1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
|
/******************************************************************************
* Copyright (c) 2004, 2008 IBM Corporation
* Copyright (c) 2008, 2009 Pattrick Hueper <phueper@hueper.net>
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* IBM Corporation - initial implementation
*****************************************************************************/
#include "device.h"
#include "compat/rtas.h"
#include <string.h>
#include "debug.h"
#include <device/device.h>
#include <device/pci.h>
#include <device/pci_ops.h>
#include <device/resource.h>
/* the device we are working with... */
biosemu_device_t bios_device;
//max. 6 BARs and 1 Exp.ROM plus CfgSpace and 3 legacy ranges, plus 2 "special" memory ranges
translate_address_t translate_address_array[13];
u8 taa_last_entry;
typedef struct {
u8 info;
u8 bus;
u8 devfn;
u8 cfg_space_offset;
u64 address;
u64 size;
} __packed assigned_address_t;
#if CONFIG(PCI_OPTION_ROM_RUN_YABEL)
/* coreboot version */
static void
biosemu_dev_get_addr_info(void)
{
int taa_index = 0;
struct resource *r;
u8 bus = bios_device.dev->upstream->secondary;
u16 devfn = bios_device.dev->path.pci.devfn;
bios_device.bus = bus;
bios_device.devfn = devfn;
DEBUG_PRINTF("bus: %x, devfn: %x\n", bus, devfn);
for (r = bios_device.dev->resource_list; r; r = r->next) {
translate_address_array[taa_index].info = r->flags;
translate_address_array[taa_index].bus = bus;
translate_address_array[taa_index].devfn = devfn;
translate_address_array[taa_index].cfg_space_offset =
r->index;
translate_address_array[taa_index].address = r->base;
translate_address_array[taa_index].size = r->size;
/* don't translate addresses... all addresses are 1:1 */
translate_address_array[taa_index].address_offset = 0;
taa_index++;
}
/* Expansion ROM */
translate_address_array[taa_index].info = IORESOURCE_MEM | IORESOURCE_READONLY;
translate_address_array[taa_index].bus = bus;
translate_address_array[taa_index].devfn = devfn;
translate_address_array[taa_index].cfg_space_offset = 0x30;
translate_address_array[taa_index].address = bios_device.img_addr;
translate_address_array[taa_index].size = 0; /* TODO: do we need the size? */
/* don't translate addresses... all addresses are 1:1 */
translate_address_array[taa_index].address_offset = 0;
taa_index++;
/* legacy ranges if its a VGA card... */
if ((bios_device.dev->class & 0xFF0000) == 0x030000) {
DEBUG_PRINTF("%s: VGA device found, adding legacy resources...\n", __func__);
/* I/O 0x3B0-0x3BB */
translate_address_array[taa_index].info = IORESOURCE_FIXED | IORESOURCE_IO;
translate_address_array[taa_index].bus = bus;
translate_address_array[taa_index].devfn = devfn;
translate_address_array[taa_index].cfg_space_offset = 0;
translate_address_array[taa_index].address = 0x3b0;
translate_address_array[taa_index].size = 0xc;
/* don't translate addresses... all addresses are 1:1 */
translate_address_array[taa_index].address_offset = 0;
taa_index++;
/* I/O 0x3C0-0x3DF */
translate_address_array[taa_index].info = IORESOURCE_FIXED | IORESOURCE_IO;
translate_address_array[taa_index].bus = bus;
translate_address_array[taa_index].devfn = devfn;
translate_address_array[taa_index].cfg_space_offset = 0;
