summaryrefslogtreecommitdiff
path: root/src/northbridge/amd/lx/raminit.c
blob: e65a87e20f19d13293a7088ce72f8f2f070cb9ad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
/*
 * This file is part of the LinuxBIOS project.
 *
 * Copyright (C) 2007 Advanced Micro Devices, Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA
 */

#include <cpu/amd/lxdef.h>
#include <arch/io.h>
#include <spd.h>
#include "southbridge/amd/cs5536/cs5536.h"

static const unsigned char NumColAddr[] = { 
	0x00, 0x10, 0x11, 0x00, 0x00, 0x00, 0x00, 0x07, 
	0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F 
};

void banner(char *s)
{
	print_emerg("===========================");
	print_emerg(s);
	print_emerg("======================================\r\n");
}
void hcf(void)
{
	print_emerg("DIE\r\n");
	/* this guarantees we flush the UART fifos (if any) and also 
	 * ensures that things, in general, keep going so no debug output 
	 * is lost
	 */
	while (1)
		print_emerg_char(0);
}

static void auto_size_dimm(unsigned int dimm)
{
	uint32_t dimm_setting;
	uint16_t dimm_size;
	uint8_t spd_byte;
	msr_t msr;

	dimm_setting = 0;

	banner("Check present");
	/* Check that we have a dimm */
	if (spd_read_byte(dimm, SPD_MEMORY_TYPE) == 0xFF) {
		return;
	}

	banner("MODBANKS");
	/* Field: Module Banks per DIMM */
	/* EEPROM byte usage: (5) Number of DIMM Banks */
	spd_byte = spd_read_byte(dimm, SPD_NUM_DIMM_BANKS);
	if ((MIN_MOD_BANKS > spd_byte) || (spd_byte > MAX_MOD_BANKS)) {
		print_emerg("Number of module banks not compatible\n");
		POST_CODE(ERROR_BANK_SET);
		hcf();
	}
	dimm_setting |= (spd_byte >> 1) << CF07_UPPER_D0_MB_SHIFT;
	banner("FIELDBANKS");

	/* Field: Banks per SDRAM device */
	/* EEPROM byte usage: (17) Number of Banks on SDRAM Device */
	spd_byte = spd_read_byte(dimm, SPD_NUM_BANKS_PER_SDRAM);
	if ((MIN_DEV_BANKS > spd_byte) || (spd_byte > MAX_DEV_BANKS)) {
		print_emerg("Number of device banks not compatible\n");
		POST_CODE(ERROR_BANK_SET);
		hcf();
	}
	dimm_setting |= (spd_byte >> 2) << CF07_UPPER_D0_CB_SHIFT;
	banner("SPDNUMROWS");

	/*; Field: DIMM size
	 *; EEPROM byte usage: (3)  Number of Row Addresses
	 *;                                       (4)  Number of Column Addresses
	 *;                                       (5)  Number of DIMM Banks
	 *;                                       (31) Module Bank Density
	 *; Size = Module Density * Module Banks
	 */
	if ((spd_read_byte(dimm, SPD_NUM_ROWS) & 0xF0)
	    || (spd_read_byte(dimm, SPD_NUM_COLUMNS) & 0xF0)) {
		print_emerg("Assymetirc DIMM not compatible\n");
		POST_CODE(ERROR_UNSUPPORTED_DIMM);
		hcf();
	}
	banner("SPDBANKDENSITY");

	dimm_size = spd_read_byte(dimm, SPD_BANK_DENSITY);
	banner("DIMMSIZE");
	dimm_size |= (dimm_size << 8);	/* align so 1GB(bit0) is bit 8, this is a little weird to get gcc to not optimize this out */
	dimm_size &= 0x01FC;	/* and off 2GB DIMM size : not supported and the 1GB size we just moved up to bit 8 as well as all the extra on top */

	/*       Module Density * Module Banks */
	dimm_size <<= (dimm_setting >> CF07_UPPER_D0_MB_SHIFT) & 1;	/* shift to multiply by # DIMM banks */
	banner("BEFORT CTZ");
	dimm_size = __builtin_ctz(dimm_size);
	banner("TEST DIMM SIZE>8");
	if (dimm_size > 8) {	/* 8 is 1GB only support 1GB per DIMM */
		print_emerg("Only support up to 1 GB per DIMM\n");
		POST_CODE(ERROR_DENSITY_DIMM);
		hcf();
	}
	dimm_setting |= dimm_size << CF07_UPPER_D0_SZ_SHIFT;
	banner("PAGESIZE");

