aboutsummaryrefslogtreecommitdiff
path: root/src/northbridge/amd/amdmct/mct_ddr3/mhwlc_d.c
blob: dfddb606092251c41c9472c40a7f67b907a605ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
/*
 * This file is part of the coreboot project.
 *
 * Copyright (C) 2010 Advanced Micro Devices, Inc.
 * Copyright (C) 2015 Timothy Pearson <tpearson@raptorengineeringinc.com>, Raptor Engineering
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

/*
 *-----------------------------------------------------------------------------
 *			MODULES USED
 *
 *-----------------------------------------------------------------------------
 */

/*----------------------------------------------------------------------------
 *			PROTOTYPES OF LOCAL FUNCTIONS
 *
 *----------------------------------------------------------------------------
 */
u32 swapAddrBits_wl(struct DCTStatStruc *pDCTstat, uint8_t dct, uint32_t MRSValue);
u32 swapBankBits(struct DCTStatStruc *pDCTstat, uint8_t dct, uint32_t MRSValue);
void prepareDimms(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat,
	u8 dct, u8 dimm, BOOL wl);
void programODT(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat, uint8_t dct, u8 dimm);
void procConfig(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat, uint8_t dct, u8 dimm, u8 pass);
void setWLByteDelay(struct DCTStatStruc *pDCTstat, uint8_t dct, u8 ByteLane, u8 dimm, u8 targetAddr, uint8_t pass);
void getWLByteDelay(struct DCTStatStruc *pDCTstat, uint8_t dct, u8 ByteLane, u8 dimm, uint8_t pass);

static int32_t abs(int32_t val) {
	if (val < 0)
		val *= -1;

	return val;
}

/*
 *-----------------------------------------------------------------------------
 *		EXPORTED FUNCTIONS
 *
 *-----------------------------------------------------------------------------
 */

/*-----------------------------------------------------------------------------
 * uint8_t AgesaHwWlPhase1(SPDStruct *SPDData,MCTStruct *MCTData, DCTStruct *DCTData,
 *                  u8 Dimm, u8 Pass)
 *
 *  Description:
 *       This function initialized Hardware based write levelization phase 1
 *
 *   Parameters:
 *       IN  OUT   *SPDData - Pointer to buffer with information about each DIMMs
 *                            SPD information
 *                 *MCTData - Pointer to buffer with runtime parameters,
 *                 *DCTData - Pointer to buffer with information about each DCT
 *
 *       IN        DIMM - Logical DIMM number
 *                 Pass - First or Second Pass
 *       OUT
 *-----------------------------------------------------------------------------
 */
uint8_t AgesaHwWlPhase1(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat,
		u8 dct, u8 dimm, u8 pass)
{
	u8 ByteLane;
	u32 Value, Addr;
	u16 Addl_Data_Offset, Addl_Data_Port;
	sMCTStruct *pMCTData = pDCTstat->C_MCTPtr;
	sDCTStruct *pDCTData = pDCTstat->C_DCTPtr[dct];

	pDCTData->WLPass = pass;
	/* 1. Specify the target DIMM that is to be trained by programming
	 * F2x[1, 0]9C_x08[TrDimmSel].
	 */
	set_DCT_ADDR_Bits(pDCTData, dct, pDCTData->NodeId, FUN_DCT,
			DRAM_ADD_DCT_PHY_CONTROL_REG, TrDimmSelStart,
			TrDimmSelEnd, (u32)dimm);

	if (is_fam15h()) {
		/* Set TrNibbleSel = 0
		 *
		 * TODO: Add support for x4 DIMMs
		 */
		set_DCT_ADDR_Bits(pDCTData, dct, pDCTData->NodeId, FUN_DCT,
				DRAM_ADD_DCT_PHY_CONTROL_REG, 2,
				2, (u32)0);
	}

	/* 2. Prepare the DIMMs for write levelization using DDR3-defined
	 * MR commands. */
	prepareDimms(pMCTstat, pDCTstat, dct, dimm, TRUE);

	/* 3. After the DIMMs are configured, BIOS waits 40 MEMCLKs to
	 *    satisfy DDR3-defined internal DRAM timing.
	 */
	if (is_fam15h())
		precise_memclk_delay_fam15(pMCTstat, pDCTstat, dct, 40);
	else
		pMCTData->AgesaDelay(40);

	/* 4. Configure the processor's DDR phy for write levelization training: */
	procConfig(pMCTstat, pDCTstat, dct, dimm, pass);

	/* 5. Begin write levelization training:
	 *  Program F2x[1, 0]9C_x08[WrtLvTrEn]=1. */
	if (pDCTData->LogicalCPUID & (AMD_DR_Cx | AMD_DR_Dx | AMD_FAM15_ALL))
	{
		set_DCT_ADDR_Bits(pDCTData, dct, pDCTData->NodeId, FUN_DCT,
				DRAM_ADD_DCT_PHY_CONTROL_REG, WrtLvTrEn, WrtLvTrEn, 1);
	}
	else
	{
		/* Broadcast write to all D3Dbyte chipset register offset 0xc
		 * Set bit 0 (wrTrain)
		 * Program bit 4 to nibble being trained (only matters for x4dimms)
		 * retain value of 3:2 (Trdimmsel)
		 * reset bit 5 (FrzPR)
		 */
		if (dct)
		{
			Addl_Data_Offset=0x198;
			Addl_Data_Port=0x19C;
		}
		else
		{
			Addl_Data_Offset=0x98;
			Addl_Data_Port=0x9C;
		}
		Addr=0x0D00000C;
		AmdMemPCIWriteBits(MAKE_SBDFO(0,0,24+(pDCTData->NodeId),FUN_DCT,Addl_Data_Offset), 31, 0, &Addr);
		while ((get_Bits(pDCTData,FUN_DCT,pDCTData->NodeId, FUN_DCT, Addl_Data_Offset,
				DctAccessDone, DctAccessDone)) == 0);
		AmdMemPCIReadBits(MAKE_SBDFO(0,0,24+(pDCTData->NodeId),FUN_DCT,Addl_Data_Port), 31, 0, &Value);
		Value = bitTestSet(Value, 0);	/* enable WL training */
		Value = bitTestReset(Value, 4); /* for x8 only */
		Value = bitTestReset(Value, 5); /* for hardware WL training */
		AmdMemPCIWriteBits(MAKE_SBDFO(0,0,24+(pDCTData->NodeId),FUN_DCT,Addl_Data_Port), 31, 0, &Value);
		Addr=0x4D030F0C;
		AmdMemPCIWriteBits(MAKE_SBDFO(0,0,24+(pDCTData->NodeId),FUN_DCT,Addl_Data_Offset), 31, 0, &Addr);
		while ((get_Bits(pDCTData,FUN_DCT,pDCTData->NodeId, FUN_DCT, Addl_Data_Offset,
				DctAccessDone, DctAccessDone)) == 0);
	}

	if (is_fam15h())
		proc_MFENCE();

	/* Wait 200 MEMCLKs. If executing pass 2, wait 32 MEMCLKs. */
	if (is_fam15h())
		precise_memclk_delay_fam15(pMCTstat, pDCTstat, dct, 200);
	else
		pMCTData->AgesaDelay(140);

	/* Program F2x[1, 0]9C_x08[WrtLevelTrEn]=0. */
	set_DCT_ADDR_Bits(pDCTData, dct, pDCTData->NodeId, FUN_DCT,
			DRAM_ADD_DCT_PHY_CONTROL_REG, WrtLvTrEn, WrtLvTrEn, 0);

	/* Read from registers F2x[1, 0]9C_x[51:50] and F2x[1, 0]9C_x52
	 * to get the gross and fine delay settings
	 * for the target DIMM and save these values. */
	for (ByteLane = 0; ByteLane < MAX_BYTE_LANES; ByteLane++) {
		getWLByteDelay(pDCTstat, dct, ByteLane, dimm, pass);
	}

	pDCTData->WLCriticalGrossDelayPrevPass = 0x1f;

	return 0;
}

uint8_t AgesaHwWlPhase2(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat,
		u8 dct, u8 dimm, u8 pass)
{
	u8 ByteLane;
	uint8_t status = 0;
	sDCTStruct *pDCTData = pDCTstat->C_DCTPtr[dct];

	if (is_fam15h()) {
		int32_t gross_diff[MAX_BYTE_LANES];
		int32_t cgd = pDCTData->WLCriticalGrossDelayPrevPass;
		uint8_t index = (uint8_t)(MAX_BYTE_LANES * dimm);

