aboutsummaryrefslogtreecommitdiff
path: root/src/northbridge/amd/amdmct/mct_ddr3/mcthwl.c
blob: 4fe5ad3d63cb462e58845b98e061155105de1ba6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
/*
 * This file is part of the coreboot project.
 *
 * Copyright (C) 2010 Advanced Micro Devices, Inc.
 * Copyright (C) 2015 Timothy Pearson <tpearson@raptorengineeringinc.com>, Raptor Engineering
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <inttypes.h>
#include <console/console.h>
#include <string.h>
#include "mct_d.h"
#include "mct_d_gcc.h"

static uint8_t is_fam15h(void)
{
	uint8_t fam15h = 0;
	uint32_t family;

	family = cpuid_eax(0x80000001);
	family = ((family & 0xf00000) >> 16) | ((family & 0xf00) >> 8);

	if (family >= 0x6f)
		/* Family 15h or later */
		fam15h = 1;

	return fam15h;
}

static void SetEccWrDQS_D(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat)
{
	u8 ByteLane, DimmNum, OddByte, Addl_Index, Channel;
	u8 EccRef1, EccRef2, EccDQSScale;
	u32 val;
	u16 word;

	for (Channel = 0; Channel < 2; Channel ++) {
		for (DimmNum = 0; DimmNum < C_MAX_DIMMS; DimmNum ++) { /* we use DimmNum instead of DimmNumx3 */
			for (ByteLane = 0; ByteLane < 9; ByteLane ++) {
				/* Get RxEn initial value from WrDqs */
				if (ByteLane & 1)
					OddByte = 1;
				else
					OddByte = 0;
				if (ByteLane < 2)
					Addl_Index = 0x30;
				else if (ByteLane < 4)
					Addl_Index = 0x31;
				else if (ByteLane < 6)
					Addl_Index = 0x40;
				else if (ByteLane < 8)
					Addl_Index = 0x41;
				else
					Addl_Index = 0x32;
				Addl_Index += DimmNum * 3;

				val = Get_NB32_index_wait_DCT(pDCTstat->dev_dct, Channel, 0x98, Addl_Index);
				if (OddByte)
					val >>= 16;
				/* Save WrDqs to stack for later usage */
				pDCTstat->persistentData.CH_D_B_TxDqs[Channel][DimmNum][ByteLane] = val & 0xFF;
				EccDQSScale = pDCTstat->CH_EccDQSScale[Channel];
				word = pDCTstat->CH_EccDQSLike[Channel];
				if ((word & 0xFF) == ByteLane) EccRef1 = val & 0xFF;
				if (((word >> 8) & 0xFF) == ByteLane) EccRef2 = val & 0xFF;
			}
		}
	}
}

static void EnableAutoRefresh_D(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat)
{
	u32 val;

	val = Get_NB32_DCT(pDCTstat->dev_dct, 0, 0x8C);
	val &= ~(1 << DisAutoRefresh);
	Set_NB32_DCT(pDCTstat->dev_dct, 0, 0x8C, val);

	val = Get_NB32_DCT(pDCTstat->dev_dct, 1, 0x8C);
	val &= ~(1 << DisAutoRefresh);
	Set_NB32_DCT(pDCTstat->dev_dct, 1, 0x8C, val);
}

static void DisableAutoRefresh_D(struct MCTStatStruc *pMCTstat,
					struct DCTStatStruc *pDCTstat)
{
	u32 val;

	val = Get_NB32_DCT(pDCTstat->dev_dct, 0, 0x8C);
	val |= 1 << DisAutoRefresh;
	Set_NB32_DCT(pDCTstat->dev_dct, 0, 0x8C, val);

	val = Get_NB32_DCT(pDCTstat->dev_dct, 1, 0x8C);
	val |= 1 << DisAutoRefresh;
	Set_NB32_DCT(pDCTstat->dev_dct, 1, 0x8C, val);
}


static uint8_t PhyWLPass1(struct MCTStatStruc *pMCTstat,
					struct DCTStatStruc *pDCTstat, u8 dct)
{
	u8 dimm;
	u16 DIMMValid;
	uint8_t status = 0;
	void *DCTPtr;

	dct &= 1;