/*; Field: PAGE size
*; EEPROM byte usage: (4)  Number of Column Addresses
*; PageSize = 2^# Column Addresses * Data width in bytes (should be 8bytes for a normal DIMM)
*
*; But this really works by magic.
*;If ma[12:0] is the memory address pins, and pa[12:0] is the physical column address
*;that MC generates, here is how the MC assigns the pa onto the ma pins:
*
*;ma  12 11 10 09 08 07 06 05 04 03 02 01 00
*;-------------------------------------------
*;pa					09 08 07 06 05 04 03	(7 col addr bits = 1K page size)
*;pa				 10 09 08 07 06 05 04 03	(8 col addr bits = 2K page size)
*;pa			  11 10 09 08 07 06 05 04 03	(9 col addr bits = 4K page size)
*;pa		   12 11 10 09 08 07 06 05 04 03	(10 col addr bits = 8K page size)
*;pa	 13 AP 12 11 10 09 08 07 06 05 04 03	(11 col addr bits = 16K page size)
*;pa  14 13 AP 12 11 10 09 08 07 06 05 04 03	(12 col addr bits = 32K page size)
*; *AP=autoprecharge bit
*
*;Remember that pa[2:0] are zeroed out since it's a 64-bit data bus (8 bytes),
*;so lower 3 address bits are dont_cares.So from the table above,
*;it's easier to see what the old code is doing: if for example,#col_addr_bits=7(06h),
*;it adds 3 to get 10, then does 2^10=1K.  Get it?*/

	spd_byte = NumColAddr[spd_read_byte(dimm, SPD_NUM_COLUMNS) & 0xF];
	banner("MAXCOLADDR");
	if (spd_byte > MAX_COL_ADDR) {
		print_emerg("DIMM page size not compatible\n");
		POST_CODE(ERROR_SET_PAGE);
		hcf();
	}
	banner(">12address test");
	spd_byte -= 7;
	if (spd_byte > 5) {	/* if the value is above 6 it means >12 address lines */
		spd_byte = 7;	/* which means >32k so set to disabled */
	}
	dimm_setting |= spd_byte << CF07_UPPER_D0_PSZ_SHIFT;	/* 0=1k,1=2k,2=4k,etc */

	banner("RDMSR CF07");
	msr = rdmsr(MC_CF07_DATA);
	banner("WRMSR CF07");
	if (dimm == DIMM0) {
		msr.hi &= 0xFFFF0000;
		msr.hi |= dimm_setting;
	} else {
		msr.hi &= 0x0000FFFF;
		msr.hi |= dimm_setting << 16;
	}
	wrmsr(MC_CF07_DATA, msr);
	banner("ALL DONE");
}

static void checkDDRMax(void)
{
	uint8_t spd_byte0, spd_byte1;
	uint16_t speed;

	/* PC133 identifier */
	spd_byte0 = spd_read_byte(DIMM0, SPD_MIN_CYCLE_TIME_AT_CAS_MAX);
	if (spd_byte0 == 0xFF) {
		spd_byte0 = 0;
	}
	spd_byte1 = spd_read_byte(DIMM1, SPD_MIN_CYCLE_TIME_AT_CAS_MAX);
	if (spd_byte1 == 0xFF) {
		spd_byte1 = 0;
	}

	/* I don't think you need this check.
	   if (spd_byte0 >= 0xA0 || spd_byte1 >= 0xA0){
	   print_emerg("DIMM overclocked. Check GeodeLink Speed\n");
	   POST_CODE(POST_PLL_MEM_FAIL);
	   hcf();
	   } */

	/* Use the slowest DIMM */
	if (spd_byte0 < spd_byte1) {
		spd_byte0 = spd_byte1;
	}

	/* Turn SPD ns time into MHZ. Check what the asm does to this math. */
	speed = 2 * ((10000 / (((spd_byte0 >> 4) * 10) + (spd_byte0 & 0x0F))));

	/* current speed > max speed? */
	if (GeodeLinkSpeed() > speed) {
		print_emerg("DIMM overclocked. Check GeodeLink Speed\r\n");
		POST_CODE(POST_PLL_MEM_FAIL);
		hcf();
	}
}

const uint16_t REF_RATE[] = { 15, 3, 7, 31, 62, 125 };	/* ns */

static void set_refresh_rate(void)
{
	uint8_t spd_byte0, spd_byte1;
	uint16_t rate0, rate1;
	msr_t msr;

	spd_byte0 = spd_read_byte(DIMM0, SPD_REFRESH);
	spd_byte0 &= 0xF;
	if (spd_byte0 > 5) {
		spd_byte0 = 5;
	}
	rate0 = REF_RATE[spd_byte0];

	spd_byte1 = spd_read_byte(DIMM1, SPD_REFRESH);
	spd_byte1 &= 0xF;
	if (spd_byte1 > 5) {
		spd_byte1 = 5;
	}
	rate1 = REF_RATE[spd_byte1];