		/* Calculate the Critical Gross Delay */
		for (ByteLane = 0; ByteLane < MAX_BYTE_LANES; ByteLane++) {
			/* Calculate the gross delay differential for this lane */
			gross_diff[ByteLane] = pDCTData->WLSeedGrossDelay[index+ByteLane] + pDCTData->WLGrossDelay[index+ByteLane];
			gross_diff[ByteLane] -= pDCTData->WLSeedPreGrossDelay[index+ByteLane];

			/* WrDqDqsEarly values greater than 2 are reserved */
			if (gross_diff[ByteLane] < -2)
				gross_diff[ByteLane] = -2;

			/* Update the Critical Gross Delay */
			if (gross_diff[ByteLane] < cgd)
				cgd = gross_diff[ByteLane];
		}

		pDCTData->WLCriticalGrossDelayPrevPass = cgd;

		if (pDCTstat->Speed != pDCTstat->TargetFreq) {
			/* FIXME
			 * Using the Pass 1 training values causes major phy training problems on
			 * all Family 15h processors I tested (Pass 1 values are randomly too high,
			 * and Pass 2 cannot lock).
			 * Figure out why this is and fix it, then remove the bypass code below...
			 */
			if (pass == FirstPass) {
				for (ByteLane = 0; ByteLane < MAX_BYTE_LANES; ByteLane++) {
					pDCTData->WLGrossDelay[index+ByteLane] = pDCTData->WLSeedGrossDelay[index+ByteLane];
					pDCTData->WLFineDelay[index+ByteLane] = pDCTData->WLSeedFineDelay[index+ByteLane];
				}
				return 0;
			}
		}

		/* Compensate for occasional noise/instability causing sporadic training failure */
		for (ByteLane = 0; ByteLane < MAX_BYTE_LANES; ByteLane++) {
			uint8_t faulty_value_detected = 0;
			uint16_t total_delay_seed = ((pDCTData->WLSeedGrossDelay[index+ByteLane] & 0x1f) << 5) | (pDCTData->WLSeedFineDelay[index+ByteLane] & 0x1f);
			uint16_t total_delay_phy = ((pDCTData->WLGrossDelay[index+ByteLane] & 0x1f) << 5) | (pDCTData->WLFineDelay[index+ByteLane] & 0x1f);
			if (pass == FirstPass) {
				/* Allow a somewhat higher step threshold on the first pass
				 * For the most part, as long as the phy isn't stepping
				 * several clocks at once the values are probably valid.
				 */
				if (abs(total_delay_phy - total_delay_seed) > 0x30)
					faulty_value_detected = 1;
			} else {
				/* Stepping memory clocks between adjacent allowed frequencies
				 *  should not yield large phy value differences...
				 */

				if (abs(total_delay_phy - total_delay_seed) > 0x20)
					faulty_value_detected = 1;
			}
			if (faulty_value_detected) {
				printk(BIOS_INFO, "%s: overriding faulty phy value (seed: %04x phy: %04x step: %04x)\n", __func__,
					total_delay_seed, total_delay_phy, abs(total_delay_phy - total_delay_seed));
				pDCTData->WLGrossDelay[index+ByteLane] = pDCTData->WLSeedGrossDelay[index+ByteLane];
				pDCTData->WLFineDelay[index+ByteLane] = pDCTData->WLSeedFineDelay[index+ByteLane];
				status = 1;
			}
		}
	}

	return status;
}

uint8_t AgesaHwWlPhase3(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat,
		u8 dct, u8 dimm, u8 pass)
{
	u8 ByteLane;
	sMCTStruct *pMCTData = pDCTstat->C_MCTPtr;
	sDCTStruct *pDCTData = pDCTstat->C_DCTPtr[dct];

	if (is_fam15h()) {
		uint32_t dword;
		int32_t gross_diff[MAX_BYTE_LANES];
		int32_t cgd = pDCTData->WLCriticalGrossDelayPrevPass;
		uint8_t index = (uint8_t)(MAX_BYTE_LANES * dimm);

		/* Apply offset(s) if needed */
		if (cgd < 0) {
			dword = Get_NB32_DCT(pDCTstat->dev_dct, dct, 0xa8);
			dword &= ~(0x3 << 24);			/* WrDqDqsEarly = abs(cgd) */
			dword |= ((abs(cgd) & 0x3) << 24);
			Set_NB32_DCT(pDCTstat->dev_dct, dct, 0xa8, dword);

			for (ByteLane = 0; ByteLane < MAX_BYTE_LANES; ByteLane++) {
				/* Calculate the gross delay differential for this lane */
				gross_diff[ByteLane] = pDCTData->WLSeedGrossDelay[index+ByteLane] + pDCTData->WLGrossDelay[index+ByteLane];
				gross_diff[ByteLane] -= pDCTData->WLSeedPreGrossDelay[index+ByteLane];

				/* Prevent underflow in the presence of noise / instability*/
				if (gross_diff[ByteLane] < cgd)
					gross_diff[ByteLane] = cgd;

				pDCTData->WLGrossDelay[index+ByteLane] = (gross_diff[ByteLane] + (abs(cgd) & 0x3));
			}
		} else {
			dword = Get_NB32_DCT(pDCTstat->dev_dct, dct, 0xa8);
			dword &= ~(0x3 << 24);			/* WrDqDqsEarly = 0 */
			Set_NB32_DCT(pDCTstat->dev_dct, dct, 0xa8, dword);
		}
	}

	/* Write the adjusted gross and fine delay settings
	 * to the target DIMM. */
	for (ByteLane = 0; ByteLane < MAX_BYTE_LANES; ByteLane++) {
		setWLByteDelay(pDCTstat, dct, ByteLane, dimm, 1, pass);
	}

	/* 6. Configure DRAM Phy Control Register so that the phy stops driving
	 *    write levelization ODT. */
	set_DCT_ADDR_Bits(pDCTData, dct, pDCTData->NodeId, FUN_DCT,
			DRAM_ADD_DCT_PHY_CONTROL_REG, WrLvOdtEn, WrLvOdtEn, 0);

	if (is_fam15h())
		proc_MFENCE();

	/* Wait 10 MEMCLKs to allow for ODT signal settling. */
	if (is_fam15h())
		precise_memclk_delay_fam15(pMCTstat, pDCTstat, dct, 10);
	else
		pMCTData->AgesaDelay(10);

	/* 7. Program the target DIMM back to normal operation by configuring
	 * the following (See section 2.8.5.4.1.1
	 * [Phy Assisted Write Levelization] on page 97 pass 1, step #2):
	 * Configure all ranks of the target DIMM for normal operation.
	 * Enable the output drivers of all ranks of the target DIMM.
	 * For a two DIMM system, program the Rtt value for the target DIMM
	 * to the normal operating termination:
	 */
	prepareDimms(pMCTstat, pDCTstat, dct, dimm, FALSE);

	return 0;
}

/*----------------------------------------------------------------------------
 *	LOCAL FUNCTIONS
 *
 *----------------------------------------------------------------------------
 */

/*-----------------------------------------------------------------------------
 * u32 swapAddrBits_wl(struct DCTStatStruc *pDCTstat, uint8_t dct, u32 MRSValue)
 *
 * Description:
 *	This function swaps the bits in MSR register value
 *
 * Parameters:
 *	IN  OUT   *DCTData - Pointer to buffer with information about each DCT
 *	IN	u32: MRS value
 *	OUT	u32: Swapped BANK BITS
 *
 * ----------------------------------------------------------------------------
 */
u32 swapAddrBits_wl(struct DCTStatStruc *pDCTstat, uint8_t dct, uint32_t MRSValue)
{
	sDCTStruct *pDCTData = pDCTstat->C_DCTPtr[dct];
	u32 tempW, tempW1;

	if (is_fam15h())
		tempW1 = get_Bits(pDCTData, dct, pDCTData->NodeId,
				FUN_DCT, DRAM_INIT, MrsChipSelStartFam15, MrsChipSelEndFam15);
	else
		tempW1 = get_Bits(pDCTData, dct, pDCTData->NodeId,
			FUN_DCT, DRAM_INIT, MrsChipSelStartFam10, MrsChipSelEndFam10);
	if (tempW1 & 1)
	{
		if ((pDCTData->Status[DCT_STATUS_OnDimmMirror]))
		{
			/* swap A3/A4,A5/A6,A7/A8 */
			tempW = MRSValue;
			tempW1 = MRSValue;
			tempW &= 0x0A8;
			tempW1 &= 0x0150;
			MRSValue &= 0xFE07;
			MRSValue |= (tempW<<1);
			MRSValue |= (tempW1>>1);
		}
	}
	return MRSValue;
}