translate_address_array[taa_index].address = 0x3c0;
translate_address_array[taa_index].size = 0x20;
/* don't translate addresses... all addresses are 1:1 */
translate_address_array[taa_index].address_offset = 0;
taa_index++;
/* Mem 0xA0000-0xBFFFF */
translate_address_array[taa_index].info = IORESOURCE_FIXED | IORESOURCE_MEM;
translate_address_array[taa_index].bus = bus;
translate_address_array[taa_index].devfn = devfn;
translate_address_array[taa_index].cfg_space_offset = 0;
translate_address_array[taa_index].address = 0xa0000;
translate_address_array[taa_index].size = 0x20000;
/* don't translate addresses... all addresses are 1:1 */
translate_address_array[taa_index].address_offset = 0;
taa_index++;
}
// store last entry index of translate_address_array
taa_last_entry = taa_index - 1;
#if CONFIG(X86EMU_DEBUG)
//dump translate_address_array
printf("translate_address_array:\n");
translate_address_t ta;
int i;
for (i = 0; i <= taa_last_entry; i++) {
ta = translate_address_array[i];
printf
("%d: info: %08lx bus: %02x devfn: %02x cfg_space_offset: %02x\n\taddr: %016llx\n\toffs: %016llx\n\tsize: %016llx\n",
i, ta.info, ta.bus, ta.devfn, ta.cfg_space_offset,
ta.address, ta.address_offset, ta.size);
}
#endif
}
#else
// use translate_address_dev and get_puid from net-snk's net_support.c
void translate_address_dev(u64 *, phandle_t);
u64 get_puid(phandle_t node);
// scan all addresses assigned to the device ("assigned-addresses" and "reg")
// store in translate_address_array for faster translation using dev_translate_address
void
biosemu_dev_get_addr_info(void)
{
// get bus/dev/fn from assigned-addresses
int32_t len;
//max. 6 BARs and 1 Exp.ROM plus CfgSpace and 3 legacy ranges
assigned_address_t buf[11];
len =
of_getprop(bios_device.phandle, "assigned-addresses", buf,
sizeof(buf));
bios_device.bus = buf[0].bus;
bios_device.devfn = buf[0].devfn;
DEBUG_PRINTF("bus: %x, devfn: %x\n", bios_device.bus,
bios_device.devfn);
//store address translations for all assigned-addresses and regs in
//translate_address_array for faster translation later on...
int i = 0;
// index to insert data into translate_address_array
int taa_index = 0;
u64 address_offset;
for (i = 0; i < (len / sizeof(assigned_address_t)); i++, taa_index++) {
//copy all info stored in assigned-addresses
translate_address_array[taa_index].info = buf[i].info;
translate_address_array[taa_index].bus = buf[i].bus;
translate_address_array[taa_index].devfn = buf[i].devfn;
translate_address_array[taa_index].cfg_space_offset =
buf[i].cfg_space_offset;
translate_address_array[taa_index].address = buf[i].address;
translate_address_array[taa_index].size = buf[i].size;
// translate first address and store it as address_offset
address_offset = buf[i].address;
translate_address_dev(&address_offset, bios_device.phandle);
translate_address_array[taa_index].address_offset =
address_offset - buf[i].address;
}
//get "reg" property
len = of_getprop(bios_device.phandle, "reg", buf, sizeof(buf));
for (i = 0; i < (len / sizeof(assigned_address_t)); i++) {
if ((buf[i].size == 0) || (buf[i].cfg_space_offset != 0)) {
// we don't care for ranges with size 0 and
// BARs and Expansion ROM must be in assigned-addresses... so in reg
// we only look for those without config space offset set...
