aboutsummaryrefslogtreecommitdiff
path: root/src/mainboard/amd/pistachio/acpi_tables.c
blob: eb3433cc619e43a258f2a12dd3a4f2663d381edc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
/*
 * This file is part of the coreboot project.
 *
 * Copyright (C) 2008 Advanced Micro Devices, Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA
 */

#include <console/console.h>
#include <string.h>
#include <arch/acpi.h>
#include <device/pci.h>
#include <device/pci_ids.h>
#include <cpu/x86/msr.h>
#include <cpu/amd/mtrr.h>
#include <cpu/amd/amdk8_sysconf.h>

#include <arch/cpu.h>

#define DUMP_ACPI_TABLES 0

/*
* Assume the max pstate number is 8
* 0x21(33 bytes) is one package length of _PSS package
*/

#define Maxpstate 8
#define Defpkglength 0x21

#if DUMP_ACPI_TABLES == 1
static void dump_mem(u32 start, u32 end)
{

	u32 i;
	print_debug("dump_mem:");
	for (i = start; i < end; i++) {
		if ((i & 0xf) == 0) {
			printk_debug("\n%08x:", i);
		}
		printk_debug(" %02x", (u8)*((u8 *)i));
	}
	print_debug("\n");
}
#endif

extern u8 AmlCode[];
extern u8 AmlCode_ssdt[];

#if ACPI_SSDTX_NUM >= 1
extern u8 AmlCode_ssdt2[];
extern u8 AmlCode_ssdt3[];
extern u8 AmlCode_ssdt4[];
extern u8 AmlCode_ssdt5[];
#endif

#define IO_APIC_ADDR	0xfec00000UL

unsigned long acpi_fill_mcfg(unsigned long current)
{
	/* Just a dummy */
	return current;
}

unsigned long acpi_fill_madt(unsigned long current)
{
	/* create all subtables for processors */
	current = acpi_create_madt_lapics(current);

	/* Write SB600 IOAPIC, only one */
	current += acpi_create_madt_ioapic((acpi_madt_ioapic_t *) current, 2,
					   IO_APIC_ADDR, 0);

	current += acpi_create_madt_irqoverride((acpi_madt_irqoverride_t *)
						current, 0, 0, 2, 0);
	current += acpi_create_madt_irqoverride((acpi_madt_irqoverride_t *)
						current, 0, 9, 9, 0xF);
	/* 0: mean bus 0--->ISA */
	/* 0: PIC 0 */
	/* 2: APIC 2 */
	/* 5 mean: 0101 --> Edige-triggered, Active high */

	/* create all subtables for processors */
	/* current = acpi_create_madt_lapic_nmis(current, 5, 1); */
	/* 1: LINT1 connect to NMI */

	return current;
}

extern void get_bus_conf(void);

extern void update_ssdt(void *ssdt);

void update_ssdtx(void *ssdtx, int i)
{
	uint8_t *PCI;
	uint8_t *HCIN;
	uint8_t *UID;

	PCI = ssdtx + 0x32;
	HCIN = ssdtx + 0x39;
	UID = ssdtx + 0x40;

	if (i < 7) {
		*PCI = (uint8_t) ('4' + i - 1);
	} else {
		*PCI = (uint8_t) ('A' + i - 1 - 6);
	}
	*HCIN = (uint8_t) i;
	*UID = (uint8_t) (i + 3);

