1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
|
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2007 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/*
* Description: Max Read Latency Training feature for DDR 2 MCT
*/
static u8 CompareMaxRdLatTestPattern_D(u32 pattern_buf, u32 addr);
static u32 GetMaxRdLatTestAddr_D(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat, u8 Channel,
u8 *MaxRcvrEnDly, u8 *valid);
u8 mct_GetStartMaxRdLat_D(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat, u8 Channel,
u8 DQSRcvEnDly, u32 *Margin);
static void maxRdLatencyTrain_D(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat);
static void mct_setMaxRdLatTrnVal_D(struct DCTStatStruc *pDCTstat, u8 Channel,
u16 MaxRdLatVal);
/*Warning: These must be located so they do not cross a logical 16-bit
segment boundary!*/
static const u32 TestMaxRdLAtPattern_D[] = {
0x6E0E3FAC, 0x0C3CFF52,
0x4A688181, 0x49C5B613,
0x7C780BA6, 0x5C1650E3,
0x0C4F9D76, 0x0C6753E6,
0x205535A5, 0xBABFB6CA,
0x610E6E5F, 0x0C5F1C87,
0x488493CE, 0x14C9C383,
0xF5B9A5CD, 0x9CE8F615,
0xAAD714B5, 0xC38F1B4C,
0x72ED647C, 0x669F7562,
0x5233F802, 0x4A898B30,
0x10A40617, 0x3326B465,
0x55386E04, 0xC807E3D3,
0xAB49E193, 0x14B4E63A,
0x67DF2495, 0xEA517C45,
0x7624CE51, 0xF8140C51,
0x4824BD23, 0xB61DD0C9,
0x072BCFBE, 0xE8F3807D,
0x919EA373, 0x25E30C47,
0xFEB12958, 0x4DA80A5A,
0xE9A0DDF8, 0x792B0076,
0xE81C73DC, 0xF025B496,
0x1DB7E627, 0x808594FE,
0x82668268, 0x655C7783,
};
static u32 SetupMaxRdPattern(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat,
u32 *buffer)
{
/* 1. Copy the alpha and Beta patterns from ROM to Cache,
* aligning on 16 byte boundary
* 2. Set the ptr to Cacheable copy in DCTStatstruc.PtrPatternBufA
* for Alpha
* 3. Set the ptr to Cacheable copy in DCTStatstruc.PtrPatternBufB
* for Beta
*/
u32 *buf;
u8 i;
buf = (u32 *)(((u32)buffer + 0x10) & (0xfffffff0));
for(i = 0; i < (16 * 3); i++) {
buf[i] = TestMaxRdLAtPattern_D[i];
}
return (u32)buf;
}
void TrainMaxReadLatency_D(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstatA)
{
u8 Node;
for(Node = 0; Node < MAX_NODES_SUPPORTED; Node++) {
struct DCTStatStruc *pDCTstat;
pDCTstat = pDCTstatA + Node;
if(!pDCTstat->NodePresent)
break;
if(pDCTstat->DCTSysLimit)
maxRdLatencyTrain_D(pMCTstat, pDCTstat);
}
}
static void maxRdLatencyTrain_D(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat)
{
u8 Channel;
u32 TestAddr0;
u8 _DisableDramECC = 0, _Wrap32Dis = 0, _SSE2 = 0;
u16 MaxRdLatDly;
u8 RcvrEnDly = 0;
u32 PatternBuffer[60]; // FIXME: why not 48 + 4
u32 Margin;
u32 addr;
u32 cr4;
u32 lo, hi;
u8 valid;
u32 pattern_buf;
cr4 = read_cr4();
if(cr4 & (1<<9)) { /* save the old value */
_SSE2 = 1;
}
cr4 |= (1<<9); /* OSFXSR enable SSE2 */
write_cr4(cr4);
addr = HWCR;
_RDMSR(addr, &lo, &hi);
