6 << 14);
mchbar_clrsetbits32(0x023c, 7 << 11, 6 << 11);
mchbar_clrsetbits32(0x023c, 7 << 8, 6 << 8);
if (quadcore) {
mchbar_setbits32(0xb14, 0xbfbf << 16);
}
}
static void dram_optimizations(const timings_t *const timings,
const dimminfo_t *const dimms)
{
int ch;
FOR_EACH_POPULATED_CHANNEL(dimms, ch) {
const unsigned int mchbar = CxDRC1_MCHBAR(ch);
u32 cxdrc1 = mchbar_read32(mchbar);
cxdrc1 &= ~CxDRC1_SSDS_MASK;
if (dimms[ch].ranks == 1)
cxdrc1 |= CxDRC1_SS;
else
cxdrc1 |= CxDRC1_DS;
mchbar_write32(mchbar, cxdrc1);
}
}
u32 raminit_get_rank_addr(unsigned int channel, unsigned int rank)
{
if (!channel && !rank)
return 0; /* Address of first rank */
/* Read the bound of the previous rank. */
if (rank > 0) {
rank--;
} else {
rank = 3; /* Highest rank per channel */
channel--;
}
const u32 reg = mchbar_read32(CxDRBy_MCHBAR(channel, rank));
/* Bound is in 32MB. */
return ((reg & CxDRBy_BOUND_MASK(rank)) >> CxDRBy_BOUND_SHIFT(rank)) << 25;
}
void raminit_reset_readwrite_pointers(void)
{
mchbar_setbits32(0x1234, 1 << 6);
mchbar_clrbits32(0x1234, 1 << 6);
mchbar_setbits32(0x1334, 1 << 6);
mchbar_clrbits32(0x1334, 1 << 6);
mchbar_clrbits32(0x14f0, 1 << 9);
mchbar_setbits32(0x14f0, 1 << 9);
mchbar_setbits32(0x14f0, 1 << 10);
mchbar_clrbits32(0x15f0, 1 << 9);
mchbar_setbits32(0x15f0, 1 << 9);
mchbar_setbits32(0x15f0, 1 << 10);
}
void raminit(sysinfo_t *const sysinfo, const int s3resume)
{
const dimminfo_t *const dimms = sysinfo->dimms;
const timings_t *const timings = &sysinfo->selected_timings;
int ch;
timestamp_add_now(TS_INITRAM_START);
/* Wait for some bit, maybe TXT clear. */
if (sysinfo->txt_enabled) {
while (!(read8((u8 *)0xfed40000) & (1 << 7))) {}
}
/* Collect information about DIMMs and find common settings. */
collect_dimm_config(sysinfo);
/* Check for bad warm boot. */
reset_on_bad_warmboot();
/***** From now on, program according to collected infos: *****/
/* Program DRAM type. */
switch (sysinfo->spd_type) {
case DDR2:
mchbar_setbits8(0x1434, 1 << 7);
break;
case DDR3:
mchbar_setbits8(0x1434, 3 << 0);
break;
}
/* Program system memory frequency. */
set_system_memory_frequency(timings);
/* Program IGD memory frequency. */
set_igd_memory_frequencies(sysinfo);
/* Configure DRAM control mode for populated channels. */
configure_dram_control_mode(timings, dimms);
/* Initialize RCOMP. */
rcomp_initialization(sysinfo->spd_type, sysinfo->stepping, sysinfo->sff);
/* Power-up DRAM. */
dram_powerup(sysinfo->spd_type, sysinfo->stepping, s3resume);
/* Program DRAM timings. */
dram_program_timings(sysinfo->spd_type, timings);
/* Program number of banks. */
dram_program_banks(dimms);
/* Enable DRAM clock pairs for populated DIMMs. */
FOR_EACH_POPULATED_CHANNEL(dimms, ch)
mchbar_setbits32(CxDCLKDIS_MCHBAR(ch), CxDCLKDIS_ENABLE);
/* Enable On-Die Termination. */
if (sysinfo->spd_type == DDR2)
ddr2_odt_setup(timings, sysinfo->sff);
else
ddr3_odt_setup(timings, sysinfo->sff);
/* Miscellaneous settings. */
misc_settings(timings, sysinfo->stepping);
/* Program clock crossing registers. */
clock_crossing_setup(timings->fsb_clock, timings->mem_clock, dimms);
/* Program egress VC1 timings. */
vc1_program_timings(timings->fsb_clock);
/* Perform system-memory i/o initialization. */
if (sysinfo->spd_type == DDR2) {
ddr2_memory_io_init(timings->mem_clock, dimms,
sysinfo->stepping, sysinfo->sff);
} else {
ddr3_memory_io_init(timings->mem_clock, dimms,
sysinfo->stepping, sysinfo->sff);
}
/* Initialize memory map with dummy values of 128MB per rank with a
page size of 4KB. This makes the JEDEC initialization code easier. */
prejedec_memory_map(dimms, timings->channel_mode);
if (!s3resume)
/* Perform JEDEC initialization of DIMMS. */
jedec_init(sysinfo->spd_type, timings, dimms);
/* Some programming steps after JEDEC initialization. */
post_jedec_sequence(sysinfo->cores);
/* Announce normal operation, initialization completed. */
mchbar_setbits32(DCC_MCHBAR, 0x7 << 16 | 0x1 << 19);
pci_or_config8(PCI_DEV(0, 0, 0), 0xf0, 1 << 2);
pci_and_config8(PCI_DEV(0, 0, 0), 0xf0, ~(1 << 2));
/* Take a breath (the reader). */
/* Perform ZQ calibration for DDR3. */
if (sysinfo->spd_type == DDR3)
ddr3_calibrate_zq();
/* Perform receive-enable calibration. */
raminit_receive_enable_calibration(sysinfo->spd_type, timings, dimms);
/* Lend clock values from receive-enable calibration. */
mchbar_clrsetbits32(CxDRT5_MCHBAR(0), 0xf0,
(((mchbar_read32(CxDRT3_MCHBAR(0)) >> 7) - 1) & 0xf) << 4);
mchbar_clrsetbits32(CxDRT5_MCHBAR(1), 0xf0,
(((mchbar_read32(CxDRT3_MCHBAR(1)) >> 7) - 1) & 0xf) << 4);
/* Perform read/write training for high clock rate. */
if (timings->mem_clock == MEM_CLOCK_1067MT) {
raminit_read_training(dimms, s3resume);
raminit_write_training(timings->mem_clock, dimms, s3resume);
}
igd_compute_ggc(sysinfo);
/* Program final memory map (with real values). */
program_memory_map(dimms, timings->channel_mode, 0, sysinfo->ggc);
/* Some last optimizations. */
dram_optimizations(timings, dimms);
/* Mark raminit being finished. :-) */
pci_and_config8(PCI_DEV(0, 0x1f, 0), 0xa2, (u8)~(1 << 7));
raminit_thermal(sysinfo);
init_igd(sysinfo);
timestamp_add_now(TS_INITRAM_END);
}
|