summaryrefslogtreecommitdiff
path: root/src/northbridge/intel/e7505/raminit.c
blob: 455f3ab5e4cb4bdc07d256a2e23cf218d3a4d550 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
/* This was originally for the e7500, modified for e7501
 * The primary differences are that 7501 apparently can
 * support single channel RAM (i haven't tested),
 * CAS1.5 is no longer supported, The ECC scrubber
 * now supports a mode to zero RAM and init ECC in one step
 * and the undocumented registers at 0x80 require new
 * (undocumented) values determined by guesswork and
 * comparison w/ OEM BIOS values.
 * Steven James 02/06/2003
 */

/* converted to C 6/2004 yhlu */


#include <stdint.h>
#include <device/pci_def.h>
#include <arch/io.h>
#include <arch/cpu.h>
#include <lib.h>
#include <stdlib.h>
#include <console/console.h>

#include <cpu/x86/mtrr.h>
#include <cpu/x86/cache.h>
#include <cpu/x86/msr.h>
#include <assert.h>
#include <spd.h>
#include <sdram_mode.h>
#include <cbmem.h>

#include "raminit.h"
#include "e7505.h"
#include "debug.h"

/*-----------------------------------------------------------------------------
Definitions:
-----------------------------------------------------------------------------*/

// Uncomment this to enable run-time checking of DIMM parameters
// for dual-channel operation
// Unfortunately the code seems to chew up several K of space.
//#define VALIDATE_DIMM_COMPATIBILITY

#if CONFIG_DEBUG_RAM_SETUP
#define RAM_DEBUG_MESSAGE(x)	print_debug(x)
#define RAM_DEBUG_HEX32(x)	print_debug_hex32(x)
#define RAM_DEBUG_HEX8(x)	print_debug_hex8(x)
#define DUMPNORTH()		dump_pci_device(MCHDEV)
#else
#define RAM_DEBUG_MESSAGE(x)
#define RAM_DEBUG_HEX32(x)
#define RAM_DEBUG_HEX8(x)
#define DUMPNORTH()
#endif

#define E7501_SDRAM_MODE	(SDRAM_BURST_INTERLEAVED | SDRAM_BURST_4)
#define SPD_ERROR		"Error reading SPD info\n"

#define MCHDEV		PCI_DEV(0,0,0)
#define RASDEV		PCI_DEV(0,0,1)
#define D060DEV		PCI_DEV(0,6,0)

// NOTE: This used to be 0x100000.
//       That doesn't work on systems where A20M# is asserted, because
//       attempts to access 0x1000NN end up accessing 0x0000NN.
#define RCOMP_MMIO 0x200000

struct dimm_size {
	unsigned long side1;
	unsigned long side2;
};

static const uint32_t refresh_frequency[] = {
	/* Relative frequency (array value) of each E7501 Refresh Mode Select
	 * (RMS) value (array index)
	 * 0 == least frequent refresh (longest interval between refreshes)
	 * [0] disabled  -> 0
	 * [1] 15.6 usec -> 2
	 * [2]  7.8 usec -> 3
	 * [3] 64   usec -> 1
	 * [4] reserved  -> 0
	 * [5] reserved  -> 0
	 * [6] reserved  -> 0
	 * [7] 64 clocks -> 4
	 */
	0, 2, 3, 1, 0, 0, 0, 4
};

static const uint32_t refresh_rate_map[] = {
	/* Map the JEDEC spd refresh rates (array index) to E7501 Refresh Mode
	 * Select values (array value)
	 * These are all the rates defined by JESD21-C Appendix D, Rev. 1.0
	 * The E7501 supports only 15.6 us (1), 7.8 us (2), 64 us (3), and
	 * 64 clock (481 ns) (7) refresh.
	 * [0] ==  15.625 us -> 15.6 us
	 * [1] ==   3.9   us -> 481  ns
	 * [2] ==   7.8   us ->  7.8 us
	 * [3] ==  31.3   us -> 15.6 us
	 * [4] ==  62.5   us -> 15.6 us
	 * [5] == 125     us -> 64   us
	 */
	1, 7, 2, 1, 1, 3
};

#define MAX_SPD_REFRESH_RATE ((sizeof(refresh_rate_map) / sizeof(uint32_t)) - 1)

// SPD parameters that must match for dual-channel operation
static const uint8_t dual_channel_parameters[] = {
	SPD_MEMORY_TYPE,
	SPD_MODULE_VOLTAGE,
	SPD_NUM_COLUMNS,
	SPD_NUM_ROWS,
	SPD_NUM_DIMM_BANKS,
	SPD_PRIMARY_SDRAM_WIDTH,
	SPD_NUM_BANKS_PER_SDRAM
};

	/* Comments here are remains of e7501 or even 855PM.
	 * They might be partially (in)correct for e7505.
	 */

	/* (DRAM Read Timing Control, if similar to 855PM?)
	 * 0x80 - 0x81   documented differently for e7505
	 * This register has something to do with CAS latencies,
	 * possibily this is the real chipset control.
	 * At 0x00 CAS latency 1.5 works.
	 * At 0x06 CAS latency 2.5 works.
	 * At 0x01 CAS latency 2.0 works.
	 *
	 * This is still undocumented in e7501, but with different values
	 * CAS 2.0 values taken from Intel BIOS settings, others are a guess
	 * and may be terribly wrong. Old values preserved as comments until I
	 * figure this out for sure.
	 * e7501 docs claim that CAS1.5 is unsupported, so it may or may not
	 * work at all.
	 * Steven James 02/06/2003
	 *
	 * NOTE: values now configured in configure_e7501_cas_latency() based
	 *       on SPD info and total number of DIMMs (per Intel)
	 */

	/* FDHC - Fixed DRAM Hole Control  ???
	 * 0x58  undocumented for e7505, memory hole in southbridge configuration?
	 * [7:7] Hole_Enable
	 *       0 == No memory Hole
	 *       1 == Memory Hole from 15MB to 16MB
	 * [6:0] Reserved
	 */

	/* Another Intel undocumented register
	 * 0x88 - 0x8B
	 * [31:31]      Purpose unknown
	 * [26:26]      Master DLL Reset?
	 *                      0 == Normal operation?
	 *                      1 == Reset?
	 * [07:07]      Periodic memory recalibration?
	 *                      0 == Disabled?
	 *                      1 == Enabled?
	 * [04:04]      Receive FIFO RE-Sync?
	 *                      0 == Normal operation?
	 *                      1 == Reset?
	 */

/* DDR RECOMP tables */
// Slew table for 2x drive?
static const uint32_t slew_2x[] = {
	0x00000000, 0x76543210, 0xffffeca8, 0xffffffff,
	0x21000000, 0xa8765432, 0xffffffec, 0xffffffff,
};

// Pull Up / Pull Down offset table, if analogous to IXP2800?
static const uint32_t pull_updown_offset_table[] = {
	0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
	0x88888888, 0x88888888, 0x88888888, 0x88888888,
};

/*-----------------------------------------------------------------------------
Delay functions:
-----------------------------------------------------------------------------*/

/* Estimate that SLOW_DOWN_IO takes about 1 us */
#define SLOW_DOWN_IO inb(0x80)
static void local_udelay(int i)
{
	while (i--) {
		SLOW_DOWN_IO;
	}
}

/* delay for 200us */
#define DO_DELAY local_udelay(200)
#define EXTRA_DELAY DO_DELAY

/*-----------------------------------------------------------------------------
Handle (undocumented) control bits MCHTST and PCI_DEV(0,6,0)
-----------------------------------------------------------------------------*/
typedef enum {
	MCHTST_CMD_0,
	D060_ENABLE,
	D060_DISABLE,
	RCOMP_BAR_ENABLE,
	RCOMP_BAR_DISABLE,
} mchtst_cc;

typedef enum {
	D060_CMD_0,
	D060_CMD_1,
} d060_cc;

typedef enum {
	RCOMP_HOLD,
	RCOMP_RELEASE,
	RCOMP_SMR_00,
	RCOMP_SMR_01,
} rcomp_smr_cc;

/**
 * MCHTST - 0xF4 - 0xF7     --   Based on similarity to 855PM
 *
 * [31:31] Purpose unknown
 * [30:30] Purpose unknown
 * [29:23] Unknown - not used?
 * [22:22] System Memory MMR Enable
 *         0 == Disable: mem space and BAR at 0x14 are not accessible
 *         1 == Enable: mem space and BAR at 0x14 are accessible
 * [21:20] Purpose unknown
 * [19:02] Unknown - not used?
 * [01:01] D6EN (Device #6 enable)
 *         0 == Disable
 *         1 == Enable
 * [00:00] Unknown - not used?
 */
static void mchtest_control(mchtst_cc cmd)
{
	uint32_t dword = pci_read_config32(MCHDEV, MCHTST);
	switch (cmd) {
	case MCHTST_CMD_0:
		dword &= ~(3 << 30);
		break;
	case RCOMP_BAR_ENABLE:
		dword |= (1 << 22);
		break;
	case RCOMP_BAR_DISABLE:
		dword &= ~(1 << 22);
		break;
	case D060_ENABLE:
		dword |= (1 << 1);
		break;
	case D060_DISABLE:
		dword &= ~(1 << 1);
		break;
	};
	pci_write_config32(MCHDEV, MCHTST, dword);
}