if(lo & (1<<17)) { /* save the old value */
_Wrap32Dis = 1;
}
lo |= (1<<17); /* HWCR.wrap32dis */
lo &= ~(1<<15); /* SSEDIS */
/* Setting wrap32dis allows 64-bit memory references in
real mode */
_WRMSR(addr, lo, hi);
_DisableDramECC = mct_DisableDimmEccEn_D(pMCTstat, pDCTstat);
pattern_buf = SetupMaxRdPattern(pMCTstat, pDCTstat, PatternBuffer);
for (Channel = 0; Channel < 2; Channel++) {
print_debug_dqs("\tMaxRdLatencyTrain51: Channel ",Channel, 1);
pDCTstat->Channel = Channel;
if( (pDCTstat->Status & (1 << SB_128bitmode)) && Channel)
break; /*if ganged mode, skip DCT 1 */
TestAddr0 = GetMaxRdLatTestAddr_D(pMCTstat, pDCTstat, Channel, &RcvrEnDly, &valid);
if(!valid) /* Address not supported on current CS */
continue;
/* rank 1 of DIMM, testpattern 0 */
WriteMaxRdLat1CLTestPattern_D(pattern_buf, TestAddr0);
MaxRdLatDly = mct_GetStartMaxRdLat_D(pMCTstat, pDCTstat, Channel, RcvrEnDly, &Margin);
print_debug_dqs("\tMaxRdLatencyTrain52: MaxRdLatDly start ", MaxRdLatDly, 2);
print_debug_dqs("\tMaxRdLatencyTrain52: MaxRdLatDly Margin ", Margin, 2);
while(MaxRdLatDly < MAX_RD_LAT) { /* sweep Delay value here */
mct_setMaxRdLatTrnVal_D(pDCTstat, Channel, MaxRdLatDly);
ReadMaxRdLat1CLTestPattern_D(TestAddr0);
if( CompareMaxRdLatTestPattern_D(pattern_buf, TestAddr0) == DQS_PASS)
break;
SetTargetWTIO_D(TestAddr0);
FlushMaxRdLatTestPattern_D(TestAddr0);
ResetTargetWTIO_D();
MaxRdLatDly++;
}
print_debug_dqs("\tMaxRdLatencyTrain53: MaxRdLatDly end ", MaxRdLatDly, 2);
mct_setMaxRdLatTrnVal_D(pDCTstat, Channel, MaxRdLatDly + Margin);
}
if(_DisableDramECC) {
mct_EnableDimmEccEn_D(pMCTstat, pDCTstat, _DisableDramECC);
}
if(!_Wrap32Dis) {
addr = HWCR;
_RDMSR(addr, &lo, &hi);
lo &= ~(1<<17); /* restore HWCR.wrap32dis */
_WRMSR(addr, lo, hi);
}
if(!_SSE2){
cr4 = read_cr4();
cr4 &= ~(1<<9); /* restore cr4.OSFXSR */
write_cr4(cr4);
}
#if DQS_TRAIN_DEBUG > 0
{
u8 Channel;
printk(BIOS_DEBUG, "maxRdLatencyTrain: CH_MaxRdLat:\n");
for(Channel = 0; Channel<2; Channel++) {
printk(BIOS_DEBUG, "Channel: %02x: %02x\n", Channel, pDCTstat->CH_MaxRdLat[Channel]);
}
}
#endif
}
static void mct_setMaxRdLatTrnVal_D(struct DCTStatStruc *pDCTstat,
u8 Channel, u16 MaxRdLatVal)
{
u8 i;
u32 reg;
u32 dev;
u32 val;
if (pDCTstat->GangedMode) {
Channel = 0; // for safe
for (i=0; i<2; i++)
pDCTstat->CH_MaxRdLat[i] = MaxRdLatVal;
} else {
pDCTstat->CH_MaxRdLat[Channel] = MaxRdLatVal;
}
dev = pDCTstat->dev_dct;
reg = 0x78 + Channel * 0x100;
val = Get_NB32(dev, reg);
val &= ~(0x3ff<<22);
val |= MaxRdLatVal<<22;
/* program MaxRdLatency to correspond with current delay */
Set_NB32(dev, reg, val);
}
static u8 CompareMaxRdLatTestPattern_D(u32 pattern_buf, u32 addr)
{
/* Compare only the first beat of data. Since target addrs are cache
* line aligned, the Channel parameter is used to determine which cache
* QW to compare.