/*-----------------------------------------------------------------------------
 *  u32 swapBankBits(struct DCTStatStruc *pDCTstat, uint8_t dct, u32 MRSValue)
 *
 *  Description:
 *       This function swaps the bits in MSR register value
 *
 *   Parameters:
 *       IN  OUT   *DCTData - Pointer to buffer with information about each DCT
 *       IN	u32: MRS value
 *       OUT       u32: Swapped BANK BITS
 *
 * ----------------------------------------------------------------------------
 */
u32 swapBankBits(struct DCTStatStruc *pDCTstat, uint8_t dct, u32 MRSValue)
{
	sDCTStruct *pDCTData = pDCTstat->C_DCTPtr[dct];
	u32 tempW, tempW1;

	if (is_fam15h())
		tempW1 = get_Bits(pDCTData, dct, pDCTData->NodeId,
				FUN_DCT, DRAM_INIT, MrsChipSelStartFam15, MrsChipSelEndFam15);
	else
		tempW1 = get_Bits(pDCTData, dct, pDCTData->NodeId,
				FUN_DCT, DRAM_INIT, MrsChipSelStartFam10, MrsChipSelEndFam10);
	if (tempW1 & 1)
	{
		if ((pDCTData->Status[DCT_STATUS_OnDimmMirror]))
		{
			/* swap BA0/BA1 */
			tempW = MRSValue;
			tempW1 = MRSValue;
			tempW &= 0x01;
			tempW1 &= 0x02;
			MRSValue = 0;
			MRSValue |= (tempW<<1);
			MRSValue |= (tempW1>>1);
		}
	}
	return MRSValue;
}

static uint16_t unbuffered_dimm_nominal_termination_emrs(uint8_t number_of_dimms, uint8_t frequency_index, uint8_t rank_count, uint8_t rank)
{
	uint16_t term;

	/* FIXME
	 * Mainboards need to be able to specify the maximum number of DIMMs installable per channel
	 * For now assume a maximum of 2 DIMMs per channel can be installed
	 */
	uint8_t MaxDimmsInstallable = 2;

	if (number_of_dimms == 1) {
		if (MaxDimmsInstallable < 3) {
			term = 0x04;	/* Rtt_Nom=RZQ/4=60 Ohm */
		} else {
			if (rank_count == 1) {
				term = 0x04;	/* Rtt_Nom=RZQ/4=60 Ohm */
			} else {
				if (rank == 0)
					term = 0x04;	/* Rtt_Nom=RZQ/4=60 Ohm */
				else
					term = 0x00;	/* Rtt_Nom=OFF */
			}
		}
	} else {
		if (frequency_index < 5)
			term = 0x0044;	/* Rtt_Nom=RZQ/6=40 Ohm */
		else
			term = 0x0204;	/* Rtt_Nom=RZQ/8=30 Ohm */
	}

	return term;
}

static uint16_t unbuffered_dimm_dynamic_termination_emrs(uint8_t number_of_dimms, uint8_t frequency_index, uint8_t rank_count)
{
	uint16_t term;

	/* FIXME
	 * Mainboards need to be able to specify the maximum number of DIMMs installable per channel
	 * For now assume a maximum of 2 DIMMs per channel can be installed
	 */
	uint8_t MaxDimmsInstallable = 2;

	if (number_of_dimms == 1) {
		if (MaxDimmsInstallable < 3) {
			term = 0x00;	/* Rtt_WR=off */
		} else {
			if (rank_count == 1)
				term = 0x00;	/* Rtt_WR=off */
			else
				term = 0x200;	/* Rtt_WR=RZQ/4=60 Ohm */
		}
	} else {
		term = 0x400;	/* Rtt_WR=RZQ/2=120 Ohm */
	}

	return term;
}

/*-----------------------------------------------------------------------------
 *  void prepareDimms(sMCTStruct *pMCTData, sDCTStruct *DCTData, u8 Dimm, BOOL WL)
 *
 *  Description:
 *       This function prepares DIMMS for training
 *       Fam10h: BKDG Rev. 3.62 section 2.8.9.9.1
 *       Fam15h: BKDG Rev. 3.14 section 2.10.5.8.1
 * ----------------------------------------------------------------------------
 */
void prepareDimms(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat,
	u8 dct, u8 dimm, BOOL wl)
{
	u32 tempW, tempW1, tempW2, MrsBank;
	u8 rank, currDimm, MemClkFreq;
	sMCTStruct *pMCTData = pDCTstat->C_MCTPtr;
	sDCTStruct *pDCTData = pDCTstat->C_DCTPtr[dct];
	uint8_t package_type = mctGet_NVbits(NV_PACK_TYPE);
	uint8_t number_of_dimms = pDCTData->MaxDimmsInstalled;

	if (is_fam15h()) {
		MemClkFreq = get_Bits(pDCTData, dct, pDCTData->NodeId,
			FUN_DCT, DRAM_CONFIG_HIGH, 0, 4);
	} else {
		MemClkFreq = get_Bits(pDCTData, dct, pDCTData->NodeId,
			FUN_DCT, DRAM_CONFIG_HIGH, 0, 2);
	}
	/* Configure the DCT to send initialization MR commands to the target DIMM
	 * by programming the F2x[1,0]7C register using the following steps.
	 */
	rank = 0;
	while ((rank < pDCTData->DimmRanks[dimm]) && (rank < 2))
	{
		/* Program F2x[1, 0]7C[MrsChipSel[2:0]] for the current rank to be trained. */
		if (is_fam15h())
			set_Bits(pDCTData, dct, pDCTData->NodeId, FUN_DCT,
				DRAM_INIT, MrsChipSelStartFam15, MrsChipSelEndFam15, dimm*2+rank);
		else
			set_Bits(pDCTData, dct, pDCTData->NodeId, FUN_DCT,
				DRAM_INIT, MrsChipSelStartFam10, MrsChipSelEndFam10, dimm*2+rank);

		/* Program F2x[1, 0]7C[MrsBank[2:0]] for the appropriate internal DRAM
		 * register that defines the required DDR3-defined function for write
		 * levelization.
		 */
		MrsBank = swapBankBits(pDCTstat, dct, 1);
		if (is_fam15h())
			set_Bits(pDCTData, dct, pDCTData->NodeId, FUN_DCT,
				DRAM_INIT, MrsBankStartFam15, MrsBankEndFam15, MrsBank);
		else
			set_Bits(pDCTData, dct, pDCTData->NodeId, FUN_DCT,
				DRAM_INIT, MrsBankStartFam10, MrsBankEndFam10, MrsBank);

		/* Program F2x[1, 0]7C[MrsAddress[15:0]] to the required DDR3-defined function
		 * for write levelization.
		 */
		tempW = 0;/* DLL_DIS = 0, DIC = 0, AL = 0, TDQS = 0 */

		/* Retrieve normal settings of the MRS control word and clear Rtt_Nom */
		if (is_fam15h()) {
			tempW = mct_MR1(pMCTstat, pDCTstat, dct, dimm*2+rank) & 0xffff;
			tempW &= ~(0x0244);
		} else {
			/* Set TDQS=1b for x8 DIMM, TDQS=0b for x4 DIMM, when mixed x8 & x4 */
			tempW2 = get_Bits(pDCTData, dct, pDCTData->NodeId,
					FUN_DCT, DRAM_CONFIG_HIGH, RDqsEn, RDqsEn);
			if (tempW2)
			{
				if (pDCTData->DimmX8Present[dimm])
					tempW |= 0x800;
			}
		}

		/* determine Rtt_Nom for WL & Normal mode */
		if (is_fam15h()) {
			if (wl) {
				if (number_of_dimms > 1) {
					if (rank == 0) {
						/* Get Rtt_WR for the current DIMM and rank */
						tempW2 = fam15_rttwr(pDCTstat, dct, dimm, rank, package_type);
					} else {
						tempW2 = fam15_rttnom(pDCTstat, dct, dimm, rank, package_type);
					}
				} else {
					tempW2 = fam15_rttnom(pDCTstat, dct, dimm, rank, package_type);
				}
			} else {
				tempW2 = fam15_rttnom(pDCTstat, dct, dimm, rank, package_type);
			}
			tempW1 = 0;
			tempW1 |= ((tempW2 & 0x4) >> 2) << 9;
			tempW1 |= ((tempW2 & 0x2) >> 1) << 6;
			tempW1 |= ((tempW2 & 0x1) >> 0) << 2;
		} else {
			if (pDCTData->Status[DCT_STATUS_REGISTERED]) {
				tempW1 = RttNomTargetRegDimm(pMCTData, pDCTData, dimm, wl, MemClkFreq, rank);
			} else {
				if (wl) {
					if (number_of_dimms > 1) {
						if (rank == 0) {
							/* Get Rtt_WR for the current DIMM and rank */
							uint16_t dynamic_term = unbuffered_dimm_dynamic_termination_emrs(pDCTData->MaxDimmsInstalled, MemClkFreq, pDCTData->DimmRanks[dimm]);