	/* Use the faster rate (lowest number) */
	if (rate0 > rate1) {
		rate0 = rate1;
	}

	msr = rdmsr(MC_CF07_DATA);
	msr.lo |= ((rate0 * (GeodeLinkSpeed() / 2)) / 16) 
			<< CF07_LOWER_REF_INT_SHIFT;
	wrmsr(MC_CF07_DATA, msr);
}

const uint8_t CASDDR[] = { 5, 5, 2, 6, 3, 7, 4, 0 };	/* 1(1.5), 1.5, 2, 2.5, 3, 3.5, 4, 0 */

static void setCAS(void)
{
/*;*****************************************************************************
;*
;*	setCAS
;*	EEPROM byte usage: (18) SDRAM device attributes - CAS latency
;*	EEPROM byte usage: (23) SDRAM Minimum Clock Cycle Time @ CLX -.5
;*	EEPROM byte usage: (25) SDRAM Minimum Clock Cycle Time @ CLX -1
;*
;*	The CAS setting is based on the information provided in each DIMMs SPD.
;*	 The speed at which a DIMM can run is described relative to the slowest
;*	 CAS the DIMM supports. Each speed for the relative CAS settings is
;*	 checked that it is within the GeodeLink speed. If it isn't within the GeodeLink
;*	 speed, the CAS setting	 is removed from the list of good settings for
;*	 the DIMM. This is done for both DIMMs and the lists are compared to
;*	 find the lowest common CAS latency setting. If there are no CAS settings
;*	 in common we out a ERROR_DIFF_DIMMS (78h) to port 80h and halt.
;*
;*	Entry:
;*	Exit: Set fastest CAS Latency based on GeodeLink speed and SPD information.
;*	Destroys: We really use everything !
;*****************************************************************************/
	uint16_t glspeed, dimm_speed;
	uint8_t spd_byte, casmap0, casmap1, casmap_shift;
	msr_t msr;

	glspeed = GeodeLinkSpeed();

	/**************************	 DIMM0	**********************************/
	casmap0 = spd_read_byte(DIMM0, SPD_ACCEPTABLE_CAS_LATENCIES);
	if (casmap0 != 0xFF) {
		/* IF -.5 timing is supported, check -.5 timing > GeodeLink */
		spd_byte = spd_read_byte(DIMM0, SPD_SDRAM_CYCLE_TIME_2ND);
		if (spd_byte != 0) {
			/* Turn SPD ns time into MHZ. Check what the asm does to this math. */
			dimm_speed = 2 * (10000 / (((spd_byte >> 4) * 10) +
						(spd_byte & 0x0F)));
			if (dimm_speed >= glspeed) {
				casmap_shift = 1; /* -.5 is a shift of 1 */
				/* IF -1 timing is supported, check -1 timing > GeodeLink */
				spd_byte = spd_read_byte(DIMM0, SPD_SDRAM_CYCLE_TIME_3RD);
				if (spd_byte != 0) {
					/* Turn SPD ns time into MHZ. Check what the asm does to this math. */
					dimm_speed = 2 * (10000 / (((spd_byte >> 4) * 10) + (spd_byte & 0x0F)));
					if (dimm_speed >= glspeed) {
						casmap_shift = 2; /* -1 is a shift of 2 */
					}
				}	/* SPD_SDRAM_CYCLE_TIME_3RD (-1) !=0 */
			} else {
				casmap_shift = 0;
			}
		}	/* SPD_SDRAM_CYCLE_TIME_2ND (-.5) !=0 */
		/* set the casmap based on the shift to limit possible CAS settings */
		spd_byte = 31 - __builtin_clz((uint32_t) casmap0);
		/* just want bits in the lower byte since we have to cast to a 32 */
		casmap0 &= 0xFF << (spd_byte - casmap_shift);
	} else {		/* No DIMM */
		casmap0 = 0;
	}