	DCTPtr = (void *)(pDCTstat->C_DCTPtr[dct]);
	pDCTstat->DIMMValid = pDCTstat->DIMMValidDCT[dct];
	pDCTstat->CSPresent = pDCTstat->CSPresent_DCT[dct];

	if (pDCTstat->GangedMode & 1)
		pDCTstat->CSPresent = pDCTstat->CSPresent_DCT[0];

	if (pDCTstat->DIMMValid) {
		DIMMValid = pDCTstat->DIMMValid;
		PrepareC_DCT(pMCTstat, pDCTstat, dct);
		for (dimm = 0; dimm < MAX_DIMMS_SUPPORTED; dimm ++) {
			if (DIMMValid & (1 << (dimm << 1))) {
				status |= AgesaHwWlPhase1(pMCTstat, pDCTstat, dct, dimm, FirstPass);
				status |= AgesaHwWlPhase2(pMCTstat, pDCTstat, dct, dimm, FirstPass);
				status |= AgesaHwWlPhase3(pMCTstat, pDCTstat, dct, dimm, FirstPass);
			}
		}
	}

	return status;
}

static uint8_t PhyWLPass2(struct MCTStatStruc *pMCTstat,
					struct DCTStatStruc *pDCTstat, uint8_t dct, uint8_t final)
{
	u8 dimm;
	u16 DIMMValid;
	uint8_t status = 0;
	void *DCTPtr;

	dct &= 1;

	DCTPtr = (void *)&(pDCTstat->C_DCTPtr[dct]); /* todo: */
	pDCTstat->DIMMValid = pDCTstat->DIMMValidDCT[dct];
	pDCTstat->CSPresent = pDCTstat->CSPresent_DCT[dct];

	if (pDCTstat->GangedMode & 1)
		pDCTstat->CSPresent = pDCTstat->CSPresent_DCT[0];

	if (pDCTstat->DIMMValid) {
		DIMMValid = pDCTstat->DIMMValid;
		PrepareC_DCT(pMCTstat, pDCTstat, dct);
		pDCTstat->Speed = pDCTstat->DIMMAutoSpeed = pDCTstat->TargetFreq;
		pDCTstat->CASL = pDCTstat->DIMMCASL = pDCTstat->TargetCASL;
		SPD2ndTiming(pMCTstat, pDCTstat, dct);
		if (!is_fam15h()) {
			ProgDramMRSReg_D(pMCTstat, pDCTstat, dct);
			PlatformSpec_D(pMCTstat, pDCTstat, dct);
			fenceDynTraining_D(pMCTstat, pDCTstat, dct);
		}
		Restore_OnDimmMirror(pMCTstat, pDCTstat);
		StartupDCT_D(pMCTstat, pDCTstat, dct);
		Clear_OnDimmMirror(pMCTstat, pDCTstat);
		SetDllSpeedUp_D(pMCTstat, pDCTstat, dct);
		DisableAutoRefresh_D(pMCTstat, pDCTstat);
		for (dimm = 0; dimm < MAX_DIMMS_SUPPORTED; dimm ++) {
			if (DIMMValid & (1 << (dimm << 1))) {
				status |= AgesaHwWlPhase1(pMCTstat, pDCTstat, dct, dimm, SecondPass);
				status |= AgesaHwWlPhase2(pMCTstat, pDCTstat, dct, dimm, SecondPass);
				status |= AgesaHwWlPhase3(pMCTstat, pDCTstat, dct, dimm, SecondPass);
			}
		}
	}

	return status;
}

static uint16_t fam15h_next_highest_memclk_freq(uint16_t memclk_freq)
{
	uint16_t fam15h_next_highest_freq_tab[] = {0, 0, 0, 0, 0x6, 0, 0xa, 0, 0, 0, 0xe, 0, 0, 0, 0x12, 0, 0, 0, 0x16, 0, 0, 0, 0x16};
	return fam15h_next_highest_freq_tab[memclk_freq];
}

/* Write Levelization Training
 * Algorithm detailed in the Fam10h BKDG Rev. 3.62 section 2.8.9.9.1
 */
static void WriteLevelization_HW(struct MCTStatStruc *pMCTstat,
					struct DCTStatStruc *pDCTstatA, uint8_t Node, uint8_t Pass)
{
	uint8_t status;
	uint8_t timeout;
	uint16_t final_target_freq;

	struct DCTStatStruc *pDCTstat;
	pDCTstat = pDCTstatA + Node;

	pDCTstat->C_MCTPtr  = &(pDCTstat->s_C_MCTPtr);
	pDCTstat->C_DCTPtr[0] = &(pDCTstat->s_C_DCTPtr[0]);
	pDCTstat->C_DCTPtr[1] = &(pDCTstat->s_C_DCTPtr[1]);