							/* Convert dynamic termination code to corresponding nominal termination code */
							if (dynamic_term == 0x200)
								tempW1 = 0x04;
							else if (dynamic_term == 0x400)
								tempW1 = 0x40;
							else
								tempW1 = 0x0;
						} else {
							tempW1 = unbuffered_dimm_nominal_termination_emrs(pDCTData->MaxDimmsInstalled, MemClkFreq, pDCTData->DimmRanks[dimm], rank);
						}
					} else {
						tempW1 = unbuffered_dimm_nominal_termination_emrs(pDCTData->MaxDimmsInstalled, MemClkFreq, pDCTData->DimmRanks[dimm], rank);
					}
				} else {
					tempW1 = unbuffered_dimm_nominal_termination_emrs(pDCTData->MaxDimmsInstalled, MemClkFreq, pDCTData->DimmRanks[dimm], rank);
				}
			}
		}

		/* Apply Rtt_Nom to the MRS control word */
		tempW=tempW|tempW1;

		/* All ranks of the target DIMM are set to write levelization mode. */
		if (wl)
		{
			tempW1 = bitTestSet(tempW, MRS_Level);
			if (rank == 0)
			{
				/* Enable the output driver of the first rank of the target DIMM. */
				tempW = tempW1;
			}
			else
			{
				/* Disable the output drivers of all other ranks for
				 * the target DIMM.
				 */
				tempW = bitTestSet(tempW1, Qoff);
			}
		}

		/* Program MrsAddress[5,1]=output driver impedance control (DIC) */
		if (is_fam15h()) {
			tempW1 = fam15_dimm_dic(pDCTstat, dct, dimm, rank, package_type);
		} else {
			/* Read DIC from F2x[1,0]84[DrvImpCtrl] */
			tempW1 = get_Bits(pDCTData, dct, pDCTData->NodeId,
					FUN_DCT, DRAM_MRS_REGISTER, DrvImpCtrlStart, DrvImpCtrlEnd);
		}

		/* Apply DIC to the MRS control word */
		if (bitTest(tempW1, 1))
			tempW = bitTestSet(tempW, 5);
		if (bitTest(tempW1, 0))
			tempW = bitTestSet(tempW, 1);

		tempW = swapAddrBits_wl(pDCTstat, dct, tempW);

		if (is_fam15h())
			set_Bits(pDCTData, dct, pDCTData->NodeId, FUN_DCT,
				DRAM_INIT, MrsAddressStartFam15, MrsAddressEndFam15, tempW);
		else
			set_Bits(pDCTData, dct, pDCTData->NodeId, FUN_DCT,
				DRAM_INIT, MrsAddressStartFam10, MrsAddressEndFam10, tempW);

		/* Program F2x[1, 0]7C[SendMrsCmd]=1 to initiate the command to
		 * the specified DIMM.
		 */
		set_Bits(pDCTData, dct, pDCTData->NodeId, FUN_DCT,
			DRAM_INIT, SendMrsCmd, SendMrsCmd, 1);
		/* Wait for F2x[1, 0]7C[SendMrsCmd] to be cleared by hardware. */
		while ((get_Bits(pDCTData, dct, pDCTData->NodeId,
				FUN_DCT, DRAM_INIT, SendMrsCmd, SendMrsCmd)) == 0x1)
		{
		}

		/* Program F2x[1, 0]7C[MrsBank[2:0]] for the appropriate internal DRAM
		 * register that defines the required DDR3-defined function for Rtt_WR.
		 */
		MrsBank = swapBankBits(pDCTstat, dct, 2);
		if (is_fam15h())
			set_Bits(pDCTData, dct, pDCTData->NodeId, FUN_DCT,
				DRAM_INIT, MrsBankStartFam15, MrsBankEndFam15, MrsBank);
		else
			set_Bits(pDCTData, dct, pDCTData->NodeId, FUN_DCT,
				DRAM_INIT, MrsBankStartFam10, MrsBankEndFam10, MrsBank);

		/* Program F2x[1, 0]7C[MrsAddress[15:0]] to the required DDR3-defined function
		 * for Rtt_WR (DRAMTermDyn).
		 */
		tempW = 0;/* PASR = 0,*/

		/* Retrieve normal settings of the MRS control word and clear Rtt_WR */
		if (is_fam15h()) {
			tempW = mct_MR2(pMCTstat, pDCTstat, dct, dimm*2+rank) & 0xffff;
			tempW &= ~(0x0600);
		} else {
			/* program MrsAddress[7,6,5:3]=SRT,ASR,CWL,
			* based on F2x[1,0]84[19,18,22:20]=,SRT,ASR,Tcwl */
			tempW1 = get_Bits(pDCTData, dct, pDCTData->NodeId,
					FUN_DCT, DRAM_MRS_REGISTER, PCI_MIN_LOW, PCI_MAX_HIGH);
			if (bitTest(tempW1,19))
			{tempW = bitTestSet(tempW, 7);}
			if (bitTest(tempW1,18))
			{tempW = bitTestSet(tempW, 6);}
			/* tempW=tempW|(((tempW1>>20)&0x7)<<3); */
			tempW=tempW|((tempW1&0x00700000)>>17);
			/* workaround for DR-B0 */
			if ((pDCTData->LogicalCPUID & AMD_DR_Bx) && (pDCTData->Status[DCT_STATUS_REGISTERED]))
				tempW+=0x8;
		}

		/* determine Rtt_WR for WL & Normal mode */
		if (is_fam15h()) {
			tempW1 = (fam15_rttwr(pDCTstat, dct, dimm, rank, package_type) << 9);
		} else {
			if (pDCTData->Status[DCT_STATUS_REGISTERED])
				tempW1 = RttWrRegDimm(pMCTData, pDCTData, dimm, wl, MemClkFreq, rank);
			else
				tempW1 = unbuffered_dimm_dynamic_termination_emrs(pDCTData->MaxDimmsInstalled, MemClkFreq, pDCTData->DimmRanks[dimm]);
		}

		/* Apply Rtt_WR to the MRS control word */
		tempW=tempW|tempW1;
		tempW = swapAddrBits_wl(pDCTstat, dct, tempW);
		if (is_fam15h())
			set_Bits(pDCTData, dct, pDCTData->NodeId, FUN_DCT,
				DRAM_INIT, MrsAddressStartFam15, MrsAddressEndFam15, tempW);
		else
			set_Bits(pDCTData, dct, pDCTData->NodeId, FUN_DCT,
				DRAM_INIT, MrsAddressStartFam10, MrsAddressEndFam10, tempW);

		/* Program F2x[1, 0]7C[SendMrsCmd]=1 to initiate the command to
		   the specified DIMM.*/
		set_Bits(pDCTData, dct, pDCTData->NodeId, FUN_DCT,
			DRAM_INIT, SendMrsCmd, SendMrsCmd, 1);

		/* Wait for F2x[1, 0]7C[SendMrsCmd] to be cleared by hardware. */
		while ((get_Bits(pDCTData, dct, pDCTData->NodeId,
				FUN_DCT, DRAM_INIT, SendMrsCmd, SendMrsCmd)) == 0x1)
		{
		}

		rank++;
	}

	/* Configure the non-target DIMM normally. */
	currDimm = 0;
	while (currDimm < MAX_LDIMMS)
	{
		if (pDCTData->DimmPresent[currDimm])
		{
			if (currDimm != dimm)
			{
				rank = 0;
				while ((rank < pDCTData->DimmRanks[currDimm]) && (rank < 2))
				{
					/* Program F2x[1, 0]7C[MrsChipSel[2:0]] for the current rank
					 * to be trained.
					 */
					if (is_fam15h())
						set_Bits(pDCTData, dct, pDCTData->NodeId,
							FUN_DCT, DRAM_INIT, MrsChipSelStartFam15, MrsChipSelEndFam15, currDimm*2+rank);
					else
						set_Bits(pDCTData, dct, pDCTData->NodeId,
							FUN_DCT, DRAM_INIT, MrsChipSelStartFam10, MrsChipSelEndFam10, currDimm*2+rank);