/**
 *
 */
static void d060_control(d060_cc cmd)
{
	mchtest_control(D060_ENABLE);
	uint32_t dword = pci_read_config32(D060DEV, 0xf0);
	switch (cmd) {
	case D060_CMD_0:
		dword |= (1 << 2);
		break;
	case D060_CMD_1:
		dword |= (3 << 27);
		break;
	}
	pci_write_config32(D060DEV, 0xf0, dword);
	mchtest_control(D060_DISABLE);
}

/**
 *
 */
static void rcomp_smr_control(rcomp_smr_cc cmd)
{
	uint32_t dword = read32(RCOMP_MMIO + SMRCTL);
	switch (cmd) {
	case RCOMP_HOLD:
		dword |= (1 << 9);
		break;
	case RCOMP_RELEASE:
		dword &= ~((1 << 9) | (3 << 0));
		dword |= (1 << 10) | (1 << 0);
		break;
	case RCOMP_SMR_00:
		dword &= ~(1 << 8);
		break;
	case RCOMP_SMR_01:
		dword |= (1 << 10) | (1 << 8);
		break;
	}
	write32(RCOMP_MMIO + SMRCTL, dword);
}

/*-----------------------------------------------------------------------------
Serial presence detect (SPD) functions:
-----------------------------------------------------------------------------*/

static void die_on_spd_error(int spd_return_value)
{
	if (spd_return_value < 0)
		die("Error reading SPD info\n");
}

/**
 * Calculate the page size for each physical bank of the DIMM:
 *   log2(page size) = (# columns) + log2(data width)
 *
 * NOTE: Page size is the total number of data bits in a row.
 *
 * @param dimm_socket_address SMBus address of DIMM socket to interrogate.
 * @return log2(page size) for each side of the DIMM.
 */
static struct dimm_size sdram_spd_get_page_size(uint16_t dimm_socket_address)
{
	uint16_t module_data_width;
	int value;
	struct dimm_size pgsz;

	pgsz.side1 = 0;
	pgsz.side2 = 0;

	// Side 1
	value = spd_read_byte(dimm_socket_address, SPD_NUM_COLUMNS);
	if (value < 0)
		goto hw_err;
	pgsz.side1 = value & 0xf;	// # columns in bank 1

	/* Get the module data width and convert it to a power of two */
	value =
	    spd_read_byte(dimm_socket_address, SPD_MODULE_DATA_WIDTH_MSB);
	if (value < 0)
		goto hw_err;
	module_data_width = (value & 0xff) << 8;

	value =
	    spd_read_byte(dimm_socket_address, SPD_MODULE_DATA_WIDTH_LSB);
	if (value < 0)
		goto hw_err;
	module_data_width |= (value & 0xff);

	pgsz.side1 += log2(module_data_width);

	/* side two */
	value = spd_read_byte(dimm_socket_address, SPD_NUM_DIMM_BANKS);
	if (value < 0)
		goto hw_err;
	if (value > 2)
		die("Bad SPD value\n");
	if (value == 2) {

		pgsz.side2 = pgsz.side1;	// Assume symmetric banks until we know differently
		value =
		    spd_read_byte(dimm_socket_address, SPD_NUM_COLUMNS);
		if (value < 0)
			goto hw_err;
		if ((value & 0xf0) != 0) {
			// Asymmetric banks
			pgsz.side2 -= value & 0xf;	/* Subtract out columns on side 1 */
			pgsz.side2 += (value >> 4) & 0xf;	/* Add in columns on side 2 */
		}
	}

	return pgsz;

      hw_err:
	die(SPD_ERROR);
	return pgsz;		// Never reached
}

/**
 * Read the width in bits of each DIMM side's DRAMs via SPD (i.e. 4, 8, 16).
 *
 * @param dimm_socket_address SMBus address of DIMM socket to interrogate.
 * @return Width in bits of each DIMM side's DRAMs.
 */
static struct dimm_size sdram_spd_get_width(uint16_t dimm_socket_address)
{
	int value;
	struct dimm_size width;

	width.side1 = 0;
	width.side2 = 0;

	value =
	    spd_read_byte(dimm_socket_address, SPD_PRIMARY_SDRAM_WIDTH);
	die_on_spd_error(value);

	width.side1 = value & 0x7f;	// Mask off bank 2 flag

	if (value & 0x80) {
		width.side2 = width.side1 << 1;	// Bank 2 exists and is double-width
	} else {
		// If bank 2 exists, it's the same width as bank 1
		value =
		    spd_read_byte(dimm_socket_address, SPD_NUM_DIMM_BANKS);
		die_on_spd_error(value);

#ifdef ROMCC_IF_BUG_FIXED
		if (value == 2)
			width.side2 = width.side1;
#else
		switch (value) {
		case 2:
			width.side2 = width.side1;
			break;

		default:
			break;
		}
#endif
	}

	return width;
}

/**
 * Calculate the log base 2 size in bits of both DIMM sides.
 *
 * log2(# bits) = (# columns) + log2(data width) +
 *                (# rows) + log2(banks per SDRAM)
 *
 * Note that it might be easier to use SPD byte 31 here, it has the DIMM size
 * as a multiple of 4MB. The way we do it now we can size both sides of an
 * asymmetric DIMM.
 *
 * @param dimm_socket_address SMBus address of DIMM socket to interrogate.
 * @return log2(number of bits) for each side of the DIMM.
 */
static struct dimm_size spd_get_dimm_size(unsigned dimm_socket_address)
{
	int value;

	// Start with log2(page size)
	struct dimm_size sz = sdram_spd_get_page_size(dimm_socket_address);

	if (sz.side1 > 0) {

		value = spd_read_byte(dimm_socket_address, SPD_NUM_ROWS);
		die_on_spd_error(value);

		sz.side1 += value & 0xf;

		if (sz.side2 > 0) {

			// Double-sided DIMM
			if (value & 0xF0)
				sz.side2 += value >> 4;	// Asymmetric
			else
				sz.side2 += value;	// Symmetric
		}

		value =
		    spd_read_byte(dimm_socket_address,
				  SPD_NUM_BANKS_PER_SDRAM);
		die_on_spd_error(value);

		value = log2(value);
		sz.side1 += value;
		if (sz.side2 > 0)
			sz.side2 += value;
	}

	return sz;
}

#ifdef VALIDATE_DIMM_COMPATIBILITY

/**
 * Determine whether two DIMMs have the same value for an SPD parameter.
 *
 * @param spd_byte_number The SPD byte number to compare in both DIMMs.
 * @param dimm0_address SMBus address of the 1st DIMM socket to interrogate.
 * @param dimm1_address SMBus address of the 2nd DIMM socket to interrogate.
 * @return 1 if both DIMM sockets report the same value for the specified
 *         SPD parameter, 0 if the values differed or an error occurred.
 */
static uint8_t are_spd_values_equal(uint8_t spd_byte_number,
				    uint16_t dimm0_address,
				    uint16_t dimm1_address)
{
	uint8_t bEqual = 0;
	int dimm0_value = spd_read_byte(dimm0_address, spd_byte_number);
	int dimm1_value = spd_read_byte(dimm1_address, spd_byte_number);

	if ((dimm0_value >= 0) && (dimm1_value >= 0)
	    && (dimm0_value == dimm1_value))
		bEqual = 1;

	return bEqual;
}
#endif

/**
 * Scan for compatible DIMMs.
 *
 * The code in this module only supports dual-channel operation, so we test
 * that compatible DIMMs are paired.
 *
 * @param ctrl PCI addresses of memory controller functions, and SMBus
 *             addresses of DIMM slots on the mainboard.
 * @return A bitmask indicating which of the possible sockets for each channel
 *         was found to contain a compatible DIMM.
 *         Bit 0 corresponds to the closest socket for channel 0
 *         Bit 1 to the next socket for channel 0
 *         ...
 *         Bit MAX_DIMM_SOCKETS_PER_CHANNEL-1 to the last socket for channel 0
 *         Bit MAX_DIMM_SOCKETS_PER_CHANNEL is the closest socket for channel 1
 *         ...
 *         Bit 2*MAX_DIMM_SOCKETS_PER_CHANNEL-1 is the last socket for channel 1
 */
static uint8_t spd_get_supported_dimms(const struct mem_controller *ctrl)
{
	int i;
	uint8_t dimm_mask = 0;

	// Have to increase size of dimm_mask if this assertion is violated
	ASSERT(MAX_DIMM_SOCKETS_PER_CHANNEL <= 4);

	// Find DIMMs we can support on channel 0.
	// Then see if the corresponding channel 1 DIMM has the same parameters,
	// since we only support dual-channel.