	/**************************	 DIMM1	**********************************/
	casmap1 = spd_read_byte(DIMM1, SPD_ACCEPTABLE_CAS_LATENCIES);
	if (casmap1 != 0xFF) {
		/* IF -.5 timing is supported, check -.5 timing > GeodeLink */
		spd_byte = spd_read_byte(DIMM1, SPD_SDRAM_CYCLE_TIME_2ND);
		if (spd_byte != 0) {
			/* Turn SPD ns time into MHZ. Check what the asm does to this math. */
			dimm_speed = 2 * (10000 / (((spd_byte >> 4) * 10) + (spd_byte & 0x0F)));
			if (dimm_speed >= glspeed) {
				casmap_shift = 1; /* -.5 is a shift of 1 */
				/* IF -1 timing is supported, check -1 timing > GeodeLink */
				spd_byte = spd_read_byte(DIMM1, SPD_SDRAM_CYCLE_TIME_3RD);
				if (spd_byte != 0) {
					/* Turn SPD ns time into MHZ. Check what the asm does to this math. */
					dimm_speed = 2 * (10000 / (((spd_byte >> 4) * 10) + (spd_byte & 0x0F)));
					if (dimm_speed >= glspeed) {
						casmap_shift = 2; /* -1 is a shift of 2 */
					}
					/* note that the -1 result doesn't need to change the available CAS map */
				}	/* SPD_SDRAM_CYCLE_TIME_3RD (-1) !=0 */
			} else {
				casmap_shift = 0;
			}
		}	/* SPD_SDRAM_CYCLE_TIME_2ND (-.5) !=0 */
		/* set the casmap based on the shift to limit possible CAS settings */
		spd_byte = 31 - __builtin_clz((uint32_t) casmap1);
		/* just want bits in the lower byte since we have to cast to a 32 */
		casmap1 &= 0xFF << (spd_byte - casmap_shift);
	} else {		/* No DIMM */
		casmap1 = 0;
	}

	/*********************	CAS_LAT MAP COMPARE	***************************/
	if (casmap0 == 0) {
		spd_byte = CASDDR[__builtin_ctz((uint32_t) casmap1)];
	} else if (casmap1 == 0) {
		spd_byte = CASDDR[__builtin_ctz((uint32_t) casmap0)];
	} else if ((casmap0 &= casmap1)) {
		spd_byte = CASDDR[__builtin_ctz((uint32_t) casmap0)];
	} else {
		print_emerg("DIMM CAS Latencies not compatible\r\n");
		POST_CODE(ERROR_DIFF_DIMMS);
		hcf();
	}

	msr = rdmsr(MC_CF8F_DATA);
	msr.lo &= ~(7 << CF8F_LOWER_CAS_LAT_SHIFT);
	msr.lo |= spd_byte << CF8F_LOWER_CAS_LAT_SHIFT;
	wrmsr(MC_CF8F_DATA, msr);
}

static void set_latencies(void)
{
	uint32_t memspeed, dimm_setting;
	uint8_t spd_byte0, spd_byte1;
	msr_t msr;

	memspeed = GeodeLinkSpeed() / 2;
	dimm_setting = 0;

	/* MC_CF8F setup */
	/* tRAS */
	spd_byte0 = spd_read_byte(DIMM0, SPD_tRAS);
	if (spd_byte0 == 0xFF) {
		spd_byte0 = 0;
	}
	spd_byte1 = spd_read_byte(DIMM1, SPD_tRAS);
	if (spd_byte1 == 0xFF) {
		spd_byte1 = 0;
	}
	if (spd_byte0 < spd_byte1) {
		spd_byte0 = spd_byte1;
	}

	/* (ns/(1/MHz) = (us*MHZ)/1000 = clocks/1000 = clocks) */
	spd_byte1 = (spd_byte0 * memspeed) / 1000;
	if (((spd_byte0 * memspeed) % 1000)) {
		++spd_byte1;
	}
	dimm_setting |= spd_byte1 << CF8F_LOWER_ACT2PRE_SHIFT;

	/* tRP */
	spd_byte0 = spd_read_byte(DIMM0, SPD_tRP);
	if (spd_byte0 == 0xFF) {
		spd_byte0 = 0;
	}
	spd_byte1 = spd_read_byte(DIMM1, SPD_tRP);
	if (spd_byte1 == 0xFF) {
		spd_byte1 = 0;
	}
	if (spd_byte0 < spd_byte1) {
		spd_byte0 = spd_byte1;
	}

