1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
|
/* SPDX-License-Identifier: GPL-2.0-only */
/* This file is part of the coreboot project. */
#include "i210.h"
#include <device/device.h>
#include <console/console.h>
#include <device/pci.h>
#include <device/pci_ids.h>
#include <device/pci_ops.h>
#include <device/pci_def.h>
#include <string.h>
#include <types.h>
#include <delay.h>
/* This is a private function to wait for a bit mask in a given register */
/* To avoid endless loops, a time-out is implemented here. */
static int wait_done(uint32_t *reg, uint32_t mask)
{
uint32_t timeout = I210_POLL_TIMEOUT_US;
while (!(*reg & mask)) {
udelay(1);
if (!--timeout)
return I210_NOT_READY;
}
return I210_SUCCESS;
}
/** \brief This function can read the configuration space of the MACPHY
* For this purpose, the EEPROM interface is used. No direct access
* to the flash memory will be done.
* @param *dev Pointer to the PCI device of this MACPHY
* @param address Address inside the flash where reading will start
* @param count Number of words (16 bit values) to read
* @param *buffer Pointer to the buffer where to store read data
* @return void I210_NO_ERROR or an error code
*/
static uint32_t read_flash(struct device *dev, uint32_t address,
uint32_t count, uint16_t *buffer)
{
uint32_t bar;
uint32_t *eeprd;
uint32_t i;
/* Get the BAR to memory mapped space*/
bar = pci_read_config32(dev, PCI_BASE_ADDRESS_0);
if ((!bar) || ((address + count) > 0x40))
return I210_INVALID_PARAM;
eeprd = (uint32_t *)(bar + I210_REG_EEREAD);
/* Prior to start ensure flash interface is ready by checking DONE-bit */
if (wait_done(eeprd, I210_DONE))
return I210_NOT_READY;
/*OK, interface is ready, we can use it now */
for (i = 0; i < count; i++) {
/* To start a read cycle write desired address in bits 12..2 */
*eeprd = ((address + i) << 2) & 0x1FFC;
/* Wait until read is done */
if (wait_done(eeprd, I210_DONE))
return I210_READ_ERROR;
/* Here, we can read back desired word in bits 31..16 */
buffer[i] = (*eeprd & 0xffff0000) >> 16;
}
return I210_SUCCESS;
}
/** \brief This function computes the checksum for the configuration space.
* The address range for the checksum is 0x00..0x3e.
* @param *dev Pointer to the PCI device of this MACPHY
* @param *checksum Pointer to the buffer where to store the checksum
* @return void I210_NO_ERROR or an error code
*/
static uint32_t compute_checksum(struct device *dev, uint16_t *checksum)
{
uint16_t eep_data[0x40];
uint32_t i;
/* First read back data to compute the checksum for */
if (read_flash(dev, 0, 0x3f, eep_data))
return I210_READ_ERROR;
/* The checksum is computed in that way that after summarize all the */
/* data from word address 0 to 0x3f the result is 0xBABA. */
*checksum = 0;
for (i = 0; i < 0x3f; i++)
*checksum += eep_data[i];
*checksum = I210_TARGET_CHECKSUM - *checksum;
return I210_SUCCESS;
}
/** \brief This function can write the configuration space of the MACPHY
* For this purpose, the EEPROM interface is used. No direct access
* to the flash memory will be done. This function will update
* the checksum after a value was changed.