					/* Program F2x[1, 0]7C[MrsBank[2:0]] for the appropriate internal
					 * DRAM register that defines the required DDR3-defined function
					 * for write levelization.
					 */
					MrsBank = swapBankBits(pDCTstat, dct, 1);
					if (is_fam15h())
						set_Bits(pDCTData, dct, pDCTData->NodeId,
							FUN_DCT, DRAM_INIT, MrsBankStartFam15, MrsBankEndFam15, MrsBank);
					else
						set_Bits(pDCTData, dct, pDCTData->NodeId,
							FUN_DCT, DRAM_INIT, MrsBankStartFam10, MrsBankEndFam10, MrsBank);

					/* Program F2x[1, 0]7C[MrsAddress[15:0]] to the required
					 * DDR3-defined function for write levelization.
					 */
					tempW = 0;/* DLL_DIS = 0, DIC = 0, AL = 0, TDQS = 0, Level=0, Qoff=0 */

					/* Retrieve normal settings of the MRS control word and clear Rtt_Nom */
					if (is_fam15h()) {
						tempW = mct_MR1(pMCTstat, pDCTstat, dct, dimm*2+rank) & 0xffff;
						tempW &= ~(0x0244);
					} else {
						/* Set TDQS=1b for x8 DIMM, TDQS=0b for x4 DIMM, when mixed x8 & x4 */
						tempW2 = get_Bits(pDCTData, dct, pDCTData->NodeId,
								FUN_DCT, DRAM_CONFIG_HIGH, RDqsEn, RDqsEn);
						if (tempW2)
						{
							if (pDCTData->DimmX8Present[currDimm])
								tempW |= 0x800;
						}
					}

					/* determine Rtt_Nom for WL & Normal mode */
					if (is_fam15h()) {
						tempW2 = fam15_rttnom(pDCTstat, dct, dimm, rank, package_type);
						tempW1 = 0;
						tempW1 |= ((tempW2 & 0x4) >> 2) << 9;
						tempW1 |= ((tempW2 & 0x2) >> 1) << 6;
						tempW1 |= ((tempW2 & 0x1) >> 0) << 2;
					} else {
						if (pDCTData->Status[DCT_STATUS_REGISTERED])
							tempW1 = RttNomNonTargetRegDimm(pMCTData, pDCTData, currDimm, wl, MemClkFreq, rank);
						else
							tempW1 = unbuffered_dimm_nominal_termination_emrs(pDCTData->MaxDimmsInstalled, MemClkFreq, pDCTData->DimmRanks[currDimm], rank);
					}

					/* Apply Rtt_Nom to the MRS control word */
					tempW=tempW|tempW1;

					/* Program MrsAddress[5,1]=output driver impedance control (DIC) */
					if (is_fam15h()) {
						tempW1 = fam15_dimm_dic(pDCTstat, dct, dimm, rank, package_type);
					} else {
						/* Read DIC from F2x[1,0]84[DrvImpCtrl] */
						tempW1 = get_Bits(pDCTData, dct, pDCTData->NodeId,
								FUN_DCT, DRAM_MRS_REGISTER, DrvImpCtrlStart, DrvImpCtrlEnd);
					}

					/* Apply DIC to the MRS control word */
					if (bitTest(tempW1,1))
					{tempW = bitTestSet(tempW, 5);}
					if (bitTest(tempW1,0))
					{tempW = bitTestSet(tempW, 1);}

					tempW = swapAddrBits_wl(pDCTstat, dct, tempW);

					if (is_fam15h())
						set_Bits(pDCTData, dct, pDCTData->NodeId,
							FUN_DCT, DRAM_INIT, MrsAddressStartFam15, MrsAddressEndFam15, tempW);
					else
						set_Bits(pDCTData, dct, pDCTData->NodeId,
							FUN_DCT, DRAM_INIT, MrsAddressStartFam10, MrsAddressEndFam10, tempW);

					/* Program F2x[1, 0]7C[SendMrsCmd]=1 to initiate the command
					 * to the specified DIMM.
					 */
					set_Bits(pDCTData, dct, pDCTData->NodeId,
						FUN_DCT, DRAM_INIT, SendMrsCmd, SendMrsCmd, 1);

					/* Wait for F2x[1, 0]7C[SendMrsCmd] to be cleared by hardware. */
					while ((get_Bits(pDCTData, dct,
							pDCTData->NodeId, FUN_DCT, DRAM_INIT,
							SendMrsCmd, SendMrsCmd)) == 1);

					/* Program F2x[1, 0]7C[MrsBank[2:0]] for the appropriate internal DRAM
					 * register that defines the required DDR3-defined function for Rtt_WR.
					 */
					MrsBank = swapBankBits(pDCTstat, dct, 2);
					if (is_fam15h())
						set_Bits(pDCTData, dct, pDCTData->NodeId, FUN_DCT,
							DRAM_INIT, MrsBankStartFam15, MrsBankEndFam15, MrsBank);
					else
						set_Bits(pDCTData, dct, pDCTData->NodeId, FUN_DCT,
							DRAM_INIT, MrsBankStartFam10, MrsBankEndFam10, MrsBank);

					/* Program F2x[1, 0]7C[MrsAddress[15:0]] to the required DDR3-defined function
					 * for Rtt_WR (DRAMTermDyn).
					 */
					tempW = 0;/* PASR = 0,*/

					/* Retrieve normal settings of the MRS control word and clear Rtt_WR */
					if (is_fam15h()) {
						tempW = mct_MR2(pMCTstat, pDCTstat, dct, dimm*2+rank) & 0xffff;
						tempW &= ~(0x0600);
					} else {
						/* program MrsAddress[7,6,5:3]=SRT,ASR,CWL,
						* based on F2x[1,0]84[19,18,22:20]=,SRT,ASR,Tcwl */
						tempW1 = get_Bits(pDCTData, dct, pDCTData->NodeId,
								FUN_DCT, DRAM_MRS_REGISTER, PCI_MIN_LOW, PCI_MAX_HIGH);
						if (bitTest(tempW1,19))
						{tempW = bitTestSet(tempW, 7);}
						if (bitTest(tempW1,18))
						{tempW = bitTestSet(tempW, 6);}
						/* tempW=tempW|(((tempW1>>20)&0x7)<<3); */
						tempW=tempW|((tempW1&0x00700000)>>17);
						/* workaround for DR-B0 */
						if ((pDCTData->LogicalCPUID & AMD_DR_Bx) && (pDCTData->Status[DCT_STATUS_REGISTERED]))
							tempW+=0x8;
					}

					/* determine Rtt_WR for WL & Normal mode */
					if (is_fam15h()) {
						tempW1 = (fam15_rttwr(pDCTstat, dct, dimm, rank, package_type) << 9);
					} else {
						if (pDCTData->Status[DCT_STATUS_REGISTERED])
							tempW1 = RttWrRegDimm(pMCTData, pDCTData, currDimm, wl, MemClkFreq, rank);
						else
							tempW1 = unbuffered_dimm_dynamic_termination_emrs(pDCTData->MaxDimmsInstalled, MemClkFreq, pDCTData->DimmRanks[currDimm]);
					}

					/* Apply Rtt_WR to the MRS control word */
					tempW=tempW|tempW1;
					tempW = swapAddrBits_wl(pDCTstat, dct, tempW);
					if (is_fam15h())
						set_Bits(pDCTData, dct, pDCTData->NodeId, FUN_DCT,
							DRAM_INIT, MrsAddressStartFam15, MrsAddressEndFam15, tempW);
					else
						set_Bits(pDCTData, dct, pDCTData->NodeId, FUN_DCT,
							DRAM_INIT, MrsAddressStartFam10, MrsAddressEndFam10, tempW);

					/* Program F2x[1, 0]7C[SendMrsCmd]=1 to initiate the command to
					   the specified DIMM.*/
					set_Bits(pDCTData, dct, pDCTData->NodeId, FUN_DCT,
						DRAM_INIT, SendMrsCmd, SendMrsCmd, 1);

					/* Wait for F2x[1, 0]7C[SendMrsCmd] to be cleared by hardware. */
					while ((get_Bits(pDCTData, dct, pDCTData->NodeId,
							FUN_DCT, DRAM_INIT, SendMrsCmd, SendMrsCmd)) == 0x1)
					{
					}
					rank++;
				}
			}
		}
		currDimm++;
	}
}