	/* (ns/(1/MHz) = (us*MHZ)/1000 = clocks/1000 = clocks) */
	spd_byte1 = ((spd_byte0 >> 2) * memspeed) / 1000;
	if ((((spd_byte0 >> 2) * memspeed) % 1000)) {
		++spd_byte1;
	}
	dimm_setting |= spd_byte1 << CF8F_LOWER_PRE2ACT_SHIFT;

	/* tRCD */
	spd_byte0 = spd_read_byte(DIMM0, SPD_tRCD);
	if (spd_byte0 == 0xFF) {
		spd_byte0 = 0;
	}
	spd_byte1 = spd_read_byte(DIMM1, SPD_tRCD);
	if (spd_byte1 == 0xFF) {
		spd_byte1 = 0;
	}
	if (spd_byte0 < spd_byte1) {
		spd_byte0 = spd_byte1;
	}

	/* (ns/(1/MHz) = (us*MHZ)/1000 = clocks/1000 = clocks) */
	spd_byte1 = ((spd_byte0 >> 2) * memspeed) / 1000;
	if ((((spd_byte0 >> 2) * memspeed) % 1000)) {
		++spd_byte1;
	}
	dimm_setting |= spd_byte1 << CF8F_LOWER_ACT2CMD_SHIFT;

	/* tRRD */
	spd_byte0 = spd_read_byte(DIMM0, SPD_tRRD);
	if (spd_byte0 == 0xFF) {
		spd_byte0 = 0;
	}
	spd_byte1 = spd_read_byte(DIMM1, SPD_tRRD);
	if (spd_byte1 == 0xFF) {
		spd_byte1 = 0;
	}
	if (spd_byte0 < spd_byte1) {
		spd_byte0 = spd_byte1;
	}

	/* (ns/(1/MHz) = (us*MHZ)/1000 = clocks/1000 = clocks) */
	spd_byte1 = ((spd_byte0 >> 2) * memspeed) / 1000;
	if ((((spd_byte0 >> 2) * memspeed) % 1000)) {
		++spd_byte1;
	}
	dimm_setting |= spd_byte1 << CF8F_LOWER_ACT2ACT_SHIFT;

	/* tRC = tRP + tRAS */
	dimm_setting |= (((dimm_setting >> CF8F_LOWER_ACT2PRE_SHIFT) & 0x0F) +
	     		((dimm_setting >> CF8F_LOWER_PRE2ACT_SHIFT) & 0x07))
	    			<< CF8F_LOWER_ACT2ACTREF_SHIFT;

	msr = rdmsr(MC_CF8F_DATA);
	msr.lo &= 0xF00000FF;
	msr.lo |= dimm_setting;
	msr.hi |= CF8F_UPPER_REORDER_DIS_SET;
	wrmsr(MC_CF8F_DATA, msr);

	/* MC_CF1017 setup */
	/* tRFC */
	spd_byte0 = spd_read_byte(DIMM0, SPD_tRFC);
	if (spd_byte0 == 0xFF) {
		spd_byte0 = 0;
	}
	spd_byte1 = spd_read_byte(DIMM1, SPD_tRFC);
	if (spd_byte1 == 0xFF) {
		spd_byte1 = 0;
	}
	if (spd_byte0 < spd_byte1) {
		spd_byte0 = spd_byte1;
	}

	if (spd_byte0) {
		/* (ns/(1/MHz) = (us*MHZ)/1000 = clocks/1000 = clocks) */
		spd_byte1 = (spd_byte0 * memspeed) / 1000;
		if (((spd_byte0 * memspeed) % 1000)) {
			++spd_byte1;
		}
	} else {		/* Not all SPDs have tRFC setting. Use this formula tRFC = tRC + 1 clk */
		spd_byte1 = ((dimm_setting >> CF8F_LOWER_ACT2ACTREF_SHIFT) & 0x0F) + 1;
	}
	dimm_setting = spd_byte1 << CF1017_LOWER_REF2ACT_SHIFT;	/* note this clears the cf8f dimm setting */
	msr = rdmsr(MC_CF1017_DATA);
	msr.lo &= ~(0x1F << CF1017_LOWER_REF2ACT_SHIFT);
	msr.lo |= dimm_setting;
	wrmsr(MC_CF1017_DATA, msr);