	for (i = 0; i < MAX_DIMM_SOCKETS_PER_CHANNEL; i++) {

		uint16_t channel0_dimm = ctrl->channel0[i];
		uint16_t channel1_dimm = ctrl->channel1[i];
		uint8_t bDualChannel = 1;
#ifdef VALIDATE_DIMM_COMPATIBILITY
		struct dimm_size page_size;
		struct dimm_size sdram_width;
#endif
		int spd_value;

		if (channel0_dimm == 0)
			continue;	// No such socket on this mainboard

		if (spd_read_byte(channel0_dimm, SPD_MEMORY_TYPE) !=
		    SPD_MEMORY_TYPE_SDRAM_DDR)
			continue;

#ifdef VALIDATE_DIMM_COMPATIBILITY
		if (spd_read_byte(channel0_dimm, SPD_MODULE_VOLTAGE) !=
		    SPD_VOLTAGE_SSTL2)
			continue;	// Unsupported voltage

		// E7501 does not support unregistered DIMMs
		spd_value =
		    spd_read_byte(channel0_dimm, SPD_MODULE_ATTRIBUTES);
		if (!(spd_value & MODULE_REGISTERED) || (spd_value < 0))
			continue;

		// Must support burst = 4 for dual-channel operation on E7501
		// NOTE: for single-channel, burst = 8 is required
		spd_value =
		    spd_read_byte(channel0_dimm,
				  SPD_SUPPORTED_BURST_LENGTHS);
		if (!(spd_value & SPD_BURST_LENGTH_4) || (spd_value < 0))
			continue;

		page_size = sdram_spd_get_page_size(channel0_dimm);
		sdram_width = sdram_spd_get_width(channel0_dimm);

		// Validate DIMM page size
		// The E7501 only supports page sizes of 4, 8, 16, or 32 KB per channel
		// NOTE: 4 KB =  32 Kb = 2^15
		//              32 KB = 262 Kb = 2^18

		if ((page_size.side1 < 15) || (page_size.side1 > 18))
			continue;

		// If DIMM is double-sided, verify side2 page size
		if (page_size.side2 != 0) {
			if ((page_size.side2 < 15)
			    || (page_size.side2 > 18))
				continue;
		}
		// Validate SDRAM width
		// The E7501 only supports x4 and x8 devices

		if ((sdram_width.side1 != 4) && (sdram_width.side1 != 8))
			continue;

		// If DIMM is double-sided, verify side2 width
		if (sdram_width.side2 != 0) {
			if ((sdram_width.side2 != 4)
			    && (sdram_width.side2 != 8))
				continue;
		}
#endif
		// Channel 0 DIMM looks compatible.
		// Now see if it is paired with the proper DIMM on channel 1.

		ASSERT(channel1_dimm != 0);	// No such socket on this mainboard??

		// NOTE: unpopulated DIMMs cause read to fail
		spd_value =
		    spd_read_byte(channel1_dimm, SPD_MODULE_ATTRIBUTES);
		if (!(spd_value & MODULE_REGISTERED) || (spd_value < 0)) {

			print_debug("Skipping un-matched DIMMs - only dual-channel operation supported\n");
			continue;
		}
#ifdef VALIDATE_DIMM_COMPATIBILITY
		spd_value =
		    spd_read_byte(channel1_dimm,
				  SPD_SUPPORTED_BURST_LENGTHS);
		if (!(spd_value & SPD_BURST_LENGTH_4) || (spd_value < 0))
			continue;

		int j;
		for (j = 0; j < sizeof(dual_channel_parameters); ++j) {
			if (!are_spd_values_equal
			    (dual_channel_parameters[j], channel0_dimm,
			     channel1_dimm)) {

				bDualChannel = 0;
				break;
			}
		}
#endif

		// Code around ROMCC bug in optimization of "if" statements
#ifdef ROMCC_IF_BUG_FIXED
		if (bDualChannel) {
			// Made it through all the checks, this DIMM pair is usable
			dimm_mask |= ((1 << i) | (1 << (MAX_DIMM_SOCKETS_PER_CHANNEL + i)));
		} else
			print_debug("Skipping un-matched DIMMs - only dual-channel operation supported\n");
#else
		switch (bDualChannel) {
		case 0:
			print_debug("Skipping un-matched DIMMs - only dual-channel operation supported\n");
			break;

		default:
			// Made it through all the checks, this DIMM pair is usable
			dimm_mask |= (1 << i) | (1 << (MAX_DIMM_SOCKETS_PER_CHANNEL + i));
			break;
		}
#endif
	}

	return dimm_mask;
}

/*-----------------------------------------------------------------------------
SDRAM configuration functions:
-----------------------------------------------------------------------------*/

/**
 * Send the specified command to all DIMMs.
 *
 * @param command Specifies the command to be sent to the DIMMs.
 * @param jedec_mode_bits For the MRS & EMRS commands, bits 0-12 contain the
 *                        register value in JEDEC format.
 */
static void do_ram_command(uint8_t command, uint16_t jedec_mode_bits)
{
	uint8_t dimm_start_64M_multiple;
	uint32_t dimm_start_address;
	uint32_t dram_controller_mode;
	uint8_t i;

	// Configure the RAM command
	dram_controller_mode = pci_read_config32(MCHDEV, DRC);
	dram_controller_mode &= 0xFFFFFF8F;
	dram_controller_mode |= command;
	pci_write_config32(MCHDEV, DRC, dram_controller_mode);

	// RAM_COMMAND_NORMAL is an exception.
	// It affects only the memory controller and does not need to be "sent" to the DIMMs.
	if (command == RAM_COMMAND_NORMAL) {
		EXTRA_DELAY;
		return;
	}

	// NOTE: for mode select commands, some of the location address bits are part of the command
	// Map JEDEC mode bits to E7505
	if (command == RAM_COMMAND_MRS) {
		// Host address lines [25:18] map to DIMM address lines [7:0]
		// Host address lines [17:16] map to DIMM address lines [9:8]
		// Host address lines [15:4] map to DIMM address lines [11:0]
		dimm_start_address = (jedec_mode_bits & 0x00ff) << 18;
		dimm_start_address |= (jedec_mode_bits & 0x0300) << 8;
		dimm_start_address |= (jedec_mode_bits & 0x0fff) << 4;
	} else if (command == RAM_COMMAND_EMRS) {
		// Host address lines [15:4] map to DIMM address lines [11:0]
		dimm_start_address = (jedec_mode_bits << 4);
	} else {
		ASSERT(jedec_mode_bits == 0);
		dimm_start_address = 0;
	}

	// Send the command to all DIMMs by accessing a memory location within each

	dimm_start_64M_multiple = 0;

	/* FIXME: Only address the number of rows present in the system?
	 * Seems like rows 4-7 overlap with 0-3.
	 */
	for (i = 0; i < (MAX_NUM_CHANNELS * MAX_DIMM_SOCKETS_PER_CHANNEL); ++i) {

		uint8_t dimm_end_64M_multiple = pci_read_config8(MCHDEV, DRB_ROW_0 + i);

		if (dimm_end_64M_multiple > dimm_start_64M_multiple) {
			dimm_start_address &= 0x3ffffff;
			dimm_start_address |= dimm_start_64M_multiple << 26;
			read32(dimm_start_address);
			// Set the start of the next DIMM
			dimm_start_64M_multiple = dimm_end_64M_multiple;
		}
	}
	EXTRA_DELAY;
}

/**
 * Set the mode register of all DIMMs.
 *
 * The proper CAS# latency setting is added to the mode bits specified
 * by the caller.
 *
 * @param jedec_mode_bits For the MRS & EMRS commands, bits 0-12 contain the
 *                        register value in JEDEC format.
 */
static void set_ram_mode(uint16_t jedec_mode_bits)
{
	ASSERT(!(jedec_mode_bits & SDRAM_CAS_MASK));

	uint32_t dram_cas_latency =
	    pci_read_config32(MCHDEV, DRT) & DRT_CAS_MASK;

	switch (dram_cas_latency) {
	case DRT_CAS_2_5:
		jedec_mode_bits |= SDRAM_CAS_2_5;
		break;

	case DRT_CAS_2_0:
		jedec_mode_bits |= SDRAM_CAS_2_0;
		break;

	default:
		BUG();
		break;
	}

	do_ram_command(RAM_COMMAND_MRS, jedec_mode_bits);
}

/*-----------------------------------------------------------------------------
DIMM-independant configuration functions:
-----------------------------------------------------------------------------*/

/**
 * Configure the E7501's DRAM Row Boundary (DRB) registers for the memory
 * present in the specified DIMM.
 *
 * @param dimm_log2_num_bits Specifies log2(number of bits) for each side of
 *                           the DIMM.
 * @param total_dram_64M_multiple Total DRAM in the system (as a multiple of
 *                                64 MB) for DIMMs < dimm_index.
 * @param dimm_index Which DIMM pair is being processed
 *                   (0..MAX_DIMM_SOCKETS_PER_CHANNEL).
 * @return New multiple of 64 MB total DRAM in the system.
 */
static uint8_t configure_dimm_row_boundaries(struct dimm_size dimm_log2_num_bits, uint8_t total_dram_64M_multiple, unsigned dimm_index)
{
	int i;

	ASSERT(dimm_index < MAX_DIMM_SOCKETS_PER_CHANNEL);

	// DIMM sides must be at least 32 MB
	ASSERT(dimm_log2_num_bits.side1 >= 28);
	ASSERT((dimm_log2_num_bits.side2 == 0)
	       || (dimm_log2_num_bits.side2 >= 28));

	// In dual-channel mode, we are called only once for each pair of DIMMs.
	// Each time we process twice the capacity of a single DIMM.

