summaryrefslogtreecommitdiff
path: root/src/northbridge/intel/e7525/raminit.c
blob: c0e6b4291e31e3f847984dea488fbcc477d99398 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
#include <cpu/x86/mem.h>
#include <cpu/x86/mtrr.h>
#include <cpu/x86/cache.h>
#include "raminit.h"
#include "e7525.h"

#define BAR 0x40000000

static void sdram_set_registers(const struct mem_controller *ctrl)
{
	static const unsigned int register_values[] = {

		/* CKDIS 0x8c disable clocks */
	PCI_ADDR(0, 0x00, 0, CKDIS), 0xffff0000, 0x0000ffff,

		/* 0x9c Device present and extended RAM control 
		 * DEVPRES is very touchy, hard code the initialization
		 * of PCI-E ports here.
		 */
	PCI_ADDR(0, 0x00, 0, DEVPRES), 0x00000000, 0x07020801 | DEVPRES_CONFIG,

		/* 0xc8 Remap RAM base and limit off */	
	PCI_ADDR(0, 0x00, 0, REMAPLIMIT), 0x00000000, 0x03df0000,

		/* ??? */
	PCI_ADDR(0, 0x00, 0, 0xd8), 0x00000000, 0xb5930000,
	PCI_ADDR(0, 0x00, 0, 0xe8), 0x00000000, 0x00004a2a,

		/* 0x50 scrub */
	PCI_ADDR(0, 0x00, 0, MCHCFG0), 0xfce0ffff, 0x00006000, /* 6000 */

		/* 0x58 0x5c PAM */
	PCI_ADDR(0, 0x00, 0, PAM-1), 0xcccccc7f, 0x33333000,
	PCI_ADDR(0, 0x00, 0, PAM+3), 0xcccccccc, 0x33333333,

		/* 0xf4 */
	PCI_ADDR(0, 0x00, 0, DEVPRES1), 0xffbffff, (1<<22)|(6<<2) | DEVPRES1_CONFIG,

		/* 0x14 */
	PCI_ADDR(0, 0x00, 0, IURBASE), 0x00000fff, BAR |0,  
	};
	int i;
	int max;

	max = sizeof(register_values)/sizeof(register_values[0]);
	for(i = 0; i < max; i += 3) {
		device_t dev;
		unsigned where;
		unsigned long reg;
		dev = (register_values[i] & ~0xff) - PCI_DEV(0, 0x00, 0) + ctrl->f0;
		where = register_values[i] & 0xff;
		reg = pci_read_config32(dev, where);
		reg &= register_values[i+1];
		reg |= register_values[i+2];
		pci_write_config32(dev, where, reg);
	}
	print_spew("done.\r\n");
}



struct dimm_size {
	unsigned long side1;
	unsigned long side2;
};

static struct dimm_size spd_get_dimm_size(unsigned device)
{
	/* Calculate the log base 2 size of a DIMM in bits */
	struct dimm_size sz;
	int value, low, ddr2;
	sz.side1 = 0;
	sz.side2 = 0;

	/* test for ddr2 */
	ddr2=0;
	value = spd_read_byte(device, 2);       /* type */
        if (value < 0) goto hw_err;
	if (value == 8) ddr2 = 1;

	/* Note it might be easier to use byte 31 here, it has the DIMM size as
	 * a multiple of 4MB.  The way we do it now we can size both
	 * sides of an assymetric dimm.
	 */
	value = spd_read_byte(device, 3);	/* rows */
	if (value < 0) goto hw_err;
	if ((value & 0xf) == 0) goto val_err;
	sz.side1 += value & 0xf;

	value = spd_read_byte(device, 4);	/* columns */
	if (value < 0) goto hw_err;
	if ((value & 0xf) == 0) goto val_err;
	sz.side1 += value & 0xf;

	value = spd_read_byte(device, 17);	/* banks */
	if (value < 0) goto hw_err;
	if ((value & 0xff) == 0) goto val_err;
	sz.side1 += log2(value & 0xff);

	/* Get the module data width and convert it to a power of two */
	value = spd_read_byte(device, 7);	/* (high byte) */
	if (value < 0) goto hw_err;
	value &= 0xff;
	value <<= 8;
	
	low = spd_read_byte(device, 6);	/* (low byte) */
	if (low < 0) goto hw_err;
	value = value | (low & 0xff);
	if ((value != 72) && (value != 64)) goto val_err;
	sz.side1 += log2(value);

	/* side 2 */
	value = spd_read_byte(device, 5);	/* number of physical banks */

	if (value < 0) goto hw_err;
	value &= 7;
	if(ddr2) value++;
	if (value == 1) goto out;
	if (value != 2) goto val_err;

	/* Start with the symmetrical case */
	sz.side2 = sz.side1;

	value = spd_read_byte(device, 3);	/* rows */
	if (value < 0) goto hw_err;
	if ((value & 0xf0) == 0) goto out;	/* If symmetrical we are done */
	sz.side2 -= (value & 0x0f);		/* Subtract out rows on side 1 */
	sz.side2 += ((value >> 4) & 0x0f);	/* Add in rows on side 2 */

	value = spd_read_byte(device, 4);	/* columns */
	if (value < 0) goto hw_err;
	if ((value & 0xff) == 0) goto val_err;
	sz.side2 -= (value & 0x0f);		/* Subtract out columns on side 1 */
	sz.side2 += ((value >> 4) & 0x0f);	/* Add in columsn on side 2 */
	goto out;

 val_err:
	die("Bad SPD value\r\n");
	/* If an hw_error occurs report that I have no memory */
hw_err:
	sz.side1 = 0;
	sz.side2 = 0;
 out:
	return sz;