	/* FIXME: need to update the GSI id in the ssdtx too */

}

/*
* Details about this algorithm , refert to BDKG 10.5.1
* Two parts are included, the another is the DSDT reconstruction process
*/
u32 pstates_algorithm(acpi_header_t * dsdt)
{
	u8 processor_brand[49];
	u32 *v;
	struct cpuid_result cpuid1;

	struct power_limit_encoding {
		u8 socket_type;
		u8 cmp_cap;
		u8 pwr_lmt;
		u32 power_limit;
	};
	u8 Max_fid, Max_vid, Start_fid, Start_vid, Min_fid, Min_vid;
	u16 Max_feq;
	u8 Pstate_fid[10];
	u16 Pstate_feq[10];
	u8 Pstate_vid[10];
	u32 Pstate_power[10];
	u32 Pstate_volt[10];
	u8 PstateStep, PstateStep_coef;
	u8 IntPstateSup;
	u8 Pstate_num;
	u16 Cur_feq;
	u8 Cur_fid;
	u8 cmp_cap, pwr_lmt;
	u32 power_limit = 0;
	u8 index;
	u32 i, j;
	u32 processor_length, scope_length;
	msr_t msr;
	u8 *dsdt_pointer;
	u8 *pointer1;
	u8 *pointer2;
	u8 byte_index;
	u32 old_dsdt_length, new_dsdt_length;
	u32 corefeq, power, transitionlatency, busmasterlatency, control,
	    status;
	u32 new_package_length;
	u8 sum, checksum;
	u32 fid_multiplier;
	static struct power_limit_encoding TDP[20] = {
		{0x11, 0x0, 0x8, 62},
		{0x11, 0x1, 0x8, 89},
		{0x11, 0x1, 0xa, 103},
		{0x11, 0x1, 0xc, 125},
		{0x11, 0x0, 0x2, 15},
		{0x11, 0x0, 0x4, 35},
		{0x11, 0x1, 0x2, 35},
		{0x11, 0x0, 0x5, 45},
		{0x11, 0x1, 0x7, 76},
		{0x11, 0x1, 0x6, 65},
		{0x11, 0x1, 0x8, 89},
		{0x11, 0x0, 0x1, 8},
		{0x11, 0x1, 0x1, 22},
		{0x12, 0x0, 0x6, 25},
		{0x12, 0x0, 0x1, 8},
		{0x12, 0x0, 0x2, 9},
		{0x12, 0x0, 0x4, 15},
		{0x12, 0x0, 0xc, 35},
		{0x12, 0x1, 0xc, 35},
		{0x12, 0x1, 0x4, 20}
	};

	/* Get the Processor Brand String using cpuid(0x8000000x) command x=2,3,4 */
	cpuid1 = cpuid(0x80000002);
	v = (u32 *) processor_brand;
	v[0] = cpuid1.eax;
	v[1] = cpuid1.ebx;
	v[2] = cpuid1.ecx;
	v[3] = cpuid1.edx;
	cpuid1 = cpuid(0x80000003);
	v[4] = cpuid1.eax;
	v[5] = cpuid1.ebx;
	v[6] = cpuid1.ecx;
	v[7] = cpuid1.edx;
	cpuid1 = cpuid(0x80000004);
	v[8] = cpuid1.eax;
	v[9] = cpuid1.ebx;
	v[10] = cpuid1.ecx;
	v[11] = cpuid1.edx;
	processor_brand[48] = 0;
	printk_info("processor_brand=%s\n", processor_brand);

	/*
	 * Based on the CPU socket type,cmp_cap and pwr_lmt , get the power limit.
	 * socket_type : 0x10 SocketF; 0x11 AM2/ASB1 ; 0x12 S1G1
	 * cmp_cap : 0x0 SingleCore ; 0x1 DualCore
	 */
	printk_info("Pstates Algorithm ...\n");
	cmp_cap =
	    (pci_read_config16(dev_find_slot(0, PCI_DEVFN(0x18, 3)), 0xE8) &
	     0x3000) >> 12;
	cpuid1 = cpuid(0x80000001);
	pwr_lmt = ((cpuid1.ebx & 0x1C0) >> 5) | ((cpuid1.ebx & 0x4000) >> 14);
	for (index = 0; index <= sizeof(TDP) / sizeof(TDP[0]); index++)
		if (TDP[index].socket_type == CPU_SOCKET_TYPE &&
		    TDP[index].cmp_cap == cmp_cap &&
		    TDP[index].pwr_lmt == pwr_lmt) {
			power_limit = TDP[index].power_limit;
		}