	// Convert single DIMM capacity to paired DIMM capacity
	// (multiply by two ==> add 1 to log2)
	dimm_log2_num_bits.side1++;
	if (dimm_log2_num_bits.side2 > 0)
		dimm_log2_num_bits.side2++;

	// Add the capacity of side 1 this DIMM pair (as a multiple of 64 MB)
	// to the total capacity of the system
	// NOTE: 64 MB == 512 Mb, and log2(512 Mb) == 29

	total_dram_64M_multiple += (1 << (dimm_log2_num_bits.side1 - 29));

	// Configure the boundary address for the row on side 1
	pci_write_config8(MCHDEV, DRB_ROW_0 + (dimm_index << 1),
			  total_dram_64M_multiple);

	// If the DIMMs are double-sided, add the capacity of side 2 this DIMM pair
	// (as a multiple of 64 MB) to the total capacity of the system
	if (dimm_log2_num_bits.side2 >= 29)
		total_dram_64M_multiple +=
		    (1 << (dimm_log2_num_bits.side2 - 29));

	// Configure the boundary address for the row (if any) on side 2
	pci_write_config8(MCHDEV, DRB_ROW_1 + (dimm_index << 1),
			  total_dram_64M_multiple);

	// Update boundaries for rows subsequent to these.
	// These settings will be overridden by a subsequent call if a populated physical slot exists

	for (i = dimm_index + 1; i < MAX_DIMM_SOCKETS_PER_CHANNEL; i++) {
		pci_write_config8(MCHDEV, DRB_ROW_0 + (i << 1),
				  total_dram_64M_multiple);
		pci_write_config8(MCHDEV, DRB_ROW_1 + (i << 1),
				  total_dram_64M_multiple);
	}

	return total_dram_64M_multiple;
}

/**
 * Set the E7501's DRAM row boundary addresses & its Top Of Low Memory (TOLM).
 *
 * If necessary, set up a remap window so we don't waste DRAM that ordinarily
 * would lie behind addresses reserved for memory-mapped I/O.
 *
 * @param ctrl PCI addresses of memory controller functions, and SMBus
 *             addresses of DIMM slots on the mainboard.
 * @param dimm_mask Bitmask of populated DIMMs, see spd_get_supported_dimms().
 */
static void configure_e7501_ram_addresses(const struct mem_controller
					  *ctrl, uint8_t dimm_mask)
{
	int i;
	uint8_t total_dram_64M_multiple = 0;

	// Configure the E7501's DRAM row boundaries
	// Start by zeroing out the temporary initial configuration
	pci_write_config32(MCHDEV, DRB_ROW_0, 0);
	pci_write_config32(MCHDEV, DRB_ROW_4, 0);

	for (i = 0; i < MAX_DIMM_SOCKETS_PER_CHANNEL; i++) {

		uint16_t dimm_socket_address = ctrl->channel0[i];
		struct dimm_size sz;

		if (!(dimm_mask & (1 << i)))
			continue;	// This DIMM not present

		sz = spd_get_dimm_size(dimm_socket_address);

		RAM_DEBUG_MESSAGE("dimm size =");
		RAM_DEBUG_HEX32((u32)sz.side1);
		RAM_DEBUG_MESSAGE(" ");
		RAM_DEBUG_HEX32((u32)sz.side2);
		RAM_DEBUG_MESSAGE("\n");

		if (sz.side1 == 0)
			die("Bad SPD value\n");

		total_dram_64M_multiple =
		    configure_dimm_row_boundaries(sz, total_dram_64M_multiple, i);
	}

	// Configure the Top Of Low Memory (TOLM) in the E7501
	// This address must be a multiple of 128 MB that is less than 4 GB.
	// NOTE: 16-bit wide TOLM register stores only the highest 5 bits of a 32-bit address
	//               in the highest 5 bits.

	// We set TOLM to the smaller of 0xC0000000 (3 GB) or the total DRAM in the system.
	// This reserves addresses from 0xC0000000 - 0xFFFFFFFF for non-DRAM purposes
	// such as flash and memory-mapped I/O.

	// If there is more than 3 GB of DRAM, we define a remap window which
	// makes the DRAM "behind" the reserved region available above the top of physical
	// memory.

	// NOTE: 0xC0000000 / (64 MB) == 0x30

	if (total_dram_64M_multiple <= 0x30) {

		// <= 3 GB total RAM

		/* I should really adjust all of this in C after I have resources
		 * to all of the pci devices.
		 */

		// Round up to 128MB granularity
		// SJM: Is "missing" 64 MB of memory a potential issue? Should this round down?

		uint8_t total_dram_128M_multiple =
		    (total_dram_64M_multiple + 1) >> 1;

		// Convert to high 16 bits of address
		uint16_t top_of_low_memory =
		    total_dram_128M_multiple << 11;

		pci_write_config16(MCHDEV, TOLM,
				   top_of_low_memory);

	} else {

		// > 3 GB total RAM

		// Set defaults for > 4 GB DRAM, i.e. remap a 1 GB (= 0x10 * 64 MB) range of memory
		uint16_t remap_base = total_dram_64M_multiple;	// A[25:0] == 0
		uint16_t remap_limit = total_dram_64M_multiple + 0x10 - 1;	// A[25:0] == 0xF

		// Put TOLM at 3 GB

		pci_write_config16(MCHDEV, TOLM, 0xc000);

		// Define a remap window to make the RAM that would appear from 3 GB - 4 GB
		// visible just beyond 4 GB or the end of physical memory, whichever is larger
		// NOTE: 16-bit wide REMAP registers store only the highest 10 bits of a 36-bit address,
		//               (i.e. a multiple of 64 MB) in the lowest 10 bits.
		// NOTE: 0x100000000 / (64 MB) == 0x40

		if (total_dram_64M_multiple < 0x40) {
			remap_base = 0x40;	// 0x100000000
			remap_limit =
			    0x40 + (total_dram_64M_multiple - 0x30) - 1;
		}

		pci_write_config16(MCHDEV, REMAPBASE,
				   remap_base);
		pci_write_config16(MCHDEV, REMAPLIMIT,
				   remap_limit);
	}
}

/**
 * Execute ECC full-speed scrub once and leave scrubber disabled.
 *
 * NOTE: All cache and stack is lost during ECC scrub loop.
 */
static inline void __attribute__((always_inline))
		initialize_ecc(unsigned long ret_addr, unsigned long ret_addr2)
{
	uint16_t scrubbed = pci_read_config16(MCHDEV, MCHCFGNS) & 0x08;

	if (!scrubbed) {
		RAM_DEBUG_MESSAGE("Initializing ECC state...\n");

		/* ECC scrub flushes cache-lines and stack, need to
		 * store return address from romstage.c:main().
		 */
		asm volatile(
			"movd %0, %%xmm0;"
			"movd (%0), %%xmm1;"
			"movd %1, %%xmm2;"
			"movd (%1), %%xmm3;"
			:: "r" (ret_addr), "r" (ret_addr2) :
		);

		/* NOTE: All cache is lost during this loop.
		 * Make sure PCI access does not use stack.
		 */

		pci_write_config16(MCHDEV, MCHCFGNS, 0x01);
		do {
			scrubbed = pci_read_config16(MCHDEV, MCHCFGNS);
		} while (! (scrubbed & 0x08));
		pci_write_config16(MCHDEV, MCHCFGNS, (scrubbed & ~0x07) | 0x04);

		/* Some problem remains with XIP cache from ROM, so for
		 * now, I disable XIP and also invalidate cache (again)
		 * before the remaining small portion of romstage.
		 *
		 * Adding NOPs here has unexpected results, making
		 * the first do_printk()/vtxprintf() after ECC scrub
		 * fail midway. Sometimes vtxprintf() dumps strings
		 * completely but with every 4th (fourth) character as "/".
		 *
		 * An inlined dump to console of the same string,
		 * before vtxprintf() call, is successful. So the
		 * source string should be completely in cache already.
		 *
		 * I need to review this again with CPU microcode
		 * update applied pre-CAR.
		 */

		/* Disable and invalidate all cache. */
		msr_t xip_mtrr = rdmsr(MTRRphysMask_MSR(1));
		xip_mtrr.lo &= ~MTRRphysMaskValid;
		invd();
		wrmsr(MTRRphysMask_MSR(1), xip_mtrr);
		invd();

		RAM_DEBUG_MESSAGE("ECC state initialized.\n");