}

static long spd_set_ram_size(const struct mem_controller *ctrl, long dimm_mask)
{
	int i;
	int cum;
	
	for(i = cum = 0; i < DIMM_SOCKETS; i++) {
		struct dimm_size sz;
		if (dimm_mask & (1 << i)) {
			sz = spd_get_dimm_size(ctrl->channel0[i]);
			if (sz.side1 < 29) {
				return -1; /* Report SPD error */
			}
			/* convert bits to multiples of 64MB */
			sz.side1 -= 29;
			cum += (1 << sz.side1);
			/* DRB = 0x60 */
			pci_write_config8(ctrl->f0, DRB + (i*2), cum);
			if( sz.side2 > 28) {
				sz.side2 -= 29;
				cum += (1 << sz.side2);
			}
			pci_write_config8(ctrl->f0, DRB+1 + (i*2), cum);
		}
		else {
			pci_write_config8(ctrl->f0, DRB + (i*2), cum);
			pci_write_config8(ctrl->f0, DRB+1 + (i*2), cum);
		}
	}
	/* set TOM top of memory 0xcc */
	pci_write_config16(ctrl->f0, TOM, cum);
	/* set TOLM top of low memory */
	if(cum > 0x18) {
		cum = 0x18;
	}
	cum <<= 11;
	/* 0xc4 TOLM */
	pci_write_config16(ctrl->f0, TOLM, cum);
	return 0;
}


static unsigned int spd_detect_dimms(const struct mem_controller *ctrl)
{
	unsigned dimm_mask;
	int i;
	dimm_mask = 0;
	for(i = 0; i < DIMM_SOCKETS; i++) {
		int byte;
		unsigned device;
		device = ctrl->channel0[i];
		if (device) {
			byte = spd_read_byte(device, 2);  /* Type */
			if ((byte == 7) || (byte == 8)) {
				dimm_mask |= (1 << i);
			}
		}
		device = ctrl->channel1[i];
		if (device) {
			byte = spd_read_byte(device, 2);
			if ((byte == 7) || (byte == 8)) {
				dimm_mask |= (1 << (i + DIMM_SOCKETS));
			}
		}
	}
	return dimm_mask;
}


static int spd_set_row_attributes(const struct mem_controller *ctrl, 
		long dimm_mask)
{

	int value;
	int reg;
	int dra;
	int cnt;

	dra = 0;
	for(cnt=0; cnt < 4; cnt++) {
		if (!(dimm_mask & (1 << cnt))) {
			continue;
		}
		reg =0;
		value = spd_read_byte(ctrl->channel0[cnt], 3);	/* rows */
		if (value < 0) goto hw_err;
		if ((value & 0xf) == 0) goto val_err;
		reg += value & 0xf;

		value = spd_read_byte(ctrl->channel0[cnt], 4);	/* columns */
		if (value < 0) goto hw_err;
		if ((value & 0xf) == 0) goto val_err;
		reg += value & 0xf;

		value = spd_read_byte(ctrl->channel0[cnt], 17);	/* banks */
		if (value < 0) goto hw_err;
		if ((value & 0xff) == 0) goto val_err;
		reg += log2(value & 0xff);

		/* Get the device width and convert it to a power of two */
		value = spd_read_byte(ctrl->channel0[cnt], 13);	
		if (value < 0) goto hw_err;
		value = log2(value & 0xff);
		reg += value;
		if(reg < 27) goto hw_err;
		reg -= 27;
		reg += (value << 2);
	
		dra += reg << (cnt*8);
		value = spd_read_byte(ctrl->channel0[cnt], 5);
		if (value & 2)
			dra += reg << ((cnt*8)+4);	
	}

	/* 0x70 DRA */
	pci_write_config32(ctrl->f0, DRA, dra);	
	goto out;

 val_err:
	die("Bad SPD value\r\n");
	/* If an hw_error occurs report that I have no memory */
hw_err:
	dra = 0;
 out:
	return dra;

}


static int spd_set_drt_attributes(const struct mem_controller *ctrl, 
		long dimm_mask, uint32_t drc)
{
	int value;
	int reg;
	uint32_t drt;
	int cnt;
	int first_dimm;
	int cas_latency=0;
	int latency;
	uint32_t index = 0;
	uint32_t index2 = 0;
	static const unsigned char cycle_time[3] = {0x75,0x60,0x50}; 
	static const int latency_indicies[] = { 26, 23, 9 };

	/* 0x78 DRT */
	drt = pci_read_config32(ctrl->f0, DRT);
	drt &= 3;  /* save bits 1:0 */
	
	for(first_dimm = 0; first_dimm < 4; first_dimm++) {
		if (dimm_mask & (1 << first_dimm)) 
			break;
	}
	
	/* get dimm type */
	value = spd_read_byte(ctrl->channel0[first_dimm], 2);
	if(value == 8) {
		drt |= (3<<5); /* back to bark write turn around & cycle add */
	}	

	drt |= (3<<18);  /* Trasmax */

	for(cnt=0; cnt < 4; cnt++) {
		if (!(dimm_mask & (1 << cnt))) {
			continue;
		}
		reg = spd_read_byte(ctrl->channel0[cnt], 18); /* CAS Latency */
		/* Compute the lowest cas latency supported */
		latency = log2(reg) -2;
	