	/* See if the CPUID(0x80000007) returned EDX[2:1]==11b */
	cpuid1 = cpuid(0x80000007);
	if ((cpuid1.edx & 0x6) != 0x6) {
		printk_info("No valid set of P-states\n");
		return 0;
	}

	msr = rdmsr(0xc0010042);
	Max_fid = (msr.lo & 0x3F0000) >> 16;
	Start_fid = (msr.lo & 0x3F00) >> 8;
	Max_vid = (msr.hi & 0x3F0000) >> 16;
	Start_vid = (msr.hi & 0x3F00) >> 8;
	PstateStep = (msr.hi & 0x1000000) >> 24;
	IntPstateSup = (msr.hi & 0x20000000) >> 29;

	/*
	 * The P1...P[Min+1] VID need PstateStep to calculate
	 * P[N] = P[N-1]VID + 2^PstateStep
	 * PstateStep_coef = 2^PstateStep
	 */
	if (PstateStep == 0)
		PstateStep_coef = 1;
	else
		PstateStep_coef = 2;

	if (IntPstateSup == 0) {
		printk_info("No intermediate P-states are supported\n");
		return 0;
	}

	/*get the multipier of the fid frequency */
	/*
	 * In RevG, 100MHz step is added
	 */
	cpuid1 = cpuid(0x80000007);
	fid_multiplier = ((cpuid1.edx & 0x40) >> 6) * 100;

	/*
	 * Formula1:    CPUFreq = FID * fid_multiplier + 800
	 * Formula2:       CPUVolt = 1550 - VID * 25 (mv)
	 * Formula3:       Power = (PwrLmt * P[N]Frequency*(P[N]Voltage^2))/(P[0]Frequency * P[0]Voltage^2))
	 */

	/* Construct P0(P[Max]) state */
	Pstate_num = 0;
	Max_feq = Max_fid * fid_multiplier + 800;
	if (Max_fid == 0x2A && Max_vid != 0x0) {
		Min_fid = 0x2;
		Pstate_fid[0] = Start_fid + 0xA;	/* Start Frequency + 1GHz */
		Pstate_feq[0] = Pstate_fid[0] * fid_multiplier + 800;
		Min_vid = Start_vid;
		Pstate_vid[0] = Max_vid + 0x2;	/* Maximum Voltage - 50mV */
		Pstate_volt[0] = 1550 - Pstate_vid[0] * 25;
		Pstate_power[0] = power_limit * 1000;	/* mw */
		Pstate_num++;
	} else {
		Min_fid = Start_fid;
		Pstate_fid[0] = Max_fid;
		Pstate_feq[0] = Max_feq;
		Min_vid = Start_vid;
		Pstate_vid[0] = Max_vid + 0x2;
		Pstate_volt[0] = 1550 - Pstate_vid[0] * 25;
		Pstate_power[0] = power_limit * 1000;	/* mw */
		Pstate_num++;
	}