	/* tWTR: Set tWTR to 2 for 400MHz and above GLBUS (200Mhz mem) other wise it stay default(1) */
	if (memspeed > 198) {
		msr = rdmsr(MC_CF1017_DATA);
		msr.lo &= ~(0x7 << CF1017_LOWER_WR_TO_RD_SHIFT);
		msr.lo |= 2 << CF1017_LOWER_WR_TO_RD_SHIFT;
		wrmsr(MC_CF1017_DATA, msr);
	}
}

static void set_extended_mode_registers(void)
{
	uint8_t spd_byte0, spd_byte1;
	msr_t msr;
	spd_byte0 = spd_read_byte(DIMM0, SPD_DEVICE_ATTRIBUTES_GENERAL);
	if (spd_byte0 == 0xFF) {
		spd_byte0 = 0;
	}
	spd_byte1 = spd_read_byte(DIMM1, SPD_DEVICE_ATTRIBUTES_GENERAL);
	if (spd_byte1 == 0xFF) {
		spd_byte1 = 0;
	}
	spd_byte1 &= spd_byte0;

	msr = rdmsr(MC_CF07_DATA);
	if (spd_byte1 & 1) {	/* Drive Strength Control */
		msr.lo |= CF07_LOWER_EMR_DRV_SET;
	}
	if (spd_byte1 & 2) {	/* FET Control */
		msr.lo |= CF07_LOWER_EMR_QFC_SET;
	}
	wrmsr(MC_CF07_DATA, msr);
}

static void EnableMTest(void)
{
	msr_t msr;

	msr = rdmsr(GLCP_DELAY_CONTROLS);
	msr.hi &= ~(7 << 20);	/* clear bits 54:52 */
	if (GeodeLinkSpeed() < 200) {
		msr.hi |= 2 << 20;
	}
	wrmsr(GLCP_DELAY_CONTROLS, msr);

	msr = rdmsr(MC_CFCLK_DBUG);
	msr.hi |=
	    CFCLK_UPPER_MTST_B2B_DIS_SET | CFCLK_UPPER_MTEST_EN_SET |
	    CFCLK_UPPER_MTST_RBEX_EN_SET;
	msr.lo |= CFCLK_LOWER_TRISTATE_DIS_SET;
	wrmsr(MC_CFCLK_DBUG, msr);

	print_info("Enabled MTest for TLA debug\r\n");
}

static void sdram_set_registers(const struct mem_controller *ctrl)
{
	msr_t msr;
	uint32_t msrnum;

	/* Set Timing Control */
	msrnum = MC_CF1017_DATA;
	msr = rdmsr(msrnum);
	msr.lo &= ~(7 << CF1017_LOWER_RD_TMG_CTL_SHIFT);
	if (GeodeLinkSpeed() < 334) {
		msr.lo |= (3 << CF1017_LOWER_RD_TMG_CTL_SHIFT);
	} else {
		msr.lo |= (4 << CF1017_LOWER_RD_TMG_CTL_SHIFT);
	}
	wrmsr(msrnum, msr);

	/* Set Refresh Staggering */
	msrnum = MC_CF07_DATA;
	msr = rdmsr(msrnum);
	msr.lo &= ~0xF0;
	msr.lo |= 0x40;		/* set refresh to 4SDRAM clocks */
	wrmsr(msrnum, msr);

	/* Memory Interleave: Set HOI here otherwise default is LOI */
	/* msrnum = MC_CF8F_DATA;
	   msr = rdmsr(msrnum);
	   msr.hi |= CF8F_UPPER_HOI_LOI_SET;
	   wrmsr(msrnum, msr); */
}

static void sdram_set_spd_registers(const struct mem_controller *ctrl)
{
	uint8_t spd_byte;

	banner("sdram_set_spd_register\n");
	POST_CODE(POST_MEM_SETUP);	// post_70h

	spd_byte = spd_read_byte(DIMM0, SPD_MODULE_ATTRIBUTES);
	banner("Check DIMM 0");
	/* Check DIMM is not Register and not Buffered DIMMs. */
	if ((spd_byte != 0xFF) && (spd_byte & 3)) {
		print_emerg("DIMM0 NOT COMPATIBLE\r\n");
		POST_CODE(ERROR_UNSUPPORTED_DIMM);
		hcf();
	}
	banner("Check DIMM 1");
	spd_byte = spd_read_byte(DIMM1, SPD_MODULE_ATTRIBUTES);
	if ((spd_byte != 0xFF) && (spd_byte & 3)) {
		print_emerg("DIMM1 NOT COMPATIBLE\n");
		POST_CODE(ERROR_UNSUPPORTED_DIMM);
		hcf();
	}

	POST_CODE(POST_MEM_SETUP2);	// post_72h
	banner("Check DDR MAX");

	/* Check that the memory is not overclocked. */
	checkDDRMax();