		/* Loop through and find a fast clock with a low latency */
		for(index = 0; index < 3; index++, latency++) {
			if ((latency < 2) || (latency > 4) ||
				(!(reg & (1 << latency)))) {
				continue;
			}
			value = spd_read_byte(ctrl->channel0[cnt], 
				        latency_indicies[index]);
	  
			if(value <= cycle_time[drc&3]) {
				if( latency > cas_latency) {
					cas_latency = latency;
				}
				break;
			}	
		}
	}
	index = (cas_latency-2);
	if((index)==0) cas_latency = 20;
	else if((index)==1) cas_latency = 25;
	else cas_latency = 30;

	for(cnt=0;cnt<4;cnt++) {
		if (!(dimm_mask & (1 << cnt))) {
                        continue;
                }
		reg = spd_read_byte(ctrl->channel0[cnt], 27)&0x0ff;
		if(((index>>8)&0x0ff)<reg) {
			index &= ~(0x0ff << 8);
			index |= (reg << 8);
		}
		reg = spd_read_byte(ctrl->channel0[cnt], 28)&0x0ff;
		if(((index>>16)&0x0ff)<reg) {
			index &= ~(0x0ff << 16);
			index |= (reg<<16);
		}
		reg = spd_read_byte(ctrl->channel0[cnt], 29)&0x0ff;
		if(((index2>>0)&0x0ff)<reg) {
			index2 &= ~(0x0ff << 0);
			index2 |= (reg<<0);
		}
		reg = spd_read_byte(ctrl->channel0[cnt], 41)&0x0ff;
		if(((index2>>8)&0x0ff)<reg) {
			index2 &= ~(0x0ff << 8);
			index2 |= (reg<<8);
		}
		reg = spd_read_byte(ctrl->channel0[cnt], 42)&0x0ff;
		if(((index2>>16)&0x0ff)<reg) {
			index2 &= ~(0x0ff << 16);
			index2 |= (reg<<16);
		}
	}

	/* get dimm speed */
	value = cycle_time[drc&3];
	if(value <= 0x50) {  /* 200 MHz */
		if((index&7) > 2) {
			drt |= (2<<2);  /* CAS latency 4 */
			cas_latency = 40;
		} else {
			drt |= (1<<2);  /* CAS latency 3 */
			cas_latency = 30;
		}
		if((index&0x0ff00)<=0x03c00) {
			drt |= (1<<8);  /* Trp RAS Precharg */
		} else {
			drt |= (2<<8);  /* Trp RAS Precharg */
		}
		
		/* Trcd RAS to CAS delay */
		if((index2&0x0ff)<=0x03c) {
			drt |= (0<<10);
		} else {
			drt |= (1<<10);
		}

		/* Tdal Write auto precharge recovery delay */
		drt |= (1<<12);
	
		/* Trc TRS min */
		if((index2&0x0ff00)<=0x03700)
			drt |= (0<<14);
		else if((index2&0xff00)<=0x03c00)
			drt |= (1<<14);
		else
			drt |= (2<<14); /* spd 41 */
		
		drt |= (2<<16);  /* Twr not defined for DDR docs say use 2 */
		
		/* Trrd Row Delay */
		if((index&0x0ff0000)<=0x0140000) {
			drt |= (0<<20);
		} else if((index&0x0ff0000)<=0x0280000) {
			drt |= (1<<20);
		} else if((index&0x0ff0000)<=0x03c0000) {
			drt |= (2<<20);
		} else {
			drt |= (3<<20);
		}
		
		/* Trfc Auto refresh cycle time */
		if((index2&0x0ff0000)<=0x04b0000) {
			drt |= (0<<22);
		} else if((index2&0x0ff0000)<=0x0690000) {
			drt |= (1<<22);
		} else {
			drt |= (2<<22);
		}
		/* Docs say use 55 for all 200Mhz */
		drt |= (0x055<<24);
	}
	else if(value <= 0x60) { /* 167 Mhz */
		/* according to new documentation CAS latency is 00
		 * for bits 3:2 for all 167 Mhz 
		drt |= ((index&3)<<2); */  /* set CAS latency */
		if((index&0x0ff00)<=0x03000) {
			drt |= (1<<8);  /* Trp RAS Precharg */
		} else {
			drt |= (2<<8);  /* Trp RAS Precharg */
		}
		
		/* Trcd RAS to CAS delay */
		if((index2&0x0ff)<=0x030) {
			drt |= (0<<10);
		} else {
			drt |= (1<<10);
		}

		/* Tdal Write auto precharge recovery delay */
		drt |= (2<<12); 
		
		/* Trc TRS min */
		drt |= (2<<14); /* spd 41, but only one choice */
		
		drt |= (2<<16);  /* Twr not defined for DDR docs say 2 */
		
		/* Trrd Row Delay */
		if((index&0x0ff0000)<=0x0180000) {
			drt |= (0<<20);
		} else if((index&0x0ff0000)<=0x0300000) {
			drt |= (1<<20);
		} else {
			drt |= (2<<20);
		}
		
		/* Trfc Auto refresh cycle time */
		if((index2&0x0ff0000)<=0x0480000) {
			drt |= (0<<22);
		} else if((index2&0x0ff0000)<=0x0780000) {
			drt |= (2<<22);
		} else {
			drt |= (2<<22);
		}
		/* Docs state to use 99 for all 167 Mhz */
		drt |= (0x099<<24);
	}
	else if(value <= 0x75) { /* 133 Mhz */
		drt |= ((index&3)<<2);  /* set CAS latency */
		if((index&0x0ff00)<=0x03c00) {
			drt |= (1<<8);  /* Trp RAS Precharg */
		} else {
			drt |= (2<<8);  /* Trp RAS Precharg */
		}