	Cur_feq = Max_feq;
	Cur_fid = Max_fid;
	/* Construct P1 state */
	if (((Max_fid & 0x1) != 0) && ((Max_fid - 0x1) >= (Min_fid + 0x8))) {	/* odd value */
		Pstate_fid[1] = Max_fid - 0x1;
		Pstate_feq[1] = Pstate_fid[1] * fid_multiplier + 800;
		Cur_fid = Pstate_fid[1];
		Cur_feq = Pstate_feq[1];
		if (((Pstate_vid[0] & 0x1) != 0) && ((Pstate_vid[0] - 0x1) < Min_vid)) {	/* odd value */
			Pstate_vid[1] = Pstate_vid[0] + 0x1;
			Pstate_volt[1] = 1550 - Pstate_vid[1] * 25;
			Pstate_power[1] =
			    (unsigned long long)Pstate_power[0] *
			    Pstate_feq[1] * Pstate_volt[1] * Pstate_volt[1] /
			    (Pstate_feq[0] * Pstate_volt[0] * Pstate_volt[0]);
		}
		if (((Pstate_vid[0] & 0x1) == 0) && ((Pstate_vid[0] - 0x1) < Min_vid)) {	/* even value */
			Pstate_vid[1] = Pstate_vid[0] + PstateStep_coef;
			Pstate_volt[1] = 1550 - Pstate_vid[1] * 25;
			Pstate_power[1] =
			    (unsigned long long)Pstate_power[0] *
			    Pstate_feq[1] * Pstate_volt[1] * Pstate_volt[1] /
			    (Pstate_feq[0] * Pstate_volt[0] * Pstate_volt[0]);
		}
		Pstate_num++;
	}

	if (((Max_fid & 0x1) == 0) && ((Max_fid - 0x2) >= (Min_fid + 0x8))) {	/* even value */
		Pstate_fid[1] = Max_fid - 0x2;
		Pstate_feq[1] = Pstate_fid[1] * fid_multiplier + 800;
		Cur_fid = Pstate_fid[1];
		Cur_feq = Pstate_feq[1];
		if (((Pstate_vid[0] & 0x1) != 0) && ((Pstate_vid[0] - 0x1) < Min_vid)) {	/* odd value */
			Pstate_vid[1] = Pstate_vid[0] + 0x1;
			Pstate_volt[1] = 1550 - Pstate_vid[1] * 25;
			Pstate_power[1] =
			    (unsigned long long)Pstate_power[0] *
			    Pstate_feq[1] * Pstate_volt[1] * Pstate_volt[1] /
			    (Pstate_feq[0] * Pstate_volt[0] * Pstate_volt[0]);
		}
		if (((Pstate_vid[0] & 0x1) == 0) && ((Pstate_vid[0] - 0x1) < Min_vid)) {	/* even value */
			Pstate_vid[1] = Pstate_vid[0] + PstateStep_coef;
			Pstate_volt[1] = 1550 - Pstate_vid[1] * 25;
			Pstate_power[1] =
			    (unsigned long long)Pstate_power[0] *
			    Pstate_feq[1] * Pstate_volt[1] * Pstate_volt[1] /
			    (Pstate_feq[0] * Pstate_volt[0] * Pstate_volt[0]);
		}

		Pstate_num++;
	}

	/* Construct P2...P[Min-1] state */
	Cur_fid = Cur_fid - 0x2;
	Cur_feq = Cur_fid * fid_multiplier + 800;
	while (Cur_feq >= ((Min_fid * fid_multiplier) + 800) * 2) {
		Pstate_fid[Pstate_num] = Cur_fid;
		Pstate_feq[Pstate_num] =
		    Pstate_fid[Pstate_num] * fid_multiplier + 800;
		Cur_fid = Cur_fid - 0x2;
		Cur_feq = Cur_fid * fid_multiplier + 800;
		if (Pstate_vid[Pstate_num - 1] >= Min_vid) {
			Pstate_vid[Pstate_num] = Pstate_vid[Pstate_num - 1];
			Pstate_volt[Pstate_num] = Pstate_volt[Pstate_num - 1];
			Pstate_power[Pstate_num] = Pstate_power[Pstate_num - 1];
		} else {
			Pstate_vid[Pstate_num] =
			    Pstate_vid[Pstate_num - 1] + PstateStep_coef;
			Pstate_volt[Pstate_num] =
			    1550 - Pstate_vid[Pstate_num] * 25;
			Pstate_power[Pstate_num] =
			    (unsigned long long)Pstate_power[0] *
			    Pstate_feq[Pstate_num] * Pstate_volt[Pstate_num] *
			    Pstate_volt[Pstate_num] / (Pstate_feq[0] *
						       Pstate_volt[0] *
						       Pstate_volt[0]);
		}
		Pstate_num++;
	}