		/* Recover IP for return from main. */
		asm volatile(
			"movd %%xmm0, %%edi;"
			"movd %%xmm1, (%%edi);"
			"movd %%xmm2, %%edi;"
			"movd %%xmm3, (%%edi);"
			 ::: "edi"
		);

#if CONFIG_DEBUG_RAM_SETUP
		unsigned int a1, a2;
		asm volatile("movd %%xmm2, %%eax;" : "=a" (a1) ::);
		asm volatile("movd %%xmm3, %%eax;" : "=a" (a2) ::);
		printk(BIOS_DEBUG, "return EIP @ %x = %x\n", a1, a2);
		asm volatile("movd %%xmm0, %%eax;" : "=a" (a1) ::);
		asm volatile("movd %%xmm1, %%eax;" : "=a" (a2) ::);
		printk(BIOS_DEBUG, "return EIP @ %x = %x\n", a1, a2);
#endif
	}

	/* Clear the ECC error bits. */
	pci_write_config8(RASDEV, DRAM_FERR, 0x03);
	pci_write_config8(RASDEV, DRAM_NERR, 0x03);

	/* Clear DRAM Interface error bits. */
	pci_write_config32(RASDEV, FERR_GLOBAL, 1 << 18);
	pci_write_config32(RASDEV, NERR_GLOBAL, 1 << 18);
}

/**
 * Program the DRAM Timing register (DRT) of the E7501 (except for CAS#
 * latency, which is assumed to have been programmed already), based on the
 * parameters of the various installed DIMMs.
 *
 * @param ctrl PCI addresses of memory controller functions, and SMBus
 *             addresses of DIMM slots on the mainboard.
 * @param dimm_mask Bitmask of populated DIMMs, see spd_get_supported_dimms().
 */
static void configure_e7501_dram_timing(const struct mem_controller *ctrl,
					uint8_t dimm_mask)
{
	int i;
	uint32_t dram_timing;
	int value;
	uint8_t slowest_row_precharge = 0;
	uint8_t slowest_ras_cas_delay = 0;
	uint8_t slowest_active_to_precharge_delay = 0;
	uint32_t current_cas_latency =
	    pci_read_config32(MCHDEV, DRT) & DRT_CAS_MASK;

	// CAS# latency must be programmed beforehand
	ASSERT((current_cas_latency == DRT_CAS_2_0)
	       || (current_cas_latency == DRT_CAS_2_5));

	// Each timing parameter is determined by the slowest DIMM

	for (i = 0; i < MAX_DIMM_SOCKETS; i++) {
		uint16_t dimm_socket_address;

		if (!(dimm_mask & (1 << i)))
			continue;	// This DIMM not present

		if (i < MAX_DIMM_SOCKETS_PER_CHANNEL)
			dimm_socket_address = ctrl->channel0[i];
		else
			dimm_socket_address =
			    ctrl->channel1[i - MAX_DIMM_SOCKETS_PER_CHANNEL];

		value =
		    spd_read_byte(dimm_socket_address,
				  SPD_MIN_ROW_PRECHARGE_TIME);
		if (value < 0)
			goto hw_err;
		if (value > slowest_row_precharge)
			slowest_row_precharge = value;

		value =
		    spd_read_byte(dimm_socket_address,
				  SPD_MIN_RAS_TO_CAS_DELAY);
		if (value < 0)
			goto hw_err;
		if (value > slowest_ras_cas_delay)
			slowest_ras_cas_delay = value;

		value =
		    spd_read_byte(dimm_socket_address,
				  SPD_MIN_ACTIVE_TO_PRECHARGE_DELAY);
		if (value < 0)
			goto hw_err;
		if (value > slowest_active_to_precharge_delay)
			slowest_active_to_precharge_delay = value;
	}

	// NOTE for timing parameters:
	//              At 133 MHz, 1 clock == 7.52 ns

	/* Read the initial state */
	dram_timing = pci_read_config32(MCHDEV, DRT);

	/* Trp */

	// E7501 supports only 2 or 3 clocks for tRP
	if (slowest_row_precharge > ((22 << 2) | (2 << 0)))
		die("unsupported DIMM tRP");	// > 22.5 ns: 4 or more clocks
	else if (slowest_row_precharge > (15 << 2))
		dram_timing &= ~(1 << 0);	// > 15.0 ns: 3 clocks
	else
		dram_timing |= (1 << 0);	// <= 15.0 ns: 2 clocks

	/*  Trcd */

	// E7501 supports only 2 or 3 clocks for tRCD
	// Use the same value for both read & write
	dram_timing &= ~((1 << 3) | (3 << 1));
	if (slowest_ras_cas_delay > ((22 << 2) | (2 << 0)))
		die("unsupported DIMM tRCD");	// > 22.5 ns: 4 or more clocks
	else if (slowest_ras_cas_delay > (15 << 2))
		dram_timing |= (2 << 1);	// > 15.0 ns: 3 clocks
	else
		dram_timing |= ((1 << 3) | (3 << 1));	// <= 15.0 ns: 2 clocks

	/* Tras */

	// E7501 supports only 5, 6, or 7 clocks for tRAS
	// 5 clocks ~= 37.6 ns, 6 clocks ~= 45.1 ns, 7 clocks ~= 52.6 ns
	dram_timing &= ~(3 << 9);

	if (slowest_active_to_precharge_delay > 52)
		die("unsupported DIMM tRAS");	// > 52 ns:      8 or more clocks
	else if (slowest_active_to_precharge_delay > 45)
		dram_timing |= (0 << 9);	// 46-52 ns: 7 clocks
	else if (slowest_active_to_precharge_delay > 37)
		dram_timing |= (1 << 9);	// 38-45 ns: 6 clocks
	else
		dram_timing |= (2 << 9);	// < 38 ns:      5 clocks

	/* Trd */

	/* Set to a 7 clock read delay. This is for 133Mhz
	 *  with a CAS latency of 2.5  if 2.0 a 6 clock
	 *  delay is good  */

	dram_timing &= ~(7 << 24);	// 7 clocks
	if (current_cas_latency == DRT_CAS_2_0)
		dram_timing |= (1 << 24);	// 6 clocks

	/*
	 * Back to Back Read-Write Turn Around
	 */
	/* Set to a 5 clock back to back read to write turn around.
	 *  4 is a good delay if the CAS latency is 2.0 */

	dram_timing &= ~(1 << 28);	// 5 clocks
	if (current_cas_latency == DRT_CAS_2_0)
		dram_timing |= (1 << 28);	// 4 clocks

	pci_write_config32(MCHDEV, DRT, dram_timing);

	return;

      hw_err:
	die(SPD_ERROR);
}

/**
 * Determine the shortest CAS# latency that the E7501 and all DIMMs have in
 * common, and program the E7501 to use it.
 *
 * @param ctrl PCI addresses of memory controller functions, and SMBus
 *             addresses of DIMM slots on the mainboard.
 * @param dimm_mask Bitmask of populated DIMMs, spd_get_supported_dimms().
 */
static void configure_e7501_cas_latency(const struct mem_controller *ctrl,
					uint8_t dimm_mask)
{
	int i;
	int value;
	uint32_t dram_timing;
	uint16_t dram_read_timing;
	uint32_t dword;

	// CAS# latency bitmasks in SPD_ACCEPTABLE_CAS_LATENCIES format
	// NOTE: E7501 supports only 2.0 and 2.5
	uint32_t system_compatible_cas_latencies =
	    SPD_CAS_LATENCY_2_0 | SPD_CAS_LATENCY_2_5;
	uint32_t current_cas_latency;
	uint32_t dimm_compatible_cas_latencies;

	for (i = 0; i < MAX_DIMM_SOCKETS; i++) {

		uint16_t dimm_socket_address;

		if (!(dimm_mask & (1 << i)))
			continue;	// This DIMM not usable

		if (i < MAX_DIMM_SOCKETS_PER_CHANNEL)
			dimm_socket_address = ctrl->channel0[i];
		else
			dimm_socket_address =
			    ctrl->channel1[i - MAX_DIMM_SOCKETS_PER_CHANNEL];

		value =
		    spd_read_byte(dimm_socket_address,
				  SPD_ACCEPTABLE_CAS_LATENCIES);
		if (value < 0)
			goto hw_err;

		dimm_compatible_cas_latencies = value & 0x7f;	// Start with all supported by DIMM
		current_cas_latency = 1 << log2(dimm_compatible_cas_latencies);	// Max supported by DIMM

		// Can we support the highest CAS# latency?

		value =
		    spd_read_byte(dimm_socket_address,
				  SPD_MIN_CYCLE_TIME_AT_CAS_MAX);
		if (value < 0)
			goto hw_err;

		// NOTE: At 133 MHz, 1 clock == 7.52 ns
		if (value > 0x75) {
			// Our bus is too fast for this CAS# latency
			// Remove it from the bitmask of those supported by the DIMM that are compatible
			dimm_compatible_cas_latencies &= ~current_cas_latency;
		}
		// Can we support the next-highest CAS# latency (max - 0.5)?