		/* Trcd RAS to CAS delay */
		if((index2&0x0ff)<=0x03c) {
			drt |= (0<<10);
		} else {
			drt |= (1<<10);
		}

		/* Tdal Write auto precharge recovery delay */
		drt |= (1<<12); 
		
		/* Trc TRS min */
		drt |= (2<<14); /* spd 41, but only one choice */
		
		drt |= (1<<16);  /* Twr not defined for DDR docs say 1 */
		
		/* Trrd Row Delay */
		if((index&0x0ff0000)<=0x01e0000) {
			drt |= (0<<20);
		} else if((index&0x0ff0000)<=0x03c0000) {
			drt |= (1<<20);
		} else {
			drt |= (2<<20);
		}
		
		/* Trfc Auto refresh cycle time */
		if((index2&0x0ff0000)<=0x04b0000) {
			drt |= (0<<22);
		} else if((index2&0x0ff0000)<=0x0780000) {
			drt |= (2<<22);
		} else {
			drt |= (2<<22);
		}
		
		/* Based on CAS latency */
		if(index&7)
			drt |= (0x099<<24);
		else
			drt |= (0x055<<24);
		
	}
	else {
		die("Invalid SPD 9 bus speed.\r\n");
	}

	/* 0x78 DRT */
	pci_write_config32(ctrl->f0, DRT, drt);

	return(cas_latency);
}

static int spd_set_dram_controller_mode(const struct mem_controller *ctrl, 
		long dimm_mask)
{
	int value;
	int reg;
	int drc;
	int cnt;
	msr_t msr;
	unsigned char dram_type = 0xff;
	unsigned char ecc = 0xff;
	unsigned char rate = 62;
	static const unsigned char spd_rates[6] = {15,3,7,7,62,62}; 
	static const unsigned char drc_rates[5] = {0,15,7,62,3};
	static const unsigned char fsb_conversion[4] = {3,1,3,2};

	/* 0x7c DRC */
	drc = pci_read_config32(ctrl->f0, DRC);	
	for(cnt=0; cnt < 4; cnt++) {
		if (!(dimm_mask & (1 << cnt))) {
			continue;
		}
		value = spd_read_byte(ctrl->channel0[cnt], 11);	/* ECC */
		reg = spd_read_byte(ctrl->channel0[cnt], 2); /* Type */
		if (value == 2) {    /* RAM is ECC capable */
			if (reg == 8) {
				if ( ecc == 0xff ) {
					ecc = 2;
				}
				else if (ecc == 1) {
					die("ERROR - Mixed DDR & DDR2 RAM\r\n");
				}
			} 
			else if ( reg == 7 ) {
				if ( ecc == 0xff) {
					ecc = 1;
				}
				else if ( ecc > 1 ) {
					die("ERROR - Mixed DDR & DDR2 RAM\r\n");
				}
			}	
			else {
				die("ERROR - RAM not DDR\r\n");
			}
		}
		else {
			die("ERROR - Non ECC memory dimm\r\n");
		}

		value = spd_read_byte(ctrl->channel0[cnt], 12);	/*refresh rate*/
		value &= 0x0f;    /* clip self refresh bit */
		if (value > 5) goto hw_err;
		if (rate > spd_rates[value])
			rate = spd_rates[value];

		value = spd_read_byte(ctrl->channel0[cnt], 9);	/* cycle time */
		if (value > 0x75) goto hw_err;
		if (value <= 0x50) {
			if (dram_type >= 2) {
				if (reg == 8) { /*speed is good, is this ddr2?*/
					dram_type = 2;
				} else { /* not ddr2 so use ddr333 */
					dram_type = 1;
				}
			}
		}
		else if (value <= 0x60) {
			if (dram_type >= 1)  dram_type = 1;
		}
		else dram_type = 0; /* ddr266 */

	}
	ecc = 2;
	if (read_option(CMOS_VSTART_ECC_memory,CMOS_VLEN_ECC_memory,1) == 0) {
		ecc = 0;  /* ECC off in CMOS so disable it */
		print_debug("ECC off\r\n");
	}
	else {
		print_debug("ECC on\r\n");
	}
	drc &= ~(3 << 20); /* clear the ecc bits */
	drc |= (ecc << 20);  /* or in the calculated ecc bits */
	for ( cnt = 1; cnt < 5; cnt++)
		if (drc_rates[cnt] == rate)
			break;
	if (cnt < 5) {
		drc &= ~(7 << 8);  /* clear the rate bits */
		drc |= (cnt << 8);
	}

	if (reg == 8) { /* independant clocks */
		drc |= (1 << 4);
	}

	drc |= (1 << 26); /* set the overlap bit - the factory BIOS does */
	drc |= (1 << 27); /* set DED retry enable - the factory BIOS does */
	/* front side bus */
	msr = rdmsr(0x2c);
	value = msr.lo >> 16;
	value &= 0x03;
	drc &= ~(3 << 2); /* set the front side bus */
	drc |= (fsb_conversion[value] << 2);
	drc &= ~(3 << 0); /* set the dram type */
	drc |= (dram_type << 0);
		
	goto out;

 val_err:
	die("Bad SPD value\r\n");
	/* If an hw_error occurs report that I have no memory */
hw_err:
	drc = 0;
 out:
	return drc;
}

static void sdram_set_spd_registers(const struct mem_controller *ctrl) 
{
	long dimm_mask;