	/* Constuct P[Min] State */
	if (Max_fid == 0x2A && Max_vid != 0x0) {
		Pstate_fid[Pstate_num] = 0x2;
		Pstate_feq[Pstate_num] =
		    Pstate_fid[Pstate_num] * fid_multiplier + 800;
		Pstate_vid[Pstate_num] = Min_vid;
		Pstate_volt[Pstate_num] = 1550 - Pstate_vid[Pstate_num] * 25;
		Pstate_power[Pstate_num] =
		    (unsigned long long)Pstate_power[0] *
		    Pstate_feq[Pstate_num] * Pstate_volt[Pstate_num] *
		    Pstate_volt[Pstate_num] / (Pstate_feq[0] * Pstate_volt[0] *
					       Pstate_volt[0]);
		Pstate_num++;
	} else {
		Pstate_fid[Pstate_num] = Start_fid;
		Pstate_feq[Pstate_num] =
		    Pstate_fid[Pstate_num] * fid_multiplier + 800;
		Pstate_vid[Pstate_num] = Min_vid;
		Pstate_volt[Pstate_num] = 1550 - Pstate_vid[Pstate_num] * 25;
		Pstate_power[Pstate_num] =
		    (unsigned long long)Pstate_power[0] *
		    Pstate_feq[Pstate_num] * Pstate_volt[Pstate_num] *
		    Pstate_volt[Pstate_num] / (Pstate_feq[0] * Pstate_volt[0] *
					       Pstate_volt[0]);
		Pstate_num++;
	}

	/* Print Pstate feq,vid,volt,power */

	for (index = 0; index < Pstate_num; index++) {
		printk_info("Pstate_feq[%d] = %dMHz\t", index,
			    Pstate_feq[index]);
		printk_info("Pstate_vid[%d] = %d\t", index, Pstate_vid[index]);
		printk_info("Pstate_volt[%d] = %dmv\t", index,
			    Pstate_volt[index]);
		printk_info("Pstate_power[%d] = %dmw\n", index,
			    Pstate_power[index]);
	}

	/*
	 * Modify the DSDT Table to put the actural _PSS package
	 * corefeq-->Pstate_feq[index] power-->Pstate_power[index] transitionlatency-->0x64 busmasterlatency-->0x7,
	 * control-->0xE8202C00| Pstate_vid[index]<<6 | Pstate_fid[index]
	 * status --> Pstate_vid[index]<<6 | Pstate_fid[index]
	 * Get the _PSS control method Sig.
	 */

	dsdt_pointer = (u8 *) dsdt;
	old_dsdt_length = dsdt->length;
	new_dsdt_length = old_dsdt_length;
	printk_info("DSDT reconstruction...\n");
	for (i = 0x20; i < new_dsdt_length; i++)
		if ((*(dsdt_pointer + i) == '_')
		    && (*(dsdt_pointer + i + 1) == 'P')
		    && (*(dsdt_pointer + i + 2) == 'S')
		    && (*(dsdt_pointer + i + 3) == 'S')) {

			if ((*(dsdt_pointer + i + 4) !=
			     0x12) | (*(dsdt_pointer + i + 5) !=
				      0x4B) | (*(dsdt_pointer + i + 6) !=
					       0x10)) {
				printk_info
				    ("Error:No _PSS package leader byte!\n");
			} else {
				new_package_length =
				    0x10B - Defpkglength * (Maxpstate -
							    Pstate_num);
				/* two Pstates length will larger than 63, so we need not worry about the length */
				if (new_package_length > 63) {
					*(dsdt_pointer + i + 5) =
					    0x40 | (new_package_length & 0xf);
					*(dsdt_pointer + i + 6) =
					    (new_package_length & 0xff0) >> 4;
				}
				*(dsdt_pointer + i + 7) = Pstate_num;
			}