* @param *dev Pointer to the PCI device of this MACPHY
* @param address Address inside the flash where writing will start
* @param count Number of words (16 bit values) to write
* @param *buffer Pointer to the buffer where data to write is stored in
* @return void I210_NO_ERROR or an error code
*/
static uint32_t write_flash(struct device *dev, uint32_t address,
uint32_t count, uint16_t *buffer)
{
uint32_t bar;
uint32_t *eepwr;
uint32_t *eectrl;
uint16_t checksum;
uint32_t i;
/* Get the BAR to memory mapped space */
bar = pci_read_config32(dev, 0x10);
if ((!bar) || ((address + count) > 0x40))
return I210_INVALID_PARAM;
eepwr = (uint32_t *)(bar + I210_REG_EEWRITE);
eectrl = (uint32_t *)(bar + I210_REG_EECTRL);
/* Prior to start ensure flash interface is ready by checking DONE-bit */
if (wait_done(eepwr, I210_DONE))
return I210_NOT_READY;
/* OK, interface is ready, we can use it now */
for (i = 0; i < count; i++) {
/* To start a write cycle write desired address in bits 12..2 */
/* and data to write in bits 31..16 into EEWRITE-register */
*eepwr = ((((address + i) << 2) & 0x1FFC) | (buffer[i] << 16));
/* Wait until write is done */
if (wait_done(eepwr, I210_DONE))
return I210_WRITE_ERROR;
}
/* Since we have modified data, we need to update the checksum */
if (compute_checksum(dev, &checksum))
return I210_CHECKSUM_ERROR;
*eepwr = (0x3f << 2) | checksum << 16;
if (wait_done(eepwr, I210_DONE))
return I210_WRITE_ERROR;
/* Up to now, desired data was written into shadowed RAM. We now need */
/* to perform a flash cycle to bring the shadowed RAM into flash. */
/* To start a flash cycle we need to set FLUPD and wait for FLDONE. */
*eectrl = *eectrl | I210_FLUPD;
if (wait_done(eectrl, I210_FLUDONE))
return I210_FLASH_UPDATE_ERROR;
return I210_SUCCESS;
}
/** \brief This function can read the MAC address out of the MACPHY
* @param *dev Pointer to the PCI device of this MACPHY
* @param *MACAdr Pointer to the buffer where to store read MAC address
* @return void I210_NO_ERROR or an error code
*/
static uint32_t read_mac_adr(struct device *dev, uint8_t *mac_adr)
{
uint16_t adr[3];
if (!dev || !mac_adr)
return I210_INVALID_PARAM;
if (read_flash(dev, 0, 3, adr))
return I210_READ_ERROR;
/* Copy the address into destination. This is done because of possible */
/* not matching alignment for destination to uint16_t boundary. */
memcpy(mac_adr, (uint8_t *)adr, 6);
return I210_SUCCESS;
}
/** \brief This function can write the MAC address to the MACPHY
* @param *dev Pointer to the PCI device of this MACPHY
* @param *MACAdr Pointer to the buffer where the desired MAC address is
* @return void I210_NO_ERROR or an error code
*/
static uint32_t write_mac_adr(struct device *dev, uint8_t *mac_adr)
{
uint16_t adr[3];
if (!dev || !mac_adr)
return I210_INVALID_PARAM;
/* Copy desired address into a local buffer to avoid alignment issues */
memcpy((uint8_t *)adr, mac_adr, 6);
return write_flash(dev, 0, 3, adr);
}
/** \brief This function is the driver entry point for the init phase
* of the PCI bus allocator. It will program a MAC address
* into the MACPHY.
* @param *dev Pointer to the used PCI device
* @return void Nothing is given back
*/
static void init(struct device *dev)
{
uint8_t cur_adr[6];
uint8_t adr_to_set[6];
enum cb_err status;
/*Check first whether there is a valid MAC address available */
status = mainboard_get_mac_address(dev, adr_to_set);
if (status != CB_SUCCESS) {
printk(BIOS_ERR, "I210: No valid MAC address found\n");
return;
}
/* Before we will write a new address, check the existing one */
if (read_mac_adr(dev, cur_adr)) {
printk(BIOS_ERR, "I210: Not able to read MAC address.\n");
return;
}
if (memcmp(cur_adr, adr_to_set, 6)) {
if (write_mac_adr(dev, adr_to_set))
printk(BIOS_ERR, "I210: Error setting MAC address\n");
else
printk(BIOS_INFO, "I210: MAC address changed.\n");
} else {
printk(BIOS_INFO, "I210: MAC address is up to date.\n");
}
return;
}
static void set_resources(struct device *dev)
{
pci_dev_set_resources(dev);
dev->command |= PCI_COMMAND_MASTER;
}
static struct device_operations i210_ops = {
.read_resources = pci_dev_read_resources,
.set_resources = set_resources,
.enable_resources = pci_dev_enable_resources,
.init = init,
};
static const unsigned short i210_device_ids[] = { 0x1537, 0x1538, 0x1533, 0 };
static const struct pci_driver i210_driver __pci_driver = {
.ops = &i210_ops,
.vendor = PCI_VENDOR_ID_INTEL,
.devices = i210_device_ids,
};
|