	/* Test if we can read the spd and if ram is ddr or ddr2 */
	dimm_mask = spd_detect_dimms(ctrl);
	if (!(dimm_mask & ((1 << DIMM_SOCKETS) - 1))) {
		print_err("No memory for this cpu\r\n");
		return;
	}
	return;
}

static void do_delay(void)
{
	int i;
	unsigned char b;
	for(i=0;i<16;i++)
		b=inb(0x80);
}	

#define TIMEOUT_LOOPS 300000

#define DCALCSR  0x100
#define DCALADDR 0x104
#define DCALDATA 0x108

static void set_on_dimm_termination_enable(const struct mem_controller *ctrl)
{
	unsigned char c1,c2;
        unsigned int dimm,i;
        unsigned int data32;
	unsigned int t4;
 
	/* Set up northbridge values */
	/* ODT enable */
  	pci_write_config32(ctrl->f0, 0x88, 0xf0000180);
	/* Figure out which slots are Empty, Single, or Double sided */
	for(i=0,t4=0,c2=0;i<8;i+=2) {
		c1 = pci_read_config8(ctrl->f0, DRB+i);
		if(c1 == c2) continue;
		c2 = pci_read_config8(ctrl->f0, DRB+1+i);
		if(c1 == c2)
			t4 |= (1 << (i*4));
		else
			t4 |= (2 << (i*4));
	}
	for(i=0;i<1;i++) {
	    if((t4&0x0f) == 1) {
		if( ((t4>>8)&0x0f) == 0 ) {
			data32 = 0x00000010; /* EEES */ 
			break;
		}
		if ( ((t4>>16)&0x0f) == 0 ) { 
			data32 = 0x00003132; /* EESS */
			break;
		}
		if ( ((t4>>24)&0x0f)  == 0 ) {
			data32 = 0x00335566; /* ESSS */
			break;
		}
		data32 = 0x77bbddee; /* SSSS */
		break;
	    }
	    if((t4&0x0f) == 2) {
		if( ((t4>>8)&0x0f) == 0 ) {
			data32 = 0x00003132; /* EEED */ 
			break;
		}
		if ( ((t4>>8)&0x0f) == 2 ) {
			data32 = 0xb373ecdc; /* EEDD */
			break;
		}
		if ( ((t4>>16)&0x0f) == 0 ) {
			data32 = 0x00b3a898; /* EESD */
			break;
		}
		data32 = 0x777becdc; /* ESSD */
		break;
	    }
	    die("Error - First dimm slot empty\r\n");
	}

	print_debug("ODT Value = ");
	print_debug_hex32(data32);
	print_debug("\r\n");

  	pci_write_config32(ctrl->f0, 0xb0, data32);

	for(dimm=0;dimm<8;dimm+=1) {

		write32(BAR+DCALADDR, 0x0b840001);
		write32(BAR+DCALCSR, 0x83000003 | (dimm << 20));
		
		for(i=0;i<1001;i++) {
			data32 = read32(BAR+DCALCSR);
			if(!(data32 & (1<<31)))
				break;
		}
	}
}	
static void set_receive_enable(const struct mem_controller *ctrl)
{
	unsigned int i;
	unsigned int cnt,bit;
	uint32_t recena=0;
	uint32_t recenb=0;

	{	
	unsigned int dimm;
	unsigned int edge;
	int32_t data32;
	uint32_t data32_dram;
	uint32_t dcal_data32_0;
	uint32_t dcal_data32_1;
	uint32_t dcal_data32_2;
	uint32_t dcal_data32_3;
	uint32_t work32l;
	uint32_t work32h;
	uint32_t data32r;
	int32_t recen;
	for(dimm=0;dimm<8;dimm+=1) {

		if(!(dimm&1)) {
			write32(BAR+DCALDATA+(17*4), 0x04020000);
			write32(BAR+DCALCSR, 0x83800004 | (dimm << 20));
		
			for(i=0;i<1001;i++) {
				data32 = read32(BAR+DCALCSR);
				if(!(data32 & (1<<31)))
					break;
			}
			if(i>=1000)
				continue;
		
			dcal_data32_0 = read32(BAR+DCALDATA + 0);
			dcal_data32_1 = read32(BAR+DCALDATA + 4);
			dcal_data32_2 = read32(BAR+DCALDATA + 8);
			dcal_data32_3 = read32(BAR+DCALDATA + 12);
		}
		else {
			dcal_data32_0 = read32(BAR+DCALDATA + 16);
			dcal_data32_1 = read32(BAR+DCALDATA + 20);
			dcal_data32_2 = read32(BAR+DCALDATA + 24);
			dcal_data32_3 = read32(BAR+DCALDATA + 28);
		}

		/* check if bank is installed */
		if((dcal_data32_0 == 0) && (dcal_data32_2 == 0))
			continue;
		/* Calculate the timing value */
		for(i=0,edge=0,bit=63,cnt=31,data32r=0,
			work32l=dcal_data32_1,work32h=dcal_data32_3;
				(i<4) && bit; i++) {
			for(;;bit--,cnt--) {
				if(work32l & (1<<cnt))
					break;
				if(!cnt) {
					work32l = dcal_data32_0;
					work32h = dcal_data32_2;
					cnt = 32;
				}
				if(!bit) break;
			}
			for(;;bit--,cnt--) {
				if(!(work32l & (1<<cnt)))
					break;
				if(!cnt) {
					work32l = dcal_data32_0;
					work32h = dcal_data32_2;
					cnt = 32;
				}
				if(!bit) break;
			}
			if(!bit) {
				break;
			}
			data32 = ((bit%8) << 1);
			if(work32h & (1<<cnt))
				data32 += 1;
			if(data32 < 4) {
				if(!edge) {
					edge = 1;
				}
				else {
					if(edge != 1) {
						data32 = 0x0f;
					}
				}
			}
			if(data32 > 12) {
				if(!edge) {
					edge = 2;
				}
				else {
					if(edge != 2) {
						data32 = 0x00;
					}
				}
			}
			data32r += data32;
		}

