1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
|
/* SPDX-License-Identifier: GPL-2.0-only */
#include <acpi/acpi.h>
#include <arch/io.h>
#include <bcd.h>
#include <fallback.h>
#include <version.h>
#include <console/console.h>
#include <pc80/mc146818rtc.h>
#include <rtc.h>
#include <security/vboot/vbnv.h>
#include <security/vboot/vbnv_layout.h>
#include <types.h>
static void cmos_reset_date(void)
{
/* Now setup a default date equals to the build date */
struct rtc_time time = {
.sec = 0,
.min = 0,
.hour = 1,
.mday = bcd2bin(coreboot_build_date.day),
.mon = bcd2bin(coreboot_build_date.month),
.year = (bcd2bin(coreboot_build_date.century) * 100) +
bcd2bin(coreboot_build_date.year),
.wday = bcd2bin(coreboot_build_date.weekday)
};
rtc_set(&time);
}
int cmos_checksum_valid(int range_start, int range_end, int cks_loc)
{
int i;
u16 sum, old_sum;
if (CONFIG(STATIC_OPTION_TABLE))
return 1;
sum = 0;
for (i = range_start; i <= range_end; i++)
sum += cmos_read(i);
old_sum = ((cmos_read(cks_loc) << 8) | cmos_read(cks_loc + 1)) &
0x0ffff;
return sum == old_sum;
}
void cmos_set_checksum(int range_start, int range_end, int cks_loc)
{
int i;
u16 sum;
sum = 0;
for (i = range_start; i <= range_end; i++)
sum += cmos_read(i);
cmos_write(((sum >> 8) & 0x0ff), cks_loc);
cmos_write(((sum >> 0) & 0x0ff), cks_loc + 1);
}
/* See if the CMOS error condition has been flagged */
int cmos_error(void)
{
return (cmos_read(RTC_VALID) & RTC_VRT) == 0;
}
#define RTC_CONTROL_DEFAULT (RTC_24H)
#define RTC_FREQ_SELECT_DEFAULT (RTC_REF_CLCK_32KHZ | RTC_RATE_1024HZ)
static bool __cmos_init(bool invalid)
{
bool cmos_invalid;
bool checksum_invalid = false;
bool cleared_cmos = false;
size_t i;
/*
* Avoid clearing pending interrupts and resetting the RTC control
* register in the resume path because the Linux kernel relies on
* this to know if it should restart the RTC timer queue if the wake
* was due to the RTC alarm.
*/
if (ENV_RAMSTAGE && acpi_is_wakeup_s3())
return false;
printk(BIOS_DEBUG, "RTC Init\n");
/* See if there has been a CMOS power problem. */
cmos_invalid = cmos_error();
if (CONFIG(USE_OPTION_TABLE)) {
/* See if there is a CMOS checksum error */
checksum_invalid = !cmos_checksum_valid(PC_CKS_RANGE_START,
PC_CKS_RANGE_END, PC_CKS_LOC);
}
if (cmos_invalid || invalid)
cmos_disable_rtc();
if (invalid || cmos_invalid || checksum_invalid) {
if (!CONFIG(USE_OPTION_TABLE)) {
cmos_write(0, 0x01);
cmos_write(0, 0x03);
cmos_write(0, 0x05);
for (i = 10; i < 128; i++)
cmos_write(0, i);
cleared_cmos = true;
}
if (cmos_invalid || invalid)
cmos_reset_date();
printk(BIOS_WARNING, "RTC:%s%s%s%s\n",
invalid ? " Clear requested":"",
cmos_invalid ? " Power Problem":"",
checksum_invalid ? " Checksum invalid":"",
cleared_cmos ? " zeroing cmos":"");
}
/* Setup the real time clock */
cmos_write(RTC_CONTROL_DEFAULT, RTC_CONTROL);
/* Setup the frequency it operates at */
cmos_write(RTC_FREQ_SELECT_DEFAULT, RTC_FREQ_SELECT);
/* Ensure all reserved bits are 0 in register D */
cmos_write(RTC_VRT, RTC_VALID);
if (CONFIG(USE_OPTION_TABLE)) {
/* See if there is a LB CMOS checksum error */
checksum_invalid = !cmos_lb_cks_valid();
if (checksum_invalid)
printk(BIOS_DEBUG, "RTC: coreboot checksum invalid\n");
/* Make certain we have a valid checksum */
cmos_set_checksum(PC_CKS_RANGE_START, PC_CKS_RANGE_END, PC_CKS_LOC);
}
/* Clear any pending interrupts */
cmos_read(RTC_INTR_FLAGS);
return cleared_cmos;
}
static void cmos_init_vbnv(bool invalid)
{
uint8_t vbnv[VBOOT_VBNV_BLOCK_SIZE];
/* __cmos_init() will clear vbnv contents when a known rtc failure
occurred with !CONFIG(USE_OPTION_TABLE). However, __cmos_init() may
clear vbnv data for other internal reasons. For that, always back up
the vbnv contents and conditionally save them when __cmos_init()
indicates CMOS was cleared. */
read_vbnv_cmos(vbnv);
if (__cmos_init(invalid))
save_vbnv_cmos(vbnv);
}
void cmos_init(bool invalid)
{
if (ENV_SMM)
return;
if (CONFIG(VBOOT_VBNV_CMOS))
cmos_init_vbnv(invalid);
else
__cmos_init(invalid);
}
/*
* Upon return the caller is guaranteed 244 microseconds to complete any
* RTC operations. wait_uip may be called a single time prior to multiple
* accesses, but sequences requiring more time should call wait_uip again.