	/* Size the DIMMS */
	POST_CODE(POST_MEM_SETUP3);	// post_73h
	banner("AUTOSIZE DIMM 0");
	auto_size_dimm(DIMM0);
	POST_CODE(POST_MEM_SETUP4);	// post_74h
	banner("AUTOSIZE DIMM 1");
	auto_size_dimm(DIMM1);

	/* Set CAS latency */
	banner("set cas latency");
	POST_CODE(POST_MEM_SETUP5);	// post_75h
	setCAS();

	/* Set all the other latencies here (tRAS, tRP....) */
	banner("set all latency");
	set_latencies();

	/* Set Extended Mode Registers */
	banner("set emrs");
	set_extended_mode_registers();

	banner("set ref rate");
	/* Set Memory Refresh Rate */
	set_refresh_rate();

}

/* Section 6.1.3, LX processor databooks, BIOS Initialization Sequence
 * Section 4.1.4, GX/CS5535 GeodeROM Porting guide */
static void sdram_enable(int controllers, const struct mem_controller *ctrl)
{
	uint32_t i, msrnum;
	msr_t msr;

/*********************************************************************
;* Turn on MC/DIMM interface per JEDEC
;* 1) Clock stabilizes > 200us
;* 2) Assert CKE
;* 3) Precharge All to put all banks into an idles state
;* 4) EMRS to enable DLL
;* 6) MRS w/ memory config & reset DLL set
;* 7) Wait 200 clocks (2us)
;* 8) Precharge All and 2 Auto refresh
;* 9) MRS w/ memory config & reset DLL clear
;* 8) DDR SDRAM ready for normal operation
;********************************************************************/
	POST_CODE(POST_MEM_ENABLE);	// post_76h

	/* Only enable MTest for TLA memory debug */
	/*EnableMTest(); */

	/* If both Page Size = "Not Installed" we have a problems and should halt. */
	msr = rdmsr(MC_CF07_DATA);
	if ((msr.hi & ((7 << CF07_UPPER_D1_PSZ_SHIFT) | (7 << CF07_UPPER_D0_PSZ_SHIFT))) == 
			((7 << CF07_UPPER_D1_PSZ_SHIFT) | (7 << CF07_UPPER_D0_PSZ_SHIFT))) {
		print_emerg("No memory in the system\r\n");
		POST_CODE(ERROR_NO_DIMMS);
		hcf();
	}

	/*      Set CKEs */
	msrnum = MC_CFCLK_DBUG;
	msr = rdmsr(msrnum);
	msr.lo &= ~(CFCLK_LOWER_MASK_CKE_SET0 | CFCLK_LOWER_MASK_CKE_SET1);
	wrmsr(msrnum, msr);

	/* Force Precharge All on next command, EMRS */
	msrnum = MC_CFCLK_DBUG;
	msr = rdmsr(msrnum);
	msr.lo |= CFCLK_LOWER_FORCE_PRE_SET;
	wrmsr(msrnum, msr);

	/* EMRS to enable DLL (pre-setup done in setExtendedModeRegisters) */
	msrnum = MC_CF07_DATA;
	msr = rdmsr(msrnum);
	msr.lo |= CF07_LOWER_PROG_DRAM_SET | CF07_LOWER_LOAD_MODE_DDR_SET;
	wrmsr(msrnum, msr);
	msr.lo &= ~(CF07_LOWER_PROG_DRAM_SET | CF07_LOWER_LOAD_MODE_DDR_SET);
	wrmsr(msrnum, msr);

	/* Clear Force Precharge All */
	msrnum = MC_CFCLK_DBUG;
	msr = rdmsr(msrnum);
	msr.lo &= ~CFCLK_LOWER_FORCE_PRE_SET;
	wrmsr(msrnum, msr);

	/* MRS Reset DLL - set */
	msrnum = MC_CF07_DATA;
	msr = rdmsr(msrnum);
	msr.lo |= CF07_LOWER_PROG_DRAM_SET | CF07_LOWER_LOAD_MODE_DLL_RESET;
	wrmsr(msrnum, msr);
	msr.lo &= ~(CF07_LOWER_PROG_DRAM_SET | CF07_LOWER_LOAD_MODE_DLL_RESET);
	wrmsr(msrnum, msr);

	/* 2us delay (200 clocks @ 200Mhz). We probably really don't need this but.... better safe. */
	/* Wait 2 PORT61 ticks. between 15us and 30us */
	/* This would be endless if the timer is stuck. */
	while ((inb(0x61))) ;	/* find the first edge */
	while (!(~inb(0x61))) ;