			if ((*(dsdt_pointer + i + 8) !=
			     0x12) | (*(dsdt_pointer + i + 9) !=
				      0x20) | (*(dsdt_pointer + i + 10) != 0x6))
				printk_info
				    ("Error:No package leader for the first Pstate!\n");
			for (index = 0; index < Pstate_num; index++) {
				corefeq = Pstate_feq[index];
				power = Pstate_power[index];
				transitionlatency = 0x64;
				busmasterlatency = 0x7;
				control =
				    0xE8202C00 | (Pstate_vid[index] << 6) |
				    Pstate_fid[index];
				status =
				    (Pstate_vid[index] << 6) |
				    Pstate_fid[index];
				for (byte_index = 0; byte_index < 4;
				     byte_index++) {
					*(dsdt_pointer + i + 0xC +
					  Defpkglength * index + byte_index) =
		   corefeq >> (8 * byte_index);
					*(dsdt_pointer + i + 0xC +
					  Defpkglength * index + 0x5 +
					  byte_index) =
		   power >> (8 * byte_index);
					*(dsdt_pointer + i + 0xC +
					  Defpkglength * index + 0x5 * 2 +
					  byte_index) =
		   transitionlatency >> (8 * byte_index);
					*(dsdt_pointer + i + 0xC +
					  Defpkglength * index + 0x5 * 3 +
					  byte_index) =
		   busmasterlatency >> (8 * byte_index);
					*(dsdt_pointer + i + 0xC +
					  Defpkglength * index + 0x5 * 4 +
					  byte_index) =
		   control >> (8 * byte_index);
					*(dsdt_pointer + i + 0xC +
					  Defpkglength * index + 0x5 * 5 +
					  byte_index) =
		   status >> (8 * byte_index);
				}
			}
			pointer1 =
			    dsdt_pointer + i + 8 + Pstate_num * Defpkglength;
			pointer2 =
			    dsdt_pointer + i + 8 + Maxpstate * Defpkglength;
			while (pointer2 < dsdt_pointer + new_dsdt_length) {
				*pointer1 = *pointer2;
				pointer1++;
				pointer2++;
			}
			/* Recalcute the DSDT length */
			new_dsdt_length =
			    new_dsdt_length - Defpkglength * (Maxpstate -
							      Pstate_num);

			/* Search the first processor(CPUx) item and recalculate the processor length */
			for (j = 0; (dsdt_pointer + i - j) > dsdt_pointer; j++) {
				if ((*(dsdt_pointer + i - j) == 'C')
				    && (*(dsdt_pointer + i - j + 1) == 'P')
				    && (*(dsdt_pointer + i - j + 2) == 'U')) {
					processor_length =
					    ((*(dsdt_pointer + i - j - 1) << 4)
					     | (*(dsdt_pointer + i - j - 2) &
						0xf));
					processor_length =
					    processor_length -
					    Defpkglength * (Maxpstate -
							    Pstate_num);
					*(dsdt_pointer + i - j - 2) =
					    (processor_length & 0xf) | 0x40;
					*(dsdt_pointer + i - j - 1) =
					    (processor_length & 0xff0) >> 4;
					break;
				}
			}

			/* Search the first scope(_PR_) item and recalculate the scope length */
			for (j = 0; (dsdt_pointer + i - j) > dsdt_pointer; j++) {
				if ((*(dsdt_pointer + i - j) == '_')
				    && (*(dsdt_pointer + i - j + 1) == 'P')
				    && (*(dsdt_pointer + i - j + 2) == 'R')
				    && (*(dsdt_pointer + i - j + 3) == '_')) {
					scope_length =
					    ((*(dsdt_pointer + i - j - 1) << 4)
					     | (*(dsdt_pointer + i - j - 2) &
						0xf));
					scope_length =
					    scope_length -
					    Defpkglength * (Maxpstate -
							    Pstate_num);
					*(dsdt_pointer + i - j - 2) =
					    (scope_length & 0xf) | 0x40;
					*(dsdt_pointer + i - j - 1) =
					    (scope_length & 0xff0) >> 4;
					break;
				}
			}

