1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
/* SPDX-License-Identifier: GPL-2.0-only */
#include <types.h>
#include <device/pci.h>
#include <device/pci_ids.h>
#include <device/pci_ops.h>
#include <device/mmio.h>
#include <hwilib.h>
#include <bootstate.h>
#include "nc_fpga.h"
static void *nc_fpga_bar0;
#define FPGA_SET_PARAM(src, dst) \
{ \
uint32_t var; \
if (hwilib_get_field(src, (uint8_t *)&var, sizeof(var))) \
dst = ((typeof(dst))var); \
}
static void init_temp_mon (void *base_adr)
{
uint32_t cc[5], i = 0;
uint8_t num = 0;
volatile fan_ctrl_t *ctrl = (fan_ctrl_t *)base_adr;
/* Program sensor delay first. */
FPGA_SET_PARAM(FANSensorDelay, ctrl->sensordelay);
/* Program correction curve for every used sensor. */
if ((hwilib_get_field(FANSensorNum, &num, 1) != 1) ||
(num == 0) || (num > MAX_NUM_SENSORS))
return;
for (i = 0; i < num; i++) {
if (hwilib_get_field(FANSensorCfg0 + i, (uint8_t *)&cc[0],
sizeof(cc)) == sizeof(cc)) {
ctrl->sensorcfg[cc[0]].rmin = cc[1] & 0xffff;
ctrl->sensorcfg[cc[0]].rmax = cc[2] & 0xffff;
ctrl->sensorcfg[cc[0]].nmin = cc[3] & 0xffff;
ctrl->sensorcfg[cc[0]].nmax = cc[4] & 0xffff;
}
}
ctrl->sensornum = num;
/* Program sensor selection and temperature thresholds. */
FPGA_SET_PARAM(FANSensorSelect, ctrl->sensorselect);
FPGA_SET_PARAM(T_Warn, ctrl->t_warn);
FPGA_SET_PARAM(T_Crit, ctrl->t_crit);
}
static void init_fan_ctrl (void *base_adr)
{
uint8_t mask = 0, freeze_disable = 0, fan_req = 0;
volatile fan_ctrl_t *ctrl = (fan_ctrl_t *)base_adr;
/* Program all needed fields of FAN controller. */
FPGA_SET_PARAM(FANSamplingTime, ctrl->samplingtime);
FPGA_SET_PARAM(FANSetPoint, ctrl->setpoint);
FPGA_SET_PARAM(FANHystCtrl, ctrl->hystctrl);
FPGA_SET_PARAM(FANHystVal, ctrl->hystval);
FPGA_SET_PARAM(FANHystThreshold, ctrl->hystthreshold);
FPGA_SET_PARAM(FANKp, ctrl->kp);
FPGA_SET_PARAM(FANKi, ctrl->ki);
FPGA_SET_PARAM(FANKd, ctrl->kd);
FPGA_SET_PARAM(FANMaxSpeed, ctrl->fanmax);
FPGA_SET_PARAM(FANStartSpeed, ctrl->fanmin);
/* Set freeze and FAN configuration. */
if ((hwilib_get_field(FF_FanReq, &fan_req, 1) == 1) &&
(hwilib_get_field(FF_FreezeDis, &freeze_disable, 1) == 1)) {
if (!fan_req)
mask = 1;
else if (fan_req && !freeze_disable)
mask = 2;
else
mask = 3;
ctrl->fanmon = mask << 10;
}
}
/** \brief This function is the driver entry point for the init phase
* of the PCI bus allocator. It will initialize all the needed parts
* of NC_FPGA.
* @param *dev Pointer to the used PCI device
* @return void Nothing is given back
*/
static void nc_fpga_init(struct device *dev)
{
void *bar0_ptr = NULL;
uint8_t cmd_reg;
uint32_t cap = 0;
/* All we need is mapped to BAR 0, get the address. */
bar0_ptr = (void *)(pci_read_config32(dev, PCI_BASE_ADDRESS_0) &
~PCI_BASE_ADDRESS_MEM_ATTR_MASK);
cmd_reg = pci_read_config8(dev, PCI_COMMAND);
/* Ensure BAR0 has a valid value. */
if (!bar0_ptr || !(cmd_reg & PCI_COMMAND_MEMORY))
return;
/* Ensure this is really a NC FPGA by checking magic register. */
if (read32(bar0_ptr + NC_MAGIC_OFFSET) != NC_FPGA_MAGIC)
return;
/* Save BAR0 address so that it can be used on all NC_FPGA devices to
set the FW_DONE bit before jumping to payload. */
nc_fpga_bar0 = bar0_ptr;
/* Open hwinfo block. */
if (hwilib_find_blocks("hwinfo.hex") != CB_SUCCESS)
return;
/* Set up FAN controller and temperature monitor according to */
/* capability bits. */
cap = read32(bar0_ptr + NC_CAP1_OFFSET);
if (cap & (NC_CAP1_TEMP_MON | NC_CAP1_FAN_CTRL))
init_temp_mon(bar0_ptr + NC_FANMON_CTRL_OFFSET);
if (cap & NC_CAP1_FAN_CTRL)
init_fan_ctrl(bar0_ptr + NC_FANMON_CTRL_OFFSET);
if (cap & NC_CAP1_DSAVE_NMI_DELAY) {
uint16_t *dsave_ptr = (uint16_t *)(bar0_ptr + NC_DSAVE_OFFSET);
FPGA_SET_PARAM(NvramVirtTimeDsaveReset, *dsave_ptr);
}
if (cap & NC_CAP1_BL_BRIGHTNESS_CTRL) {
uint8_t *bl_bn_ptr =
(uint8_t *)(bar0_ptr + NC_BL_BRIGHTNESS_OFFSET);
uint8_t *bl_pwm_ptr = (uint8_t *)(bar0_ptr + NC_BL_PWM_OFFSET);
FPGA_SET_PARAM(BL_Brightness, *bl_bn_ptr);
FPGA_SET_PARAM(PF_PwmFreq, *bl_pwm_ptr);
}
}
#if CONFIG(NC_FPGA_NOTIFY_CB_READY)
/* Set FW_DONE bit in FPGA before jumping to payload. */
static void set_fw_done(void *unused)
{
uint32_t reg;
if (nc_fpga_bar0) {
reg = read32(nc_fpga_bar0 + NC_DIAG_CTRL_OFFSET);
reg |= NC_DIAG_FW_DONE;
write32(nc_fpga_bar0 + NC_DIAG_CTRL_OFFSET, reg);
}
}
BOOT_STATE_INIT_ENTRY(BS_PAYLOAD_BOOT, BS_ON_ENTRY, set_fw_done, NULL);
#endif
static void nc_fpga_set_resources(struct device *dev)
{
pci_dev_set_resources(dev);
if (CONFIG(NC_FPGA_POST_CODE)) {
/* Re-initialize base address after set_resources for POST display
to work properly.*/
nc_fpga_remap(pci_read_config32(dev, PCI_BASE_ADDRESS_0) & ~0xf);
}
}
static struct device_operations nc_fpga_ops = {
.read_resources = pci_dev_read_resources,
.set_resources = nc_fpga_set_resources,
.enable_resources = pci_dev_enable_resources,
.init = nc_fpga_init,
};
static const unsigned short nc_fpga_device_ids[] = { 0x4080, 0x4091, 0 };
static const struct pci_driver nc_fpga_driver __pci_driver = {
.ops = &nc_fpga_ops,
.vendor = PCI_VID_SIEMENS,
.devices = nc_fpga_device_ids,
};
|