		current_cas_latency >>= 1;
		if (current_cas_latency != 0) {
			value =
			    spd_read_byte(dimm_socket_address,
					  SPD_SDRAM_CYCLE_TIME_2ND);
			if (value < 0)
				goto hw_err;
			if (value > 0x75)
				dimm_compatible_cas_latencies &=
				    ~current_cas_latency;
		}
		// Can we support the next-highest CAS# latency (max - 1.0)?
		current_cas_latency >>= 1;
		if (current_cas_latency != 0) {
			value =
			    spd_read_byte(dimm_socket_address,
					  SPD_SDRAM_CYCLE_TIME_3RD);
			if (value < 0)
				goto hw_err;
			if (value > 0x75)
				dimm_compatible_cas_latencies &=
				    ~current_cas_latency;
		}
		// Restrict the system to CAS# latencies compatible with this DIMM
		system_compatible_cas_latencies &=
		    dimm_compatible_cas_latencies;

		/* go to the next DIMM */
	}

	/* After all of the arduous calculation setup with the fastest
	 * cas latency I can use.
	 */

	dram_timing = pci_read_config32(MCHDEV, DRT);
	dram_timing &= ~(DRT_CAS_MASK);

	dram_read_timing =
	    pci_read_config16(MCHDEV, DRDCTL);
	dram_read_timing &= 0xF000;

	if (system_compatible_cas_latencies & SPD_CAS_LATENCY_2_0) {
		dram_timing |= DRT_CAS_2_0;
		dram_read_timing |= 0x0222;
	} else if (system_compatible_cas_latencies & SPD_CAS_LATENCY_2_5) {

		uint32_t dram_row_attributes =
		    pci_read_config32(MCHDEV, DRA);

		dram_timing |= DRT_CAS_2_5;

		// At CAS# 2.5, DRAM Read Timing (if that's what it its) appears to need a slightly
		// different value if all DIMM slots are populated

		if ((dram_row_attributes & 0xff)
		    && (dram_row_attributes & 0xff00)
		    && (dram_row_attributes & 0xff0000)
		    && (dram_row_attributes & 0xff000000)) {

			// All slots populated
			dram_read_timing |= 0x0882;
		} else {
			// Some unpopulated slots
			dram_read_timing |= 0x0662;
		}
	} else
		die("No CAS# latencies compatible with all DIMMs!!\n");

	pci_write_config32(MCHDEV, DRT, dram_timing);

	/* set master DLL reset */
	dword = pci_read_config32(MCHDEV, 0x88);
	dword |= (1 << 26);
	pci_write_config32(MCHDEV, 0x88, dword);
	/* patch try register 88 is undocumented tnz */
	dword &= 0x0ca17fff;
	dword |= 0xd14a5000;
	pci_write_config32(MCHDEV, 0x88, dword);

	pci_write_config16(MCHDEV, DRDCTL,
			   dram_read_timing);

	/* clear master DLL reset */
	dword = pci_read_config32(MCHDEV, 0x88);
	dword &= ~(1 << 26);
	pci_write_config32(MCHDEV, 0x88, dword);

	return;

hw_err:
	die(SPD_ERROR);
}

/**
 * Configure the refresh interval so that we refresh no more often than
 * required by the "most needy" DIMM. Also disable ECC if any of the DIMMs
 * don't support it.
 *
 * @param ctrl PCI addresses of memory controller functions, and SMBus
 *             addresses of DIMM slots on the mainboard.
 * @param dimm_mask Bitmask of populated DIMMs, spd_get_supported_dimms().
 */
static void configure_e7501_dram_controller_mode(const struct
						 mem_controller *ctrl,
						 uint8_t dimm_mask)
{
	int i;

	// Initial settings
	uint32_t controller_mode =
	    pci_read_config32(MCHDEV, DRC);
	uint32_t system_refresh_mode = (controller_mode >> 8) & 7;

	// Code below assumes that most aggressive settings are in
	// force when we are called, either via E7501 reset defaults
	// or by sdram_set_registers():
	//      - ECC enabled
	//      - No refresh

	ASSERT((controller_mode & (3 << 20)) == (2 << 20));	// ECC
	ASSERT(!(controller_mode & (7 << 8)));	// Refresh

	/* Walk through _all_ dimms and find the least-common denominator for:
	 *  - ECC support
	 *  - refresh rates
	 */

	for (i = 0; i < MAX_DIMM_SOCKETS; i++) {

		uint32_t dimm_refresh_mode;
		int value;
		uint16_t dimm_socket_address;

		if (!(dimm_mask & (1 << i))) {
			continue;	// This DIMM not usable
		}

		if (i < MAX_DIMM_SOCKETS_PER_CHANNEL)
			dimm_socket_address = ctrl->channel0[i];
		else
			dimm_socket_address =
			    ctrl->channel1[i -
					   MAX_DIMM_SOCKETS_PER_CHANNEL];

		// Disable ECC mode if any one of the DIMMs does not support ECC
		// SJM: Should we just die here? E7501 datasheet says non-ECC DIMMs aren't supported.

		value =
		    spd_read_byte(dimm_socket_address,
				  SPD_DIMM_CONFIG_TYPE);
		die_on_spd_error(value);
		if (value != ERROR_SCHEME_ECC) {
			controller_mode &= ~(3 << 20);
		}

		value = spd_read_byte(dimm_socket_address, SPD_REFRESH);
		die_on_spd_error(value);
		value &= 0x7f;	// Mask off self-refresh bit
		if (value > MAX_SPD_REFRESH_RATE) {
			print_err("unsupported refresh rate\n");
			continue;
		}
		// Get the appropriate E7501 refresh mode for this DIMM
		dimm_refresh_mode = refresh_rate_map[value];
		if (dimm_refresh_mode > 7) {
			print_err("unsupported refresh rate\n");
			continue;
		}
		// If this DIMM requires more frequent refresh than others,
		// update the system setting
		if (refresh_frequency[dimm_refresh_mode] >
		    refresh_frequency[system_refresh_mode])
			system_refresh_mode = dimm_refresh_mode;

#ifdef SUSPICIOUS_LOOKING_CODE
// SJM NOTE: This code doesn't look right. SPD values are an order of magnitude smaller
//                       than the clock period of the memory controller. Also, no other northbridge
//                       looks at SPD_CMD_SIGNAL_INPUT_HOLD_TIME.

		// Switch to 2 clocks for address/command if required by any one of the DIMMs
		// NOTE: At 133 MHz, 1 clock == 7.52 ns
		value =
		    spd_read_byte(dimm_socket_address,
				  SPD_CMD_SIGNAL_INPUT_HOLD_TIME);
		die_on_spd_error(value);
		if (value >= 0xa0) {	/* At 133MHz this constant should be 0x75 */
			controller_mode &= ~(1 << 16);	/* Use two clock cyles instead of one */
		}
#endif

		/* go to the next DIMM */
	}

	controller_mode |= (system_refresh_mode << 8);

	// Configure the E7501
	pci_write_config32(MCHDEV, DRC, controller_mode);
}

/**
 * Configure the E7501's DRAM Row Attributes (DRA) registers based on DIMM
 * parameters read via SPD. This tells the controller the width of the SDRAM
 * chips on each DIMM side (x4 or x8) and the page size of each DIMM side
 * (4, 8, 16, or 32 KB).
 *
 * @param ctrl PCI addresses of memory controller functions, and SMBus
 *             addresses of DIMM slots on the mainboard.
 * @param dimm_mask Bitmask of populated DIMMs, spd_get_supported_dimms().
 */
static void configure_e7501_row_attributes(const struct mem_controller
					   *ctrl, uint8_t dimm_mask)
{
	int i;
	uint32_t row_attributes = 0;

	for (i = 0; i < MAX_DIMM_SOCKETS_PER_CHANNEL; i++) {

		uint16_t dimm_socket_address = ctrl->channel0[i];
		struct dimm_size page_size;
		struct dimm_size sdram_width;

		if (!(dimm_mask & (1 << i)))
			continue;	// This DIMM not usable

		// Get the relevant parameters via SPD
		page_size = sdram_spd_get_page_size(dimm_socket_address);
		sdram_width = sdram_spd_get_width(dimm_socket_address);

		// Update the DRAM Row Attributes.
		// Page size is encoded as log2(page size in bits) - log2(8 Kb)
		// NOTE: 8 Kb = 2^13
		row_attributes |= (page_size.side1 - 13) << (i << 3);	// Side 1 of each DIMM is an EVEN row

		if (sdram_width.side2 > 0)
			row_attributes |= (page_size.side2 - 13) << ((i << 3) + 4);	// Side 2 is ODD

		// Set x4 flags if appropriate
		if (sdram_width.side1 == 4) {
			row_attributes |= 0x08 << (i << 3);
		}

		if (sdram_width.side2 == 4) {
			row_attributes |= 0x08 << ((i << 3) + 4);
		}

		/* go to the next DIMM */
	}

	/* Write the new row attributes register */
	pci_write_config32(MCHDEV, DRA, row_attributes);
}