		work32l = dcal_data32_0;
		work32h = dcal_data32_2;
		recen = data32r;
		recen += 3;
		recen = recen>>2;
		for(cnt=5;cnt<24;) {
			for(;;cnt++)
				if(!(work32l & (1<<cnt)))
					break;
			for(;;cnt++) {
				if(work32l & (1<<cnt))
					break;
			}
			data32 = (((cnt-1)%8)<<1);
			if(work32h & (1<<(cnt-1))) {
				data32++;
			}
			/* test for frame edge cross overs */
			if((edge == 1) && (data32 > 12) && 
			    (((recen+16)-data32) < 3)) {
				data32 = 0;
				cnt += 2;
			}
			if((edge == 2) && (data32 < 4) &&
			    ((recen - data32) > 12))  {
				data32 = 0x0f;
				cnt -= 2;
			}
			if(((recen+3) >= data32) && ((recen-3) <= data32))
				break;
		}
		cnt--;
		cnt /= 8;
		cnt--;
		if(recen&1)
			recen+=2;
		recen >>= 1;
		recen += (cnt*8);
	recen+=2;
		recen <<= (dimm/2) * 8;
		if(!(dimm&1)) {
			recena |= recen;
		}
		else {
			recenb |= recen;
		}
	}
	}
	/* Check for Eratta problem */
	for(i=cnt=bit=0;i<4;i++) {
		if (((recena>>(i*8))&0x0f)>7) {
			cnt++; bit++;
		}
		else {
			if((recena>>(i*8))&0x0f) {
				cnt++;
			}
		}
	}
	if(bit) {
		cnt-=bit;
		if(cnt>1) {
			for(i=0;i<4;i++) {
				if(((recena>>(i*8))&0x0f)>7) {
					recena &= ~(0x0f<<(i*8));
					recena |= (7<<(i*8));
				}
			}
		}
		else {
			for(i=0;i<4;i++) {
				if(((recena>>(i*8))&0x0f)<8) {
					recena &= ~(0x0f<<(i*8));
					recena |= (8<<(i*8));
				}
			}
		}
	}
	for(i=cnt=bit=0;i<4;i++) {
		if (((recenb>>(i*8))&0x0f)>7) {
			cnt++; bit++;
		}
		else {
			if((recenb>>(i*8))&0x0f) {
				cnt++;
			}
		}
	}
	if(bit) {
		cnt-=bit;
		if(cnt>1) {
			for(i=0;i<4;i++) {
				if(((recenb>>(i*8))&0x0f)>7) {
					recenb &= ~(0x0f<<(i*8));
					recenb |= (7<<(i*8));
				}
			}
		}
		else {
			for(i=0;i<4;i++) {
				if(((recenb>>(i*8))&0x0f)<8) {
					recenb &= ~(0x0f<<(i*8));
					recenb |= (8<<(i*8));
				}
			}
		}
	}

//  recena = 0x0000090a;
//  recenb = 0x0000090a;

	print_debug("Receive enable A = ");
	print_debug_hex32(recena);
	print_debug(",  Receive enable B = ");
	print_debug_hex32(recenb);
	print_debug("\r\n");

	/* clear out the calibration area */
	write32(BAR+DCALDATA+(16*4), 0x00000000);
	write32(BAR+DCALDATA+(17*4), 0x00000000);
	write32(BAR+DCALDATA+(18*4), 0x00000000);
	write32(BAR+DCALDATA+(19*4), 0x00000000);

	/* No command */
	write32(BAR+DCALCSR, 0x0000000f);

	write32(BAR+0x150, recena);
	write32(BAR+0x154, recenb);
}


static void sdram_enable(int controllers, const struct mem_controller *ctrl)
{
	int i;
	int cs;
	int cnt;
	int cas_latency;
	long mask;
	uint32_t drc;
	uint32_t data32;
	uint32_t mode_reg;
	uint32_t *iptr;
	volatile unsigned long *iptrv;
	msr_t msr;
	uint32_t scratch;
	uint8_t byte;
	uint16_t data16;
	static const struct {
		uint32_t clkgr[4];
	} gearing [] = {
		/* FSB 133 DIMM 266 */
	{{ 0x00000001, 0x00000000, 0x00000001, 0x00000000}},
		/* FSB 133 DIMM 333 */
	{{ 0x00000000, 0x00000000, 0x00000000, 0x00000000}},
		/* FSB 133 DIMM 400 */
	{{ 0x00000120, 0x00000000, 0x00000032, 0x00000010}},
		/* FSB 167 DIMM 266 */
	{{ 0x00005432, 0x00001000, 0x00004325, 0x00000000}},
		/* FSB 167 DIMM 333 */
	{{ 0x00000001, 0x00000000, 0x00000001, 0x00000000}},
		/* FSB 167 DIMM 400 */
	{{ 0x00154320, 0x00000000, 0x00065432, 0x00010000}},
		/* FSB 200 DIMM 266 */
	{{ 0x00000032, 0x00000010, 0x00000120, 0x00000000}},
		/* FSB 200 DIMM 333 */
	{{ 0x00065432, 0x00010000, 0x00054326, 0x00000000}},
		/* FSB 200 DIMM 400 */
	{{ 0x00000001, 0x00000000, 0x00000001, 0x00000000}},
	};
	
	static const uint32_t dqs_data[] = {
		0xffffffff, 0xffffffff, 0x000000ff, 
		0xffffffff, 0xffffffff, 0x000000ff, 
		0xffffffff, 0xffffffff,	0x000000ff,
		0xffffffff, 0xffffffff, 0x000000ff,
		0xffffffff, 0xffffffff, 0x000000ff, 
		0xffffffff, 0xffffffff, 0x000000ff, 
		0xffffffff, 0xffffffff, 0x000000ff, 
		0xffffffff, 0xffffffff, 0x000000ff};

	mask = spd_detect_dimms(ctrl);
	print_debug("Starting SDRAM Enable\r\n");