/*-----------------------------------------------------------------------------
 * void programODT(sMCTStruct *pMCTData, DCTStruct *DCTData, u8 dimm)
 *
 *  Description:
 *       This function programs the ODT values for the NB
 *
 *   Parameters:
 *       IN  OUT   *DCTData - Pointer to buffer with information about each DCT
 *       IN
 *       OUT
 * ----------------------------------------------------------------------------
 */
void programODT(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat, uint8_t dct, u8 dimm)
{
	sMCTStruct *pMCTData = pDCTstat->C_MCTPtr;
	sDCTStruct *pDCTData = pDCTstat->C_DCTPtr[dct];

	u8 WrLvOdt1=0;

	if (is_fam15h()) {
		/* Convert DIMM number to CS */
		uint32_t dword;
		uint8_t cs;
		uint8_t rank = 0;

		cs = (dimm * 2) + rank;

		/* Fetch preprogammed ODT pattern from configuration registers */
		dword = Get_NB32_DCT(pDCTstat->dev_dct, dct, ((cs>3)?0x23c:0x238));
		if ((cs == 7) || (cs == 3))
			WrLvOdt1 = ((dword >> 24) & 0xf);
		else if ((cs == 6) || (cs == 2))
			WrLvOdt1 = ((dword >> 16) & 0xf);
		else if ((cs == 5) || (cs == 1))
			WrLvOdt1 = ((dword >> 8) & 0xf);
		else if ((cs == 4) || (cs == 0))
			WrLvOdt1 = (dword & 0xf);
	} else {
		if (pDCTData->Status[DCT_STATUS_REGISTERED] == 0) {
			if ((pDCTData->DctCSPresent & 0x05) == 0x05) {
				WrLvOdt1 = 0x03;
			} else if (bitTest((u32)pDCTData->DctCSPresent,(u8)(dimm*2+1))) {
				WrLvOdt1 = (u8)bitTestSet(WrLvOdt1, dimm+2);
			} else {
				WrLvOdt1 = (u8)bitTestSet(WrLvOdt1, dimm);
			}
		} else {
			WrLvOdt1 = WrLvOdtRegDimm(pMCTData, pDCTData, dimm);
		}
	}

	set_DCT_ADDR_Bits(pDCTData, dct, pDCTData->NodeId, FUN_DCT,
			DRAM_ADD_DCT_PHY_CONTROL_REG, 8, 11, (u32)WrLvOdt1);

}

#ifdef UNUSED_CODE
static uint16_t fam15h_next_lowest_memclk_freq(uint16_t memclk_freq)
{
	uint16_t fam15h_next_lowest_freq_tab[] = {0, 0, 0, 0, 0x4, 0, 0x4, 0, 0, 0, 0x6, 0, 0, 0, 0xa, 0, 0, 0, 0xe, 0, 0, 0, 0x12};
	return fam15h_next_lowest_freq_tab[memclk_freq];
}
#endif

/*-----------------------------------------------------------------------------
 * void procConfig(MCTStruct *MCTData,DCTStruct *DCTData, u8 Dimm, u8 Pass)
 *
 *  Description:
 *       This function programs the ODT values for the NB
 *
 *   Parameters:
 *       IN  OUT   *DCTData - Pointer to buffer with information about each DCT
 *		 *MCTData - Pointer to buffer with runtime parameters,
 *       IN	Dimm - Logical DIMM
 *		 Pass - First of Second Pass
 *       OUT
 * ----------------------------------------------------------------------------
 */
void procConfig(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat, uint8_t dct, u8 dimm, u8 pass)
{
	u8 ByteLane, MemClkFreq;
	int32_t Seed_Gross;
	int32_t Seed_Fine;
	uint8_t Seed_PreGross;
	u32 Value, Addr;
	u16 Addl_Data_Offset, Addl_Data_Port;
	sMCTStruct *pMCTData = pDCTstat->C_MCTPtr;
	sDCTStruct *pDCTData = pDCTstat->C_DCTPtr[dct];
	u16 fam10h_freq_tab[] = {400, 533, 667, 800};
	uint16_t fam15h_freq_tab[] = {0, 0, 0, 0, 333, 0, 400, 0, 0, 0, 533, 0, 0, 0, 667, 0, 0, 0, 800, 0, 0, 0, 933};

	if (is_fam15h()) {
		/* MemClkFreq: 0x4: 333MHz; 0x6: 400MHz; 0xa: 533MHz; 0xe: 667MHz; 0x12: 800MHz; 0x16: 933MHz */
		MemClkFreq = get_Bits(pDCTData, dct, pDCTData->NodeId,
					FUN_DCT, DRAM_CONFIG_HIGH, 0, 4);
	} else {
		/* MemClkFreq: 3: 400MHz; 4: 533MHz; 5: 667MHz; 6: 800MHz */
		MemClkFreq = get_Bits(pDCTData, dct, pDCTData->NodeId,
					FUN_DCT, DRAM_CONFIG_HIGH, 0, 2);
	}

	/* Program F2x[1, 0]9C_x08[WrLvOdt[3:0]] to the proper ODT settings for the
	 * current memory subsystem configuration.
	 */
	programODT(pMCTstat, pDCTstat, dct, dimm);

	/* Program F2x[1,0]9C_x08[WrLvOdtEn]=1 */
	if (pDCTData->LogicalCPUID & (AMD_DR_Cx | AMD_DR_Dx | AMD_FAM15_ALL)) {
		set_DCT_ADDR_Bits(pDCTData, dct, pDCTData->NodeId, FUN_DCT,
				DRAM_ADD_DCT_PHY_CONTROL_REG, WrLvOdtEn, WrLvOdtEn, (u32)1);
	}
	else
	{
		/* Program WrLvOdtEn=1 through set bit 12 of D3CSODT reg offset 0 for Rev.B */
		if (dct)
		{
			Addl_Data_Offset=0x198;
			Addl_Data_Port=0x19C;
		}
		else
		{
			Addl_Data_Offset=0x98;
			Addl_Data_Port=0x9C;
		}
		Addr=0x0D008000;
		AmdMemPCIWriteBits(MAKE_SBDFO(0,0,24+(pDCTData->NodeId),FUN_DCT,Addl_Data_Offset), 31, 0, &Addr);
		while ((get_Bits(pDCTData,FUN_DCT,pDCTData->NodeId, FUN_DCT, Addl_Data_Offset,
				DctAccessDone, DctAccessDone)) == 0);
		AmdMemPCIReadBits(MAKE_SBDFO(0,0,24+(pDCTData->NodeId),FUN_DCT,Addl_Data_Port), 31, 0, &Value);
		Value = bitTestSet(Value, 12);
		AmdMemPCIWriteBits(MAKE_SBDFO(0,0,24+(pDCTData->NodeId),FUN_DCT,Addl_Data_Port), 31, 0, &Value);
		Addr=0x4D088F00;
		AmdMemPCIWriteBits(MAKE_SBDFO(0,0,24+(pDCTData->NodeId),FUN_DCT,Addl_Data_Offset), 31, 0, &Addr);
		while ((get_Bits(pDCTData,FUN_DCT,pDCTData->NodeId, FUN_DCT, Addl_Data_Offset,
				DctAccessDone, DctAccessDone)) == 0);
	}

	if (is_fam15h())
		proc_MFENCE();

	/* Wait 10 MEMCLKs to allow for ODT signal settling. */
	if (is_fam15h())
		precise_memclk_delay_fam15(pMCTstat, pDCTstat, dct, 10);
	else
		pMCTData->AgesaDelay(10);

	/* Program write levelling seed values */
	if (pass == 1)
	{
		/* Pass 1 */
		if (is_fam15h()) {
			uint8_t AddrCmdPrelaunch = 0;		/* TODO: Fetch the correct value from RC2[0] */
			uint8_t package_type = mctGet_NVbits(NV_PACK_TYPE);
			uint16_t Seed_Total = 0;
			if (package_type == PT_GR) {
				/* Socket G34: Fam15h BKDG v3.14 Table 96 */
				if (pDCTData->Status[DCT_STATUS_REGISTERED]) {
					Seed_Total = 0x41;
				} else if (pDCTData->Status[DCT_STATUS_LOAD_REDUCED]) {
					Seed_Total = 0x0;
				} else {
					Seed_Total = 0xf;
				}
			} else if (package_type == PT_C3) {
				/* Socket C32: Fam15h BKDG v3.14 Table 97 */
				if (pDCTData->Status[DCT_STATUS_REGISTERED]) {
					Seed_Total = 0x3e;
				} else if (pDCTData->Status[DCT_STATUS_LOAD_REDUCED]) {
					Seed_Total = 0x0;
				} else {
					Seed_Total = 0x12;
				}
			} else if (package_type == PT_M2) {
				/* Socket AM3: Fam15h BKDG v3.14 Table 98 */
				Seed_Total = 0xf;
			}
			if (pDCTData->Status[DCT_STATUS_REGISTERED])
				Seed_Total += ((AddrCmdPrelaunch)?0x10:0x0);