	/* Disable auto refresh by configuring F2x[1, 0]8C[DisAutoRefresh] = 1 */
	DisableAutoRefresh_D(pMCTstat, pDCTstat);

	/* Disable ZQ calibration short command by F2x[1,0]94[ZqcsInterval]=00b */
	DisableZQcalibration(pMCTstat, pDCTstat);
	PrepareC_MCT(pMCTstat, pDCTstat);

	if (pDCTstat->GangedMode & (1 << 0)) {
		pDCTstat->DIMMValidDCT[1] = pDCTstat->DIMMValidDCT[0];
	}

	if (Pass == FirstPass) {
		timeout = 0;
		do {
			status = 0;
			timeout++;
			status |= PhyWLPass1(pMCTstat, pDCTstat, 0);
			status |= PhyWLPass1(pMCTstat, pDCTstat, 1);
			if (status)
				printk(BIOS_INFO,
					"%s: Retrying write levelling due to invalid value(s) detected in first phase\n",
					__func__);
		} while (status && (timeout < 8));
		if (status)
			printk(BIOS_INFO,
				"%s: Uncorrectable invalid value(s) detected in first phase of write levelling\n",
				__func__);
	}

	if (Pass == SecondPass) {
		if (pDCTstat->TargetFreq > mhz_to_memclk_config(mctGet_NVbits(NV_MIN_MEMCLK))) {
			/* 8.Prepare the memory subsystem for the target MEMCLK frequency.
			 * NOTE: BIOS must program both DCTs to the same frequency.
			 * NOTE: Fam15h steps the frequency, Fam10h slams the frequency.
			 */
			uint8_t global_phy_training_status = 0;
			final_target_freq = pDCTstat->TargetFreq;

			while (pDCTstat->Speed != final_target_freq) {
				if (is_fam15h())
					pDCTstat->TargetFreq = fam15h_next_highest_memclk_freq(pDCTstat->Speed);
				else
					pDCTstat->TargetFreq = final_target_freq;
				SetTargetFreq(pMCTstat, pDCTstatA, Node);
				timeout = 0;
				do {
					status = 0;
					timeout++;
					status |= PhyWLPass2(pMCTstat, pDCTstat, 0, (pDCTstat->TargetFreq == final_target_freq));
					status |= PhyWLPass2(pMCTstat, pDCTstat, 1, (pDCTstat->TargetFreq == final_target_freq));
					if (status)
						printk(BIOS_INFO,
							"%s: Retrying write levelling due to invalid value(s) detected in last phase\n",
							__func__);
				} while (status && (timeout < 8));
				global_phy_training_status |= status;
			}

			pDCTstat->TargetFreq = final_target_freq;

			if (global_phy_training_status)
				printk(BIOS_WARNING,
					"%s: Uncorrectable invalid value(s) detected in second phase of write levelling; "
					"continuing but system may be unstable!\n",
					__func__);

			uint8_t dct;
			for (dct = 0; dct < 2; dct++) {
				sDCTStruct *pDCTData = pDCTstat->C_DCTPtr[dct];
				memcpy(pDCTData->WLGrossDelayFinalPass, pDCTData->WLGrossDelayPrevPass, sizeof(pDCTData->WLGrossDelayPrevPass));
				memcpy(pDCTData->WLFineDelayFinalPass, pDCTData->WLFineDelayPrevPass, sizeof(pDCTData->WLFineDelayPrevPass));
				pDCTData->WLCriticalGrossDelayFinalPass = pDCTData->WLCriticalGrossDelayPrevPass;
			}
		}
	}

	SetEccWrDQS_D(pMCTstat, pDCTstat);
	EnableAutoRefresh_D(pMCTstat, pDCTstat);
	EnableZQcalibration(pMCTstat, pDCTstat);
}

void mct_WriteLevelization_HW(struct MCTStatStruc *pMCTstat,
					struct DCTStatStruc *pDCTstatA, uint8_t Pass)
{
	u8 Node;

	for (Node = 0; Node < MAX_NODES_SUPPORTED; Node++) {
		struct DCTStatStruc *pDCTstat;
		pDCTstat = pDCTstatA + Node;

		if (pDCTstat->NodePresent) {
			mctSMBhub_Init(Node);
			Clear_OnDimmMirror(pMCTstat, pDCTstat);
			WriteLevelization_HW(pMCTstat, pDCTstatA, Node, Pass);
			Restore_OnDimmMirror(pMCTstat, pDCTstat);
		}
	}
}