	/* 0x80 */
#ifdef DIMM_MAP_LOGICAL
	pci_write_config32(ctrl->f0, DRM,
		0x00210000 | DIMM_MAP_LOGICAL);
#else
	pci_write_config32(ctrl->f0, DRM, 0x00211248);
#endif
	/* set dram type and Front Side Bus freq. */
	drc = spd_set_dram_controller_mode(ctrl, mask);
	if( drc == 0) {
		die("Error calculating DRC\r\n");
	}
	data32 = drc & ~(3 << 20);  /* clear ECC mode */
	data32 = data32 & ~(7 << 8);  /* clear refresh rates */
	data32 = data32 | (1 << 5);  /* temp turn off of ODT */
  	/* Set gearing, then dram controller mode */
  	/* drc bits 1:0 = DIMM speed, bits 3:2 = FSB speed */
  	for(iptr = gearing[(drc&3)+((((drc>>2)&3)-1)*3)].clkgr,cnt=0;
			cnt<4;cnt++) {
  		pci_write_config32(ctrl->f0, 0xa0+(cnt*4), iptr[cnt]);
	}
	/* 0x7c DRC */
  	pci_write_config32(ctrl->f0, DRC, data32);
	
		/* turn the clocks on */
	/* 0x8c CKDIS */
  	pci_write_config16(ctrl->f0, CKDIS, 0x0000);
	
		/* 0x9a DDRCSR Take subsystem out of idle */
  	data16 = pci_read_config16(ctrl->f0, DDRCSR);
	data16 &= ~(7 << 12);
	data16 |= (3 << 12);   /* use dual channel lock step */
  	pci_write_config16(ctrl->f0, DDRCSR, data16);
	
		/* program row size DRB */
	spd_set_ram_size(ctrl, mask);

		/* program page size DRA */
	spd_set_row_attributes(ctrl, mask);

		/* program DRT timing values */	
	cas_latency = spd_set_drt_attributes(ctrl, mask, drc);

	for(i=0;i<8;i++) { /* loop throught each dimm to test for row */
		print_debug("DIMM ");
		print_debug_hex8(i);
		print_debug("\r\n");
		/* Apply NOP */
		do_delay();
		
		write32(BAR + 0x100, (0x03000000 | (i<<20)));

		write32(BAR+0x100, (0x83000000 | (i<<20)));

		data32 = read32(BAR+DCALCSR);
		while(data32 & 0x80000000)
			data32 = read32(BAR+DCALCSR);

	}
	
	/* Apply NOP */
	do_delay();

	for(cs=0;cs<8;cs++) {	
		write32(BAR + DCALCSR, (0x83000000 | (cs<<20))); 
		data32 = read32(BAR+DCALCSR);
		while(data32 & 0x80000000)
			data32 = read32(BAR+DCALCSR);
	}

	/* Precharg all banks */
	do_delay();
	for(cs=0;cs<8;cs++) {	
		if ((drc & 3) == 2) /* DDR2  */
                        write32(BAR+DCALADDR, 0x04000000);
                else   /* DDR1  */
                        write32(BAR+DCALADDR, 0x00000000);
		write32(BAR+DCALCSR, (0x83000002 | (cs<<20)));
		data32 = read32(BAR+DCALCSR);
		while(data32 & 0x80000000)
			data32 = read32(BAR+DCALCSR);
	}
		
	/* EMRS dll's enabled */
	do_delay();
	for(cs=0;cs<8;cs++) {	
		if ((drc & 3) == 2) /* DDR2  */
			/* fixme hard code AL additive latency */
                        write32(BAR+DCALADDR, 0x0b940001);
                else   /* DDR1  */
                        write32(BAR+DCALADDR, 0x00000001);
		write32(BAR+DCALCSR, (0x83000003 | (cs<<20)));
		data32 = read32(BAR+DCALCSR);
		while(data32 & 0x80000000)
			data32 = read32(BAR+DCALCSR);
	}
	/* MRS reset dll's */
	do_delay();
	if ((drc & 3) == 2) {  /* DDR2  */
                if(cas_latency == 30)
                        mode_reg = 0x053a0000;
                else
                        mode_reg = 0x054a0000;
        }
        else {  /* DDR1  */
                if(cas_latency == 20)
                        mode_reg = 0x012a0000;
                else  /*  CAS Latency 2.5 */
                        mode_reg = 0x016a0000;
        }
	for(cs=0;cs<8;cs++) {	
		write32(BAR+DCALADDR, mode_reg);
		write32(BAR+DCALCSR, (0x83000003 | (cs<<20)));
		data32 = read32(BAR+DCALCSR);
		while(data32 & 0x80000000)
			data32 = read32(BAR+DCALCSR);
	}