// i.e. the legacy ranges
continue;
}
//copy all info stored in assigned-addresses
translate_address_array[taa_index].info = buf[i].info;
translate_address_array[taa_index].bus = buf[i].bus;
translate_address_array[taa_index].devfn = buf[i].devfn;
translate_address_array[taa_index].cfg_space_offset =
buf[i].cfg_space_offset;
translate_address_array[taa_index].address = buf[i].address;
translate_address_array[taa_index].size = buf[i].size;
// translate first address and store it as address_offset
address_offset = buf[i].address;
translate_address_dev(&address_offset, bios_device.phandle);
translate_address_array[taa_index].address_offset =
address_offset - buf[i].address;
taa_index++;
}
// store last entry index of translate_address_array
taa_last_entry = taa_index - 1;
#if CONFIG(X86EMU_DEBUG)
//dump translate_address_array
printf("translate_address_array:\n");
translate_address_t ta;
for (i = 0; i <= taa_last_entry; i++) {
ta = translate_address_array[i];
printf
("%d: %02x%02x%02x%02x\n\taddr: %016llx\n\toffs: %016llx\n\tsize: %016llx\n",
i, ta.info, ta.bus, ta.devfn, ta.cfg_space_offset,
ta.address, ta.address_offset, ta.size);
}
#endif
}
#endif
// "special memory" is a hack to make some parts of memory fall through to real memory
// (ie. no translation). Necessary if option ROMs attempt DMA there, map registers or
// do similarly crazy things.
void
biosemu_add_special_memory(u32 start, u32 size)
{
int taa_index = ++taa_last_entry;
translate_address_array[taa_index].info = IORESOURCE_FIXED | IORESOURCE_MEM;
translate_address_array[taa_index].bus = 0;
translate_address_array[taa_index].devfn = 0;
translate_address_array[taa_index].cfg_space_offset = 0;
translate_address_array[taa_index].address = start;
translate_address_array[taa_index].size = size;
/* don't translate addresses... all addresses are 1:1 */
translate_address_array[taa_index].address_offset = 0;
}
#if !CONFIG(PCI_OPTION_ROM_RUN_YABEL)
// to simulate accesses to legacy VGA Memory (0xA0000-0xBFFFF)
// we look for the first prefetchable memory BAR, if no prefetchable BAR found,
// we use the first memory BAR
// dev_translate_addr will translate accesses to the legacy VGA Memory into the found vmem BAR
static void
biosemu_dev_find_vmem_addr(void)
{
int i = 0;
translate_address_t ta;
s8 tai_np = -1, tai_p = -1; // translate_address_array index for non-prefetchable and prefetchable memory
//search backwards to find first entry
for (i = taa_last_entry; i >= 0; i--) {
ta = translate_address_array[i];
if ((ta.cfg_space_offset >= 0x10)
&& (ta.cfg_space_offset <= 0x24)) {
//only BARs
if ((ta.info & 0x03) >= 0x02) {
//32/64bit memory
tai_np = i;
if ((ta.info & 0x40) != 0) {
// prefetchable
tai_p = i;
}
}
}
}
if (tai_p != -1) {
ta = translate_address_array[tai_p];
bios_device.vmem_addr = ta.address;
bios_device.vmem_size = ta.size;
DEBUG_PRINTF
("%s: Found prefetchable Virtual Legacy Memory BAR: %llx, size: %llx\n",
__func__, bios_device.vmem_addr,
bios_device.vmem_size);
} else if (tai_np != -1) {
ta = translate_address_array[tai_np];
bios_device.vmem_addr = ta.address;
bios_device.vmem_size = ta.size;
DEBUG_PRINTF
("%s: Found non-prefetchable Virtual Legacy Memory BAR: %llx, size: %llx",
__func__, bios_device.vmem_addr,
bios_device.vmem_size);
}
// disable vmem
//bios_device.vmem_size = 0;
}
void
biosemu_dev_get_puid(void)
{
// get puid
bios_device.puid = get_puid(bios_device.phandle);
DEBUG_PRINTF("puid: 0x%llx\n", bios_device.puid);
}
#endif
static void
biosemu_dev_get_device_vendor_id(void)
{
u32 pci_config_0;
#if CONFIG(PCI_OPTION_ROM_RUN_YABEL)
pci_config_0 = pci_read_config32(bios_device.dev, 0x0);
#else
pci_config_0 =
rtas_pci_config_read(bios_device.puid, 4, bios_device.bus,
bios_device.devfn, 0x0);
#endif
bios_device.pci_device_id =
(u16) ((pci_config_0 & 0xFFFF0000) >> 16);
bios_device.pci_vendor_id = (u16) (pci_config_0 & 0x0000FFFF);
DEBUG_PRINTF("PCI Device ID: %04x, PCI Vendor ID: %x\n",
bios_device.pci_device_id, bios_device.pci_vendor_id);
}
/* Check whether the device has a valid Expansion ROM and search the PCI Data
* Structure and any Expansion ROM Header (using dev_scan_exp_header()) for
* needed information. If the rom_addr parameter is != 0, it is the address of
* the Expansion ROM image and will be used, if it is == 0, the Expansion ROM
* BAR address will be used.