/*
 * Enable clock signals for populated DIMM sockets and disable them for
 * unpopulated sockets (to reduce EMI).
 *
 * @param dimm_mask Bitmask of populated DIMMs, see spd_get_supported_dimms().
 */
static void enable_e7501_clocks(uint8_t dimm_mask)
{
	int i;
	uint8_t clock_disable = pci_read_config8(MCHDEV, CKDIS);

	pci_write_config8(MCHDEV, 0x8e, 0xb0);

	for (i = 0; i < MAX_DIMM_SOCKETS_PER_CHANNEL; i++) {

		uint8_t socket_mask = 1 << i;

		if (dimm_mask & socket_mask)
			clock_disable &= ~socket_mask;	// DIMM present, enable clock
		else
			clock_disable |= socket_mask;	// DIMM absent, disable clock
	}

	pci_write_config8(MCHDEV, CKDIS, clock_disable);
}

/* DIMM-dedependent configuration functions */

/**
 * DDR Receive FIFO RE-Sync (?)
 */
static void RAM_RESET_DDR_PTR(void)
{
	uint8_t byte;
	byte = pci_read_config8(MCHDEV, 0x88);
	byte |= (1 << 4);
	pci_write_config8(MCHDEV, 0x88, byte);

	byte = pci_read_config8(MCHDEV, 0x88);
	byte &= ~(1 << 4);
	pci_write_config8(MCHDEV, 0x88, byte);
}

/**
 * Copy 64 bytes from one location to another.
 *
 * @param src_addr TODO
 * @param dst_addr TODO
 */
static void write_8dwords(const uint32_t *src_addr, uint32_t dst_addr)
{
	int i;
	for (i = 0; i < 8; i++) {
		write32(dst_addr, *src_addr);
		src_addr++;
		dst_addr += sizeof(uint32_t);
	}
}

/**
 * Set the E7501's (undocumented) RCOMP registers.
 *
 * Per the 855PM datasheet and IXP2800 HW Initialization Reference Manual,
 * RCOMP registers appear to affect drive strength, pullup/pulldown offset,
 * and slew rate of various signal groups.
 *
 * Comments below are conjecture based on apparent similarity between the
 * E7501 and these two chips.
 */
static void rcomp_copy_registers(void)
{
	uint32_t dword;
	uint8_t strength_control;

	RAM_DEBUG_MESSAGE("Setting RCOMP registers.\n");

	/* Begin to write the RCOMP registers */
	write8(RCOMP_MMIO + 0x2c, 0x0);

	// Set CMD and DQ/DQS strength to 2x (?)
	strength_control = read8(RCOMP_MMIO + DQCMDSTR) & 0x88;
	strength_control |= 0x40;
	write8(RCOMP_MMIO + DQCMDSTR, strength_control);
	write_8dwords(slew_2x, RCOMP_MMIO + 0x80);
	write16(RCOMP_MMIO + 0x42, 0);

	// Set CMD and DQ/DQS strength to 2x (?)
	strength_control = read8(RCOMP_MMIO + DQCMDSTR) & 0xF8;
	strength_control |= 0x04;
	write8(RCOMP_MMIO + DQCMDSTR, strength_control);
	write_8dwords(slew_2x, RCOMP_MMIO + 0x60);
	write16(RCOMP_MMIO + 0x40, 0);

	// Set RCVEnOut# strength to 2x (?)
	strength_control = read8(RCOMP_MMIO + RCVENSTR) & 0xF8;
	strength_control |= 0x04;
	write8(RCOMP_MMIO + RCVENSTR, strength_control);
	write_8dwords(slew_2x, RCOMP_MMIO + 0x1c0);
	write16(RCOMP_MMIO + 0x50, 0);

	// Set CS# strength for x4 SDRAM to 2x (?)
	strength_control = read8(RCOMP_MMIO + CSBSTR) & 0x88;
	strength_control |= 0x04;
	write8(RCOMP_MMIO + CSBSTR, strength_control);
	write_8dwords(slew_2x, RCOMP_MMIO + 0x140);
	write16(RCOMP_MMIO + 0x48, 0);

	// Set CS# strength for x4 SDRAM to 2x (?)
	strength_control = read8(RCOMP_MMIO + CSBSTR) & 0x8F;
	strength_control |= 0x40;
	write8(RCOMP_MMIO + CSBSTR, strength_control);
	write_8dwords(slew_2x, RCOMP_MMIO + 0x160);
	write16(RCOMP_MMIO + 0x4a, 0);

	// Set CKE strength for x4 SDRAM to 2x (?)
	strength_control = read8(RCOMP_MMIO + CKESTR) & 0x88;
	strength_control |= 0x04;
	write8(RCOMP_MMIO + CKESTR, strength_control);
	write_8dwords(slew_2x, RCOMP_MMIO + 0xa0);
	write16(RCOMP_MMIO + 0x44, 0);

	// Set CKE strength for x4 SDRAM to 2x (?)
	strength_control = read8(RCOMP_MMIO + CKESTR) & 0x8F;
	strength_control |= 0x40;
	write8(RCOMP_MMIO + CKESTR, strength_control);
	write_8dwords(slew_2x, RCOMP_MMIO + 0xc0);
	write16(RCOMP_MMIO + 0x46, 0);

	// Set CK strength for x4 SDRAM to 1x (?)
	strength_control = read8(RCOMP_MMIO + CKSTR) & 0x88;
	strength_control |= 0x01;
	write8(RCOMP_MMIO + CKSTR, strength_control);
	write_8dwords(pull_updown_offset_table, RCOMP_MMIO + 0x180);
	write16(RCOMP_MMIO + 0x4c, 0);

	// Set CK strength for x4 SDRAM to 1x (?)
	strength_control = read8(RCOMP_MMIO + CKSTR) & 0x8F;
	strength_control |= 0x10;
	write8(RCOMP_MMIO + CKSTR, strength_control);
	write_8dwords(pull_updown_offset_table, RCOMP_MMIO + 0x1a0);
	write16(RCOMP_MMIO + 0x4e, 0);

	dword = read32(RCOMP_MMIO + 0x400);
	dword &= 0x7f7fffff;
	write32(RCOMP_MMIO + 0x400, dword);

	dword = read32(RCOMP_MMIO + 0x408);
	dword &= 0x7f7fffff;
	write32(RCOMP_MMIO + 0x408, dword);
}

static void ram_set_rcomp_regs(void)
{
	/* Set the RCOMP MMIO base address */
	mchtest_control(RCOMP_BAR_ENABLE);
	pci_write_config32(MCHDEV, SMRBASE, RCOMP_MMIO);

	/* Block RCOMP updates while we configure the registers */
	rcomp_smr_control(RCOMP_HOLD);
	rcomp_copy_registers();
	d060_control(D060_CMD_0);
	mchtest_control(MCHTST_CMD_0);

	uint8_t revision = pci_read_config8(MCHDEV, 0x08);
	if (revision >= 3) {
		rcomp_smr_control(RCOMP_SMR_00);
		rcomp_smr_control(RCOMP_SMR_01);
	}
	rcomp_smr_control(RCOMP_RELEASE);

	/* Wait 40 usec */
	SLOW_DOWN_IO;

	/* Clear the RCOMP MMIO base address */
	pci_write_config32(MCHDEV, SMRBASE, 0);
	mchtest_control(RCOMP_BAR_DISABLE);
}

/*-----------------------------------------------------------------------------
Public interface:
-----------------------------------------------------------------------------*/

/**
 * Go through the JEDEC initialization sequence for all DIMMs, then enable
 * refresh and initialize ECC and memory to zero. Upon exit, SDRAM is up
 * and running.
 *
 * @param ctrl PCI addresses of memory controller functions, and SMBus
 *             addresses of DIMM slots on the mainboard.
 */
static void sdram_enable(const struct mem_controller *ctrl)
{
	uint8_t dimm_mask = pci_read_config16(MCHDEV, SKPD);
	uint32_t dram_controller_mode;

	if (dimm_mask == 0)
		return;

	/* 1 & 2 Power up and start clocks */
	RAM_DEBUG_MESSAGE("Ram Enable 1\n");
	RAM_DEBUG_MESSAGE("Ram Enable 2\n");

	/* A 200us delay is needed */
	DO_DELAY; EXTRA_DELAY;

	/* 3. Apply NOP */
	RAM_DEBUG_MESSAGE("Ram Enable 3\n");
	do_ram_command(RAM_COMMAND_NOP, 0);

	/* 4 Precharge all */
	RAM_DEBUG_MESSAGE("Ram Enable 4\n");
	do_ram_command(RAM_COMMAND_PRECHARGE, 0);
	/* wait until the all banks idle state... */

	/* 5. Issue EMRS to enable DLL */
	RAM_DEBUG_MESSAGE("Ram Enable 5\n");
	do_ram_command(RAM_COMMAND_EMRS,
		       SDRAM_EXTMODE_DLL_ENABLE |
		       SDRAM_EXTMODE_DRIVE_NORMAL);