			/* Adjust seed for the minimum platform supported frequency */
			Seed_Total = (int32_t) (((((int64_t) Seed_Total) *
				fam15h_freq_tab[MemClkFreq] * 100) / (mctGet_NVbits(NV_MIN_MEMCLK) * 100)));

			Seed_Gross = (Seed_Total >> 5) & 0x1f;
			Seed_Fine = Seed_Total & 0x1f;

			/* Save seed values for later use */
			for (ByteLane = 0; ByteLane < MAX_BYTE_LANES; ByteLane++) {
				pDCTData->WLSeedGrossDelay[MAX_BYTE_LANES*dimm+ByteLane] = Seed_Gross;
				pDCTData->WLSeedFineDelay[MAX_BYTE_LANES*dimm+ByteLane] = Seed_Fine;

				if (Seed_Gross == 0)
					Seed_PreGross = 0;
				else if (Seed_Gross & 0x1)
					Seed_PreGross = 1;
				else
					Seed_PreGross = 2;

				pDCTData->WLSeedPreGrossDelay[MAX_BYTE_LANES*dimm+ByteLane] = Seed_PreGross;
			}
		} else {
			if (pDCTData->Status[DCT_STATUS_REGISTERED])
			{
				if(pDCTData->RegMan1Present & ((1<<(dimm*2+dct))))
				{
					Seed_Gross = 0x02;
					Seed_Fine = 0x16;
				}
				else
				{
					Seed_Gross = 0x02;
					Seed_Fine = 0x00;
				}
			}
			else
			{
				if (MemClkFreq == 6) {
					/* DDR-800 */
					Seed_Gross = 0x00;
					Seed_Fine = 0x1a;
				} else {
					/* Use settings for DDR-400 (interpolated from BKDG) */
					Seed_Gross = 0x00;
					Seed_Fine = 0x0d;
				}
			}
		}
		for (ByteLane = 0; ByteLane < MAX_BYTE_LANES; ByteLane++)
		{
			/* Program an initialization value to registers F2x[1, 0]9C_x[51:50] and
			 * F2x[1, 0]9C_x52 to set the gross and fine delay for all the byte lane fields
			 * If the target frequency is different than 400MHz, BIOS must
			 * execute two training passes for each DIMM.
			 * For pass 1 at a 400MHz MEMCLK frequency, use an initial total delay value
			 * of 01Fh. This represents a 1UI (UI=.5MEMCLK) delay and is determined
			 * by design.
			 */
			pDCTData->WLGrossDelay[MAX_BYTE_LANES*dimm+ByteLane] = Seed_Gross;
			pDCTData->WLFineDelay[MAX_BYTE_LANES*dimm+ByteLane] = Seed_Fine;
		}
	} else {
		/* Pass 2 */
		/* From BKDG, Write Leveling Seed Value. */
		if (is_fam15h()) {
			uint32_t RegisterDelay;
			int32_t SeedTotal;
			int32_t SeedTotalPreScaling;
			uint8_t AddrCmdPrelaunch = 0;		/* TODO: Fetch the correct value from RC2[0] */

			for (ByteLane = 0; ByteLane < MAX_BYTE_LANES; ByteLane++) {
				if (pDCTData->Status[DCT_STATUS_REGISTERED]) {
					if (AddrCmdPrelaunch)
						RegisterDelay = 0x30;
					else
						RegisterDelay = 0x20;
				} else {
					RegisterDelay = 0;
				}
				/* Retrieve WrDqDqsEarly */
				AmdMemPCIReadBits(MAKE_SBDFO(0,0,24+(pDCTData->NodeId), FUN_DCT, 0xa8), 25, 24, &Value);

				/* Calculate adjusted seed values */
				SeedTotal = (pDCTData->WLFineDelayPrevPass[MAX_BYTE_LANES*dimm+ByteLane] & 0x1f) |
					((pDCTData->WLGrossDelayPrevPass[MAX_BYTE_LANES*dimm+ByteLane] & 0x1f) << 5);
				SeedTotalPreScaling = (SeedTotal - RegisterDelay - (0x20 * Value));
				SeedTotal = (int32_t) (RegisterDelay + ((((int64_t) SeedTotalPreScaling) *
					fam15h_freq_tab[MemClkFreq] * 100) / (fam15h_freq_tab[pDCTData->WLPrevMemclkFreq] * 100)));

				if (SeedTotal >= 0) {
					Seed_Gross = SeedTotal / 32;
					Seed_Fine = SeedTotal % 32;
				} else {
					Seed_Gross = (SeedTotal / 32) - 1;
					Seed_Fine = (SeedTotal % 32) + 32;
				}

				if (Seed_Gross == 0)
					Seed_PreGross = 0;
				else if (Seed_Gross & 0x1)
					Seed_PreGross = 1;
				else
					Seed_PreGross = 2;

				/* Save seed values for later use */
				pDCTData->WLSeedGrossDelay[MAX_BYTE_LANES*dimm+ByteLane] = Seed_Gross;
				pDCTData->WLSeedFineDelay[MAX_BYTE_LANES*dimm+ByteLane] = Seed_Fine;
				pDCTData->WLSeedPreGrossDelay[MAX_BYTE_LANES*dimm+ByteLane] = Seed_PreGross;

				pDCTData->WLGrossDelay[MAX_BYTE_LANES*dimm+ByteLane] = Seed_PreGross;
				pDCTData->WLFineDelay[MAX_BYTE_LANES*dimm+ByteLane] = Seed_Fine;
			}
		} else {
			u32 RegisterDelay, SeedTotal;
			for (ByteLane = 0; ByteLane < MAX_BYTE_LANES; ByteLane++)
			{
				if (pDCTData->Status[DCT_STATUS_REGISTERED])
					RegisterDelay = 0x20; /* TODO: ((RCW2 & BIT0) == 0) ? 0x20 : 0x30; */
				else
					RegisterDelay = 0;
				SeedTotal = (pDCTData->WLFineDelay[MAX_BYTE_LANES*dimm+ByteLane] & 0x1f) |
					(pDCTData->WLGrossDelay[MAX_BYTE_LANES*dimm+ByteLane] << 5);
				/* SeedTotalPreScaling = (the total delay value in F2x[1, 0]9C_x[4A:30] from pass 1 of write levelization
				training) - RegisterDelay. */
				SeedTotal = (uint16_t) (RegisterDelay + ((((uint64_t) SeedTotal - RegisterDelay) *
									fam10h_freq_tab[MemClkFreq-3] * 100) / (fam10h_freq_tab[0] * 100)));
				Seed_Gross = SeedTotal / 32;
				Seed_Fine = SeedTotal & 0x1f;
				if (Seed_Gross == 0)
					Seed_Gross = 0;
				else if (Seed_Gross & 0x1)
					Seed_Gross = 1;
				else
					Seed_Gross = 2;
				pDCTData->WLGrossDelay[MAX_BYTE_LANES*dimm+ByteLane] = Seed_Gross;
				pDCTData->WLFineDelay[MAX_BYTE_LANES*dimm+ByteLane] = Seed_Fine;
			}
		}
	}

	pDCTData->WLPrevMemclkFreq = MemClkFreq;
	setWLByteDelay(pDCTstat, dct, ByteLane, dimm, 0, pass);
}