	/* Precharg all banks */
	do_delay();
	do_delay();
	do_delay();
	for(cs=0;cs<8;cs++) {	
		if ((drc & 3) == 2) /* DDR2  */
                        write32(BAR+DCALADDR, 0x04000000);
                else   /* DDR1  */
                        write32(BAR+DCALADDR, 0x00000000);
		write32(BAR+DCALCSR, (0x83000002 | (cs<<20)));
		data32 = read32(BAR+DCALCSR);
		while(data32 & 0x80000000)
			data32 = read32(BAR+DCALCSR);
	}
	
	/* Do 2 refreshes */
	do_delay();
	for(cs=0;cs<8;cs++) {	
		write32(BAR+DCALCSR, (0x83000001 | (cs<<20)));
		data32 = read32(BAR+DCALCSR);
		while(data32 & 0x80000000)
			data32 = read32(BAR+DCALCSR);
	}
	do_delay();
	for(cs=0;cs<8;cs++) {	
		write32(BAR+DCALCSR, (0x83000001 | (cs<<20)));
		data32 = read32(BAR+DCALCSR);
		while(data32 & 0x80000000)
			data32 = read32(BAR+DCALCSR);
	}
	do_delay();
	/* for good luck do 6 more */
	for(cs=0;cs<8;cs++) {	
		write32(BAR+DCALCSR, (0x83000001 | (cs<<20)));
	}
	do_delay();
	for(cs=0;cs<8;cs++) {	
		write32(BAR+DCALCSR, (0x83000001 | (cs<<20)));
	}
	do_delay();
	for(cs=0;cs<8;cs++) {	
		write32(BAR+DCALCSR, (0x83000001 | (cs<<20)));
	}
	do_delay();
	for(cs=0;cs<8;cs++) {	
		write32(BAR+DCALCSR, (0x83000001 | (cs<<20)));
	}
	do_delay();
	for(cs=0;cs<8;cs++) {	
		write32(BAR+DCALCSR, (0x83000001 | (cs<<20)));
	}
	do_delay();
	for(cs=0;cs<8;cs++) {	
		write32(BAR+DCALCSR, (0x83000001 | (cs<<20)));
	}
	do_delay();
	/* MRS reset dll's normal */
	do_delay();
	for(cs=0;cs<8;cs++) {	
		write32(BAR+DCALADDR, (mode_reg & ~(1<<24)));
		write32(BAR+DCALCSR, (0x83000003 | (cs<<20)));
		data32 = read32(BAR+DCALCSR);
		while(data32 & 0x80000000)
			data32 = read32(BAR+DCALCSR);
	}

	/* Do only if DDR2  EMRS dll's enabled */
        if ((drc & 3) == 2) { /* DDR2  */
                do_delay();
                for(cs=0;cs<8;cs++) {
                        write32(BAR+DCALADDR, (0x0b940001));
                        write32(BAR+DCALCSR, (0x83000003 | (cs<<20)));
			data32 = read32(BAR+DCALCSR);
			while(data32 & 0x80000000)
				data32 = read32(BAR+DCALCSR);
                }
        }

	do_delay();
	/* No command */
	write32(BAR+DCALCSR, 0x0000000f);

	/* DDR1 This is test code to copy some codes in the factory setup */
	
	write32(BAR, 0x00100000);

        if ((drc & 3) == 2) { /* DDR2  */
	/* enable on dimm termination */
		set_on_dimm_termination_enable(ctrl);
	}

	/* receive enable calibration */
	set_receive_enable(ctrl);
	
	/* DQS */
	pci_write_config32(ctrl->f0, 0x94, 0x3904a100 ); 
	for(i = 0, cnt = (BAR+0x200); i < 24; i++, cnt+=4) {
		write32(cnt, dqs_data[i]);
	}
	pci_write_config32(ctrl->f0, 0x94, 0x3904a100 );

	/* Enable refresh */
	/* 0x7c DRC */
	data32 = drc & ~(3 << 20);  /* clear ECC mode */
	pci_write_config32(ctrl->f0, DRC, data32);	
	write32(BAR+DCALCSR, 0x0008000f);

	/* clear memory and init ECC */
	print_debug("Clearing memory\r\n");
	for(i=0;i<64;i+=4) {
		write32(BAR+DCALDATA+i, 0x00000000);
	}
	
	for(cs=0;cs<8;cs++) {
		write32(BAR+DCALCSR, (0x830831d8 | (cs<<20)));
		data32 = read32(BAR+DCALCSR);
		while(data32 & 0x80000000)
			data32 = read32(BAR+DCALCSR);
	}

	/* Bring memory subsystem on line */
	data32 = pci_read_config32(ctrl->f0, 0x98);
	data32 |= (1 << 31);
	pci_write_config32(ctrl->f0, 0x98, data32);
	/* wait for completion */
	print_debug("Waiting for mem complete\r\n");
	while(1) {
		data32 = pci_read_config32(ctrl->f0, 0x98);
		if( (data32 & (1<<31)) == 0)
			break;
	}
	print_debug("Done\r\n");
	
	/* Set initialization complete */
	/* 0x7c DRC */
	drc |= (1 << 29);
	data32 = drc & ~(3 << 20);  /* clear ECC mode */
	pci_write_config32(ctrl->f0, DRC, data32);	

	/* Set the ecc mode */
	pci_write_config32(ctrl->f0, DRC, drc);	

	/* Enable memory scrubbing */
	/* 0x52 MCHSCRB */	
	data16 = pci_read_config16(ctrl->f0, MCHSCRB);
	data16 &= ~0x0f;
	data16 |= ((2 << 2) | (2 << 0));
	pci_write_config16(ctrl->f0, MCHSCRB, data16);	

	/* The memory is now setup, use it */
	cache_lbmem(MTRR_TYPE_WRBACK);
}