*/
static void wait_uip(void)
{
while (cmos_read(RTC_REG_A) & RTC_UIP)
;
}
/* Perform a sanity check of current date and time. */
static int cmos_date_invalid(void)
{
struct rtc_time now;
rtc_get(&now);
return rtc_invalid(&now);
}
/*
* If the CMOS is cleared, the rtc_reg has the invalid date. That
* hurts some OSes. Even if we don't set USE_OPTION_TABLE, we need
* to make sure the date is valid.
*/
void cmos_check_update_date(void)
{
u8 year, century = 0;
wait_uip();
if (CONFIG(USE_PC_CMOS_ALTCENTURY))
century = cmos_read(RTC_CLK_ALTCENTURY);
year = cmos_read(RTC_CLK_YEAR);
/*
* If century is 0xFF, 100% that the CMOS is cleared.
* In addition, check the sanity of all values and reset the date in case of
* insane values.
*/
if (century > 0x99 || year > 0x99 || cmos_date_invalid()) /* Invalid date */
cmos_reset_date();
}
int rtc_set(const struct rtc_time *time)
{
cmos_write(bin2bcd(time->sec), RTC_CLK_SECOND);
cmos_write(bin2bcd(time->min), RTC_CLK_MINUTE);
cmos_write(bin2bcd(time->hour), RTC_CLK_HOUR);
cmos_write(bin2bcd(time->mday), RTC_CLK_DAYOFMONTH);
cmos_write(bin2bcd(time->mon), RTC_CLK_MONTH);
cmos_write(bin2bcd(time->year % 100), RTC_CLK_YEAR);
if (CONFIG(USE_PC_CMOS_ALTCENTURY))
cmos_write(bin2bcd(time->year / 100), RTC_CLK_ALTCENTURY);
cmos_write(bin2bcd(time->wday + 1), RTC_CLK_DAYOFWEEK);
return 0;
}
int rtc_get(struct rtc_time *time)
{
wait_uip();
time->sec = bcd2bin(cmos_read(RTC_CLK_SECOND));
time->min = bcd2bin(cmos_read(RTC_CLK_MINUTE));
time->hour = bcd2bin(cmos_read(RTC_CLK_HOUR));
time->mday = bcd2bin(cmos_read(RTC_CLK_DAYOFMONTH));
time->mon = bcd2bin(cmos_read(RTC_CLK_MONTH));
time->year = bcd2bin(cmos_read(RTC_CLK_YEAR));
if (CONFIG(USE_PC_CMOS_ALTCENTURY)) {
time->year += bcd2bin(cmos_read(RTC_CLK_ALTCENTURY)) * 100;
} else {
time->year += 1900;
if (time->year < 1970)
time->year += 100;
}
time->wday = bcd2bin(cmos_read(RTC_CLK_DAYOFWEEK)) - 1;
return 0;
}
/*
* Signal coreboot proper completed -- just before running payload
* or jumping to ACPI S3 wakeup vector.
*/
void set_boot_successful(void)
{
uint8_t index, byte;
index = inb(RTC_PORT(0)) & 0x80;
index |= RTC_BOOT_BYTE;
outb(index, RTC_PORT(0));
byte = inb(RTC_PORT(1));
if (CONFIG(SKIP_MAX_REBOOT_CNT_CLEAR)) {
/*
* Set the fallback boot bit to allow for recovery if
* the payload fails to boot.
* It is the responsibility of the payload to reset
* the normal boot bit to 1 if desired
*/
byte &= ~RTC_BOOT_NORMAL;
} else {
/* If we are in normal mode set the boot count to 0 */
if (byte & RTC_BOOT_NORMAL)
byte &= 0x0f;
}
outb(byte, RTC_PORT(1));
}
|