/*-----------------------------------------------------------------------------
 *  void setWLByteDelay(struct DCTStatStruc *pDCTstat, uint8_t dct, u8 ByteLane, u8 Dimm){
 *
 *  Description:
 *       This function writes the write levelization byte delay for the Phase
 *       Recovery control registers
 *
 *   Parameters:
 *       IN  OUT   *DCTData - Pointer to buffer with information about each DCT
 *       IN	Dimm - Dimm Number
 *		 DCTData->WLGrossDelay[index+ByteLane] - gross write delay for each
 *						     logical DIMM
 *		 DCTData->WLFineDelay[index+ByteLane] - fine write delay for each
 *						    logical DIMM
 *		 ByteLane - target byte lane to write
 *	  targetAddr -    0: write to DRAM phase recovery control register
 *			  1: write to DQS write register
 *       OUT
 *
 *-----------------------------------------------------------------------------
 */
void setWLByteDelay(struct DCTStatStruc *pDCTstat, uint8_t dct, u8 ByteLane, u8 dimm, u8 targetAddr, uint8_t pass)
{
	sDCTStruct *pDCTData = pDCTstat->C_DCTPtr[dct];
	u8 fineStartLoc, fineEndLoc, grossStartLoc, grossEndLoc, tempB, index, offsetAddr;
	u32 addr, fineDelayValue, grossDelayValue, ValueLow, ValueHigh, EccValue, tempW;

	if (targetAddr == 0)
	{
		index = (u8)(MAX_BYTE_LANES * dimm);
		ValueLow = 0;
		ValueHigh = 0;
		ByteLane = 0;
		EccValue = 0;
		while (ByteLane < MAX_BYTE_LANES)
		{
			if (is_fam15h()) {
				grossDelayValue = pDCTData->WLGrossDelay[index+ByteLane];
			} else {
				/* This subtract 0xC workaround might be temporary. */
				if ((pDCTData->WLPass==2) && (pDCTData->RegMan1Present & (1<<(dimm*2+dct))))
				{
					tempW = (pDCTData->WLGrossDelay[index+ByteLane] << 5) | pDCTData->WLFineDelay[index+ByteLane];
					tempW -= 0xC;
					pDCTData->WLGrossDelay[index+ByteLane] = (u8)(tempW >> 5);
					pDCTData->WLFineDelay[index+ByteLane] = (u8)(tempW & 0x1F);
				}
				grossDelayValue = pDCTData->WLGrossDelay[index+ByteLane];
				/* Adjust seed gross delay overflow (greater than 3):
				 *      - Program seed gross delay as 2 (gross is 4 or 6) or 1 (gross is 5).
				 *      - Keep original seed gross delay for later reference.
				 */
				if(grossDelayValue >= 3)
				{
					grossDelayValue = (grossDelayValue&1)? 1 : 2;
				}
			}
			fineDelayValue = pDCTData->WLFineDelay[index+ByteLane];
			if (ByteLane < 4)
				ValueLow |= ((grossDelayValue << 5) | fineDelayValue) << 8*ByteLane;
			else if(ByteLane < 8)
				ValueHigh |= ((grossDelayValue << 5) | fineDelayValue) << 8*(ByteLane-4);
			else
				EccValue = ((grossDelayValue << 5) | fineDelayValue);
			ByteLane++;
		}
		set_DCT_ADDR_Bits(pDCTData, dct, pDCTData->NodeId, FUN_DCT,
				DRAM_CONT_ADD_PHASE_REC_CTRL_LOW, 0, 31, (u32)ValueLow);
		set_DCT_ADDR_Bits(pDCTData, dct, pDCTData->NodeId, FUN_DCT,
				DRAM_CONT_ADD_PHASE_REC_CTRL_HIGH, 0, 31, (u32)ValueHigh);
		set_DCT_ADDR_Bits(pDCTData, dct, pDCTData->NodeId, FUN_DCT,
				DRAM_CONT_ADD_ECC_PHASE_REC_CTRL, 0, 31, (u32)EccValue);
	}
	else
	{
		/* Fam10h BKDG Rev. 3.62 2.8.9.9.1 (6) */
		index = (u8)(MAX_BYTE_LANES * dimm);
		grossDelayValue = pDCTData->WLGrossDelay[index+ByteLane];
		fineDelayValue = pDCTData->WLFineDelay[index+ByteLane];

		tempB = 0;
		offsetAddr = (u8)(3 * dimm);
		if (ByteLane < 2) {
			tempB = (u8)(16 * ByteLane);
			addr = DRAM_CONT_ADD_DQS_TIMING_CTRL_BL_01;
		} else if (ByteLane <4) {
			tempB = (u8)(16 * ByteLane);
			addr = DRAM_CONT_ADD_DQS_TIMING_CTRL_BL_01 + 1;
		} else if (ByteLane <6) {
			tempB = (u8)(16 * ByteLane);
			addr = DRAM_CONT_ADD_DQS_TIMING_CTRL_BL_45;
		} else if (ByteLane <8) {
			tempB = (u8)(16 * ByteLane);
			addr = DRAM_CONT_ADD_DQS_TIMING_CTRL_BL_45 + 1;
		} else {
			tempB = 0;
			addr = DRAM_CONT_ADD_DQS_TIMING_CTRL_BL_01 + 2;
		}
		addr += offsetAddr;

		fineStartLoc = (u8)(tempB % 32);
		fineEndLoc = (u8)(fineStartLoc + 4);
		grossStartLoc = (u8)(fineEndLoc + 1);
		grossEndLoc = (u8)(grossStartLoc + 1);

		set_DCT_ADDR_Bits(pDCTData, dct, pDCTData->NodeId, FUN_DCT,
				(u16)addr, fineStartLoc, fineEndLoc,(u32)fineDelayValue);
		set_DCT_ADDR_Bits(pDCTData, dct, pDCTData->NodeId, FUN_DCT,
				(u16)addr, grossStartLoc, grossEndLoc, (u32)grossDelayValue);

		pDCTData->WLFineDelayPrevPass[index+ByteLane] = fineDelayValue;
		pDCTData->WLGrossDelayPrevPass[index+ByteLane] = grossDelayValue;
		if (pass == FirstPass) {
			pDCTData->WLFineDelayFirstPass[index+ByteLane] = fineDelayValue;
			pDCTData->WLGrossDelayFirstPass[index+ByteLane] = grossDelayValue;
			pDCTData->WLCriticalGrossDelayFirstPass = pDCTData->WLCriticalGrossDelayPrevPass;
		}
	}

}

/*-----------------------------------------------------------------------------
 *  void getWLByteDelay(struct DCTStatStruc *pDCTstat, uint8_t dct, u8 ByteLane, u8 Dimm)
 *
 *  Description:
 *       This function reads the write levelization byte delay from the Phase
 *       Recovery control registers
 *
 *   Parameters:
 *       IN  OUT   *DCTData - Pointer to buffer with information about each DCT
 *       IN	Dimm - Dimm Number
 *		 ByteLane - target byte lane to read
 *       OUT
 *		 DCTData->WLGrossDelay[index+ByteLane] - gross write delay for current
 *						     byte for logical DIMM
 *		 DCTData->WLFineDelay[index+ByteLane] - fine write delay for current
 *						    byte for logical DIMM
 *
 *-----------------------------------------------------------------------------
 */
void getWLByteDelay(struct DCTStatStruc *pDCTstat, uint8_t dct, u8 ByteLane, u8 dimm, uint8_t pass)
{
	sDCTStruct *pDCTData = pDCTstat->C_DCTPtr[dct];
	u8 fineStartLoc, fineEndLoc, grossStartLoc, grossEndLoc, tempB, tempB1, index;
	u32 addr, fine, gross;
	tempB = 0;
	index = (u8)(MAX_BYTE_LANES*dimm);
	if (ByteLane < 4) {
		tempB = (u8)(8 * ByteLane);
		addr = DRAM_CONT_ADD_PHASE_REC_CTRL_LOW;
	} else if (ByteLane < 8) {
		tempB1 = (u8)(ByteLane - 4);
		tempB = (u8)(8 * tempB1);
		addr = DRAM_CONT_ADD_PHASE_REC_CTRL_HIGH;
	} else {
		tempB = 0;
		addr = DRAM_CONT_ADD_ECC_PHASE_REC_CTRL;
	}
	fineStartLoc = tempB;
	fineEndLoc = (u8)(fineStartLoc + 4);
	grossStartLoc = (u8)(fineEndLoc + 1);
	grossEndLoc = (u8)(grossStartLoc + 1);

	fine = get_ADD_DCT_Bits(pDCTData, dct, pDCTData->NodeId,
				FUN_DCT, (u16)addr, fineStartLoc, fineEndLoc);
	gross = get_ADD_DCT_Bits(pDCTData, dct, pDCTData->NodeId,
				FUN_DCT, (u16)addr, grossStartLoc, grossEndLoc);

	if (!is_fam15h()) {
		/* Adjust seed gross delay overflow (greater than 3):
		 * - Adjust the trained gross delay to the original seed gross delay.
		 */
		if(pDCTData->WLGrossDelay[index+ByteLane] >= 3)
		{
			gross += pDCTData->WLGrossDelay[index+ByteLane];
			if(pDCTData->WLGrossDelay[index+ByteLane] & 1)
				gross -= 1;
			else
				gross -= 2;
		}
		else if((pDCTData->WLGrossDelay[index+ByteLane] == 0) && (gross == 3))
		{
			/* If seed gross delay is 0 but PRE result gross delay is 3, it is negative.
			 * We will then round the negative number to 0.
			 */
			gross = 0;
			fine = 0;
		}
	}
	pDCTData->WLFineDelay[index+ByteLane] = (u8)fine;
	pDCTData->WLGrossDelay[index+ByteLane] = (u8)gross;
}