*/
u32 *test_buf = (u32 *)pattern_buf;
u32 addr_lo;
u32 val, val_test;
int i;
u8 ret = DQS_PASS;
SetUpperFSbase(addr);
addr_lo = addr<<8;
_EXECFENCE;
for (i=0; i<(16*3); i++) {
val = read32_fs(addr_lo);
val_test = test_buf[i];
print_debug_dqs_pair("\t\t\t\t\t\ttest_buf = ", (u32)test_buf, " value = ", val_test, 5);
print_debug_dqs_pair("\t\t\t\t\t\ttaddr_lo = ", addr_lo, " value = ", val, 5);
if(val != val_test) {
ret = DQS_FAIL;
break;
}
addr_lo += 4;
}
return ret;
}
static u32 GetMaxRdLatTestAddr_D(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat,
u8 Channel, u8 *MaxRcvrEnDly,
u8 *valid)
{
u8 Max = 0;
u8 Channel_Max = 0;
u8 d;
u8 d_Max = 0;
u8 Byte;
u32 TestAddr0 = 0;
u8 ch, ch_start, ch_end;
u8 bn;
bn = 8;
if(pDCTstat->Status & (1 << SB_128bitmode)) {
ch_start = 0;
ch_end = 2;
} else {
ch_start = Channel;
ch_end = Channel + 1;
}
*valid = 0;
for(ch = ch_start; ch < ch_end; ch++) {
for(d=0; d<4; d++) {
for(Byte = 0; Byte<bn; Byte++) {
u8 tmp;
tmp = pDCTstat->CH_D_B_RCVRDLY[ch][d][Byte];
if(tmp>Max) {
Max = tmp;
Channel_Max = Channel;
d_Max = d;
}
}
}
}
if(mct_RcvrRankEnabled_D(pMCTstat, pDCTstat, Channel_Max, d_Max << 1)) {
TestAddr0 = mct_GetMCTSysAddr_D(pMCTstat, pDCTstat, Channel_Max, d_Max << 1, valid);
}
if(*valid)
*MaxRcvrEnDly = Max;
return TestAddr0;
}
u8 mct_GetStartMaxRdLat_D(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat,
u8 Channel, u8 DQSRcvEnDly, u32 *Margin)
{
u32 SubTotal;
u32 val;
u32 valx;
u32 valxx;
u32 index_reg;
u32 reg_off;
u32 dev;
if(pDCTstat->GangedMode)
Channel = 0;
index_reg = 0x98 + 0x100 * Channel;
reg_off = 0x100 * Channel;
dev = pDCTstat->dev_dct;
/* Multiply the CAS Latency by two to get a number of 1/2 MEMCLKs units.*/
val = Get_NB32(dev, 0x88 + reg_off);
SubTotal = ((val & 0x0f) + 1) << 1; /* SubTotal is 1/2 Memclk unit */
/* If registered DIMMs are being used then add 1 MEMCLK to the sub-total*/
val = Get_NB32(dev, 0x90 + reg_off);
if(!(val & (1 << UnBuffDimm)))
SubTotal += 2;
/*If the address prelaunch is setup for 1/2 MEMCLKs then add 1,
* else add 2 to the sub-total. if (AddrCmdSetup || CsOdtSetup
* || CkeSetup) then K := K + 2; */
val = Get_NB32_index_wait(dev, index_reg, 0x04);
if(!(val & 0x00202020))
SubTotal += 1;
else
SubTotal += 2;
/* If the F2x[1, 0]78[RdPtrInit] field is 4, 5, 6 or 7 MEMCLKs,
* then add 4, 3, 2, or 1 MEMCLKs, respectively to the sub-total. */
val = Get_NB32(dev, 0x78 + reg_off);
SubTotal += 8 - (val & 0x0f);
/* Convert bits 7-5 (also referred to as the course delay) of the current
* (or worst case) DQS receiver enable delay to 1/2 MEMCLKs units,
* rounding up, and add this to the sub-total. */
SubTotal += DQSRcvEnDly >> 5; /*BOZO-no rounding up */
SubTotal <<= 1; /*scale 1/2 MemClk to 1/4 MemClk */
/* Convert the sub-total (in 1/2 MEMCLKs) to northbridge clocks (NCLKs)
* as follows (assuming DDR400 and assuming that no P-state or link speed
* changes have occurred). */
/*New formula:
SubTotal *= 3*(Fn2xD4[NBFid]+4)/(3+Fn2x94[MemClkFreq])/2 */
val = Get_NB32(dev, 0x94 + reg_off);
/* SubTotal div 4 to scale 1/4 MemClk back to MemClk */
val &= 7;
if (val == 4) {
val++; /* adjust for DDR2-1066 */
}
valx = (val + 3) << 2; /* SubTotal div 4 to scale 1/4 MemClk back to MemClk */
val = Get_NB32(pDCTstat->dev_nbmisc, 0xD4);
val = ((val & 0x1f) + 4 ) * 3;
/* Calculate 1 MemClk + 1 NCLK delay in NCLKs for margin */
valxx = val << 2;
valxx /= valx;
if (valxx % valx)
valxx++; /* round up */
valxx++; /* add 1NCLK */
*Margin = valxx; /* one MemClk delay in NCLKs and one additional NCLK */
val *= SubTotal;
val /= valx;
if (val % valx)
val++; /* round up */
return val;
}
|