		}

	/* Recalculate the DSDT length and fill back to the table */
	*(dsdt_pointer + 0x4) = new_dsdt_length;
	*(dsdt_pointer + 0x5) = new_dsdt_length >> 8;

	/*
	 * Recalculate the DSDT checksum and fill back to the table
	 * We must make sure the sum of the whole table is 0
	 */
	sum = 0;
	for (i = 0; i < new_dsdt_length; i++)
		if (i != 9)
			sum = sum + *(dsdt_pointer + i);
	checksum = 0x100 - sum;
	*(dsdt_pointer + 0x9) = checksum;

	/*Check the DSDT Table */
	/*
	 * printk_info("The new DSDT table length is %x\n", new_dsdt_length);
	 * printk_info("Details is as below:\n");
	 * for(i=0; i< new_dsdt_length; i++){
	 *      printk_info("%x\t",(unsigned char)*(dsdt_pointer+i));
	 *      if( ((i+1)&0x7) == 0x0)
	 *              printk_info("**0x%x**\n",i-7);
	 *}
	 */

	return 1;

}

unsigned long write_acpi_tables(unsigned long start)
{
	unsigned long current;
	acpi_rsdp_t *rsdp;
	acpi_rsdt_t *rsdt;
	acpi_hpet_t *hpet;
	acpi_madt_t *madt;
	acpi_fadt_t *fadt;
	acpi_facs_t *facs;
	acpi_header_t *dsdt;
	acpi_header_t *ssdt;

	get_bus_conf();		/* it will get sblk, pci1234, hcdn, and sbdn */

	/* Align ACPI tables to 16byte */
	start = (start + 0x0f) & -0x10;
	current = start;

	printk_info("ACPI: Writing ACPI tables at %lx...\n", start);

	/* We need at least an RSDP and an RSDT Table */
	rsdp = (acpi_rsdp_t *) current;
	current += sizeof(acpi_rsdp_t);
	rsdt = (acpi_rsdt_t *) current;
	current += sizeof(acpi_rsdt_t);

	/* clear all table memory */
	memset((void *)start, 0, current - start);

	acpi_write_rsdp(rsdp, rsdt);
	acpi_write_rsdt(rsdt);

	/*
	 * We explicitly add these tables later on:
	 */
	/* If we want to use HPET Timers Linux wants an MADT */
	printk_debug("ACPI:    * HPET\n");
	hpet = (acpi_hpet_t *) current;
	current += sizeof(acpi_hpet_t);
	acpi_create_hpet(hpet);
	acpi_add_table(rsdt, hpet);

	printk_debug("ACPI:    * MADT\n");
	madt = (acpi_madt_t *) current;
	acpi_create_madt(madt);
	current += madt->header.length;
	acpi_add_table(rsdt, madt);

#if 0
	/* SRAT */
	printk_debug("ACPI:    * SRAT\n");
	srat = (acpi_srat_t *) current;
	acpi_create_srat(srat);
	current += srat->header.length;
	acpi_add_table(rsdt, srat);

	/* SLIT */
	printk_debug("ACPI:    * SLIT\n");
	slit = (acpi_slit_t *) current;
	acpi_create_slit(slit);
	current += slit->header.length;
	acpi_add_table(rsdt, slit);
#endif

	/* SSDT */
	printk_debug("ACPI:    * SSDT\n");
	ssdt = (acpi_header_t *) current;
	current += ((acpi_header_t *) AmlCode_ssdt)->length;
	memcpy((void *)ssdt, (void *)AmlCode_ssdt,
	       ((acpi_header_t *) AmlCode_ssdt)->length);
	/* Here you need to set value in pci1234, sblk and sbdn in get_bus_conf.c */
	update_ssdt((void *)ssdt);
	/* recalculate checksum */
	ssdt->checksum = 0;
	ssdt->checksum = acpi_checksum((u8 *)ssdt, ssdt->length);
	acpi_add_table(rsdt, ssdt);