*/
u8
biosemu_dev_check_exprom(unsigned long rom_base_addr)
{
int i = 0;
translate_address_t ta;
u16 pci_ds_offset;
pci_data_struct_t pci_ds;
if (rom_base_addr == 0) {
// check for ExpROM Address (Offset 30) in taa
for (i = 0; i <= taa_last_entry; i++) {
ta = translate_address_array[i];
if (ta.cfg_space_offset == 0x30) {
//translated address
rom_base_addr = ta.address + ta.address_offset;
break;
}
}
}
/* In the ROM there could be multiple Expansion ROM Images... start
* searching them for an x86 image.
*/
do {
if (rom_base_addr == 0) {
printf("Error: no Expansion ROM address found!\n");
return -1;
}
set_ci();
u16 rom_signature = in16le((void *) rom_base_addr);
clr_ci();
if (rom_signature != 0xaa55) {
printf
("Error: invalid Expansion ROM signature: %02x!\n",
*((u16 *) rom_base_addr));
return -1;
}
set_ci();
// at offset 0x18 is the (16bit little-endian) pointer to the PCI Data Structure
pci_ds_offset = in16le((void *) (rom_base_addr + 0x18));
//copy the PCI Data Structure
memcpy(&pci_ds, (void *) (rom_base_addr + pci_ds_offset),
sizeof(pci_ds));
clr_ci();
#if CONFIG(X86EMU_DEBUG)
DEBUG_PRINTF("PCI Data Structure @%lx:\n",
rom_base_addr + pci_ds_offset);
dump((void *) &pci_ds, sizeof(pci_ds));
#endif
if (strncmp((const char *) pci_ds.signature, "PCIR", 4) != 0) {
printf("Invalid PCI Data Structure found!\n");
break;
}
//little-endian conversion
pci_ds.vendor_id = in16le(&pci_ds.vendor_id);
pci_ds.device_id = in16le(&pci_ds.device_id);
pci_ds.img_length = in16le(&pci_ds.img_length);
pci_ds.pci_ds_length = in16le(&pci_ds.pci_ds_length);
#ifdef DO_THIS_TEST_TWICE
if (pci_ds.vendor_id != bios_device.pci_vendor_id) {
printf
("Image has invalid Vendor ID: %04x, expected: %04x\n",
pci_ds.vendor_id, bios_device.pci_vendor_id);
break;
}
if (pci_ds.device_id != bios_device.pci_device_id) {
printf
("Image has invalid Device ID: %04x, expected: %04x\n",
pci_ds.device_id, bios_device.pci_device_id);
break;
}
#endif
DEBUG_PRINTF("Image Length: %d\n", pci_ds.img_length * 512);
DEBUG_PRINTF("Image Code Type: %d\n", pci_ds.code_type);
if (pci_ds.code_type == 0) {
//x86 image
//store image address and image length in bios_device struct
bios_device.img_addr = rom_base_addr;
bios_device.img_size = pci_ds.img_length * 512;
// we found the image, exit the loop
break;
} else {
// no x86 image, check next image (if any)
rom_base_addr += pci_ds.img_length * 512;
}
if ((pci_ds.indicator