	/* 6. Reset DLL */
	RAM_DEBUG_MESSAGE("Ram Enable 6\n");
	set_ram_mode(E7501_SDRAM_MODE | SDRAM_MODE_DLL_RESET);
	EXTRA_DELAY;
	/* Ensure a 200us delay between the DLL reset in step 6 and the final
	 * mode register set in step 9.
	 * Infineon needs this before any other command is sent to the ram.
	 */
	DO_DELAY; EXTRA_DELAY;

	/* 7 Precharge all */
	RAM_DEBUG_MESSAGE("Ram Enable 7\n");
	do_ram_command(RAM_COMMAND_PRECHARGE, 0);

	/* 8 Now we need 2 AUTO REFRESH / CBR cycles to be performed */
	/* And for good luck 6 more CBRs */
	RAM_DEBUG_MESSAGE("Ram Enable 8\n");
	int i;
	for(i=0; i<8; i++)
		do_ram_command(RAM_COMMAND_CBR, 0);

	/* 9 mode register set */
	RAM_DEBUG_MESSAGE("Ram Enable 9\n");
	set_ram_mode(E7501_SDRAM_MODE | SDRAM_MODE_NORMAL);

	/* 10 DDR Receive FIFO RE-Sync */
	RAM_DEBUG_MESSAGE("Ram Enable 10\n");
	RAM_RESET_DDR_PTR();
	EXTRA_DELAY;

	/* 11 normal operation */
	RAM_DEBUG_MESSAGE("Ram Enable 11\n");
	do_ram_command(RAM_COMMAND_NORMAL, 0);

	// Reconfigure the row boundaries and Top of Low Memory
	// to match the true size of the DIMMs
	configure_e7501_ram_addresses(ctrl, dimm_mask);

	/* Finally enable refresh */
	dram_controller_mode = pci_read_config32(MCHDEV, DRC);
	dram_controller_mode |= (1 << 29);
	pci_write_config32(MCHDEV, DRC, dram_controller_mode);
	EXTRA_DELAY;
}

/**
 * @param ctrl PCI addresses of memory controller functions, and SMBus
 *             addresses of DIMM slots on the mainboard.
 */
static void sdram_post_ecc(const struct mem_controller *ctrl)
{
	/* Fast CS# Enable. */
	uint32_t dram_controller_mode = pci_read_config32(MCHDEV, DRC);
	dram_controller_mode = pci_read_config32(MCHDEV, DRC);
	dram_controller_mode |= (1 << 17);
	pci_write_config32(MCHDEV, DRC, dram_controller_mode);
}

/**
 * Configure SDRAM controller parameters that depend on characteristics of the
 * DIMMs installed in the system. These characteristics are read from the
 * DIMMs via the standard Serial Presence Detect (SPD) interface.
 *
 * @param ctrl PCI addresses of memory controller functions, and SMBus
 *             addresses of DIMM slots on the mainboard.
 */
static void sdram_set_spd_registers(const struct mem_controller *ctrl)
{
	uint8_t dimm_mask;

	RAM_DEBUG_MESSAGE("Reading SPD data...\n");

	dimm_mask = spd_get_supported_dimms(ctrl);

	if (dimm_mask == 0) {
		print_debug("No usable memory for this controller\n");
	} else {
		enable_e7501_clocks(dimm_mask);

		RAM_DEBUG_MESSAGE("setting based on SPD data...\n");

		configure_e7501_row_attributes(ctrl, dimm_mask);
		configure_e7501_dram_controller_mode(ctrl, dimm_mask);
		configure_e7501_cas_latency(ctrl, dimm_mask);
		RAM_RESET_DDR_PTR();

		configure_e7501_dram_timing(ctrl, dimm_mask);
		DO_DELAY;
		RAM_DEBUG_MESSAGE("done\n");
	}

	/* NOTE: configure_e7501_ram_addresses() is NOT called here.
	 * We want to keep the default 64 MB/row mapping until sdram_enable() is called,
	 * even though the default mapping is almost certainly incorrect.
	 * The default mapping makes it easy to initialize all of the DIMMs
	 * even if the total system memory is > 4 GB.
	 *
	 * Save the dimm_mask for when sdram_enable is called, so it can call
	 * configure_e7501_ram_addresses() without having to regenerate the bitmask
	 * of usable DIMMs.
	 */
	pci_write_config16(MCHDEV, SKPD, dimm_mask);
}

/**
 * Do basic RAM setup that does NOT depend on serial presence detect
 * information (i.e. independent of DIMM specifics).
 *
 * @param ctrl PCI addresses of memory controller functions, and SMBus
 *             addresses of DIMM slots on the mainboard.
 */
static void sdram_set_registers(const struct mem_controller *ctrl)
{
	uint32_t dword;
	uint16_t word;
	uint8_t byte;

	ram_set_rcomp_regs();

	/* Enable 0:0.1, 0:2.1 */
	word = pci_read_config16(MCHDEV, DVNP);
	word &= ~0x05;
	pci_write_config16(MCHDEV, DVNP, word);

	/* Disable high-memory remap (power-on defaults, really) */
	pci_write_config16(MCHDEV, REMAPBASE, 0x03ff);
	pci_write_config16(MCHDEV, REMAPLIMIT, 0x0);

	/* Disable legacy MMIO (0xC0000-0xEFFFF is DRAM) */
	int i;
	pci_write_config8(MCHDEV, PAM_0, 0x30);
	for (i=1; i<=6; i++)
		pci_write_config8(MCHDEV, PAM_0 + i, 0x33);

	/* Conservatively say each row has 64MB of ram, we will fix this up later
	 * Initial TOLM 8 rows 64MB each  (1<<3 * 1<<26) >> 16 = 1<<13
	 *
	 * FIXME: Hard-coded limit to first four rows to prevent overlap!
	 */
	pci_write_config32(MCHDEV, DRB_ROW_0, 0x04030201);
	pci_write_config32(MCHDEV, DRB_ROW_4, 0x04040404);
	//pci_write_config32(MCHDEV, DRB_ROW_4, 0x08070605);
	pci_write_config16(MCHDEV, TOLM, (1<<13));

	/* DIMM clocks off */
	pci_write_config8(MCHDEV, CKDIS, 0xff);

	/* reset row attributes */
	pci_write_config32(MCHDEV, DRA, 0x0);

	// The only things we need to set here are DRAM idle timer, Back-to-Back Read Turnaround, and
	// Back-to-Back Write-Read Turnaround. All others are configured based on SPD.
	dword = pci_read_config32(MCHDEV, DRT);
	dword &= 0xC7F8FFFF;
	dword |= (0x28<<24)|(0x03<<16);
	pci_write_config32(MCHDEV, DRT, dword);

	dword = pci_read_config32(MCHDEV, DRC);
	dword &= 0xffcef8f7;
	dword |= 0x00210008;
	pci_write_config32(MCHDEV, DRC, dword);

	/* Undocumented */
	pci_write_config8(MCHDEV, 0x88, 0x80);

	/* Undocumented. Set much later in vendor BIOS. */
	byte = pci_read_config8(MCHDEV, 0xd9);
	byte &= ~0x60;
	pci_write_config8(MCHDEV, 0xd9, byte);

#ifdef SUSPICIOUS_LOOKING_CODE
	/* This will access D2:F0:0x50, is this correct??
	 * Vendor BIOS reads Device ID before this is set.
	 * Undocumented in the p64h2 PCI-X bridge datasheet.
	 */
	byte = pci_read_config8(PCI_DEV(0,2,0), 0x50);
	byte &= 0xcf;
	byte |= 0x30
	pci_write_config8(PCI_DEV(0,2,0), 0x50, byte);
#endif

	uint8_t revision = pci_read_config8(MCHDEV, 0x08);
	if (revision >= 3)
		d060_control(D060_CMD_1);
}

/**
 *
 *
 */
void e7505_mch_init(const struct mem_controller *memctrl)
{
	RAM_DEBUG_MESSAGE("Northbridge prior to SDRAM init:\n");
	DUMPNORTH();

	sdram_set_registers(memctrl);
	sdram_set_spd_registers(memctrl);
	sdram_enable(memctrl);
}

unsigned long get_top_of_ram(void)
{
	u32 tolm = (pci_read_config16(MCHDEV, TOLM) & ~0x7ff) << 16;
	return (unsigned long) tolm;
}

/**
 * Scrub and reset error counts for ECC dimms.
 *
 * NOTE: this will invalidate cache and disable XIP cache for the
 * short remaining part of romstage.
 */
void e7505_mch_scrub_ecc(unsigned long ret_addr)
{
	unsigned long ret_addr2 = (unsigned long)((unsigned long*)&ret_addr-1);
	if ((pci_read_config32(MCHDEV, DRC)>>20 & 3) == 2)
		initialize_ecc(ret_addr, ret_addr2);
}

void e7505_mch_done(const struct mem_controller *memctrl)
{
	sdram_post_ecc(memctrl);

	RAM_DEBUG_MESSAGE("Northbridge following SDRAM init:\n");
	DUMPNORTH();
}

int e7505_mch_is_ready(void)
{
	uint32_t dword = pci_read_config32(MCHDEV, DRC);
	return !!(dword & DRC_DONE);
}