#if ACPI_SSDTX_NUM >= 1

	/* same htio, but different position? We may have to copy, change HCIN, and recalculate the checknum and add_table */

	for (i = 1; i < sysconf.hc_possible_num; i++) {	/* 0: is hc sblink */
		if ((sysconf.pci1234[i] & 1) != 1)
			continue;
		uint8_t c;
		if (i < 7) {
			c = (uint8_t) ('4' + i - 1);
		} else {
			c = (uint8_t) ('A' + i - 1 - 6);
		}
		printk_debug("ACPI:    * SSDT for PCI%c Aka hcid = %d\n", c, sysconf.hcid[i]);	/* pci0 and pci1 are in dsdt */
		current = (current + 0x07) & -0x08;
		ssdtx = (acpi_header_t *) current;
		switch (sysconf.hcid[i]) {
		case 1:	/* 8132 */
			p = AmlCode_ssdt2;
			break;
		case 2:	/* 8151 */
			p = AmlCode_ssdt3;
			break;
		case 3:	/* 8131 */
			p = AmlCode_ssdt4;
			break;
		default:
			/* HTX no io apic */
			p = AmlCode_ssdt5;
			break;
		}
		current += ((acpi_header_t *) p)->length;
		memcpy((void *)ssdtx, (void *)p, ((acpi_header_t *) p)->length);
		update_ssdtx((void *)ssdtx, i);
		ssdtx->checksum = 0;
		ssdtx->checksum =
		    acpi_checksum((u8 *)ssdtx, ssdtx->length);
		acpi_add_table(rsdt, ssdtx);
	}
#endif

	/* FACS */
	printk_debug("ACPI:    * FACS\n");
	facs = (acpi_facs_t *) current;
	current += sizeof(acpi_facs_t);
	acpi_create_facs(facs);

	/* DSDT */
	printk_debug("ACPI:    * DSDT\n");
	dsdt = (acpi_header_t *) current;
	memcpy((void *)dsdt, (void *)AmlCode,
	       ((acpi_header_t *) AmlCode)->length);
	if (!pstates_algorithm(dsdt))
		printk_debug("pstates_algorithm error!\n");
	else
		printk_debug("pstates_algorithm success.\n");

	current += dsdt->length;
	printk_debug("ACPI:    * DSDT @ %08x Length %x\n", dsdt, dsdt->length);
	/* FDAT */
	printk_debug("ACPI:    * FADT\n");
	fadt = (acpi_fadt_t *) current;
	current += sizeof(acpi_fadt_t);

	acpi_create_fadt(fadt, facs, dsdt);
	acpi_add_table(rsdt, fadt);

#if DUMP_ACPI_TABLES == 1
	printk_debug("rsdp\n");
	dump_mem(rsdp, ((void *)rsdp) + sizeof(acpi_rsdp_t));

	printk_debug("rsdt\n");
	dump_mem(rsdt, ((void *)rsdt) + sizeof(acpi_rsdt_t));

	printk_debug("madt\n");
	dump_mem(madt, ((void *)madt) + madt->header.length);

	printk_debug("srat\n");
	dump_mem(srat, ((void *)srat) + srat->header.length);

	printk_debug("slit\n");
	dump_mem(slit, ((void *)slit) + slit->header.length);

	printk_debug("ssdt\n");
	dump_mem(ssdt, ((void *)ssdt) + ssdt->length);

	printk_debug("fadt\n");
	dump_mem(fadt, ((void *)fadt) + fadt->header.length);
#endif

	printk_info("ACPI: done.\n");
	return current;
}