	/* Force Precharge All on the next command, auto-refresh */
	msrnum = MC_CFCLK_DBUG;
	msr = rdmsr(msrnum);
	msr.lo |= CFCLK_LOWER_FORCE_PRE_SET;
	wrmsr(msrnum, msr);

	/* Manually AUTO refresh #1 */
	/* If auto refresh was not enabled above we would need to do 8 refreshes to prime the pump before these 2. */
	msrnum = MC_CF07_DATA;
	msr = rdmsr(msrnum);
	msr.lo |= CF07_LOWER_REF_TEST_SET;
	wrmsr(msrnum, msr);
	msr.lo &= ~CF07_LOWER_REF_TEST_SET;
	wrmsr(msrnum, msr);

	/* Clear Force Precharge All */
	msrnum = MC_CFCLK_DBUG;
	msr = rdmsr(msrnum);
	msr.lo &= ~CFCLK_LOWER_FORCE_PRE_SET;
	wrmsr(msrnum, msr);

	/* Manually AUTO refresh */
	/* The MC should insert the right delay between the refreshes */
	msrnum = MC_CF07_DATA;
	msr = rdmsr(msrnum);
	msr.lo |= CF07_LOWER_REF_TEST_SET;
	wrmsr(msrnum, msr);
	msr.lo &= ~CF07_LOWER_REF_TEST_SET;
	wrmsr(msrnum, msr);

	/* MRS Reset DLL - clear */
	msrnum = MC_CF07_DATA;
	msr = rdmsr(msrnum);
	msr.lo |= CF07_LOWER_PROG_DRAM_SET;
	wrmsr(msrnum, msr);
	msr.lo &= ~CF07_LOWER_PROG_DRAM_SET;
	wrmsr(msrnum, msr);

	/* Allow MC to tristate during idle cycles with MTEST OFF */
	msrnum = MC_CFCLK_DBUG;
	msr = rdmsr(msrnum);
	msr.lo &= ~CFCLK_LOWER_TRISTATE_DIS_SET;
	wrmsr(msrnum, msr);

	/* Disable SDCLK DIMM1 slot if no DIMM installed to save power. */
	msr = rdmsr(MC_CF07_DATA);
	if ((msr.hi & (7 << CF07_UPPER_D1_PSZ_SHIFT)) ==
	    (7 << CF07_UPPER_D1_PSZ_SHIFT)) {
		msrnum = GLCP_DELAY_CONTROLS;
		msr = rdmsr(msrnum);
		msr.hi |= (1 << 23);	/* SDCLK bit for 2.0 */
		wrmsr(msrnum, msr);
	}

	/* Set PMode0 Sensitivity Counter */
	msr.lo = 0;		/* pmode 0=0 most aggressive */
	msr.hi = 0x200;		/* pmode 1=200h */
	wrmsr(MC_CF_PMCTR, msr);

	/* Set PMode1 Up delay enable */
	msrnum = MC_CF1017_DATA;
	msr = rdmsr(msrnum);
	msr.lo |= (209 << 8);	/* bits[15:8] = 209 */
	wrmsr(msrnum, msr);

	print_emerg("DRAM controller init done.\n");
	POST_CODE(POST_MEM_SETUP_GOOD);	//0x7E

	/* make sure there is nothing stale in the cache */
	/* CAR stack is in the cache __asm__ __volatile__("wbinvd\n"); */

	/* The RAM dll needs a write to lock on so generate a few dummy writes */
	/* Note: The descriptor needs to be enabled to point at memory */
	volatile unsigned long *ptr;
	for (i = 0; i < 5; i++) {
		ptr = (void *)i;
		*ptr = (unsigned long)i;
	}
	/* SWAPSiF for PBZ 4112 (Errata 34) */
	/* check for failed DLL settings now that we have done a memory write. */
	msrnum = GLCP_DELAY_CONTROLS;
	msr = rdmsr(msrnum);
	if ((msr.lo & 0x7FF) == 0x104) {

		/* If you had it you would need to clear out the fail boot count flag */
		/*       (depending on where it counts from etc). */

		/* The reset we are about to perform clears the PM_SSC register in the */
		/*       5536 so will need to store the S3 resume flag in NVRAM otherwise */
		/*       it would do a normal boot */

		/* Reset the system */
		msrnum = MDD_SOFT_RESET;
		msr = rdmsr(msrnum);
		msr.lo |= 1;
		wrmsr(msrnum, msr);
	}
	print_info("RAM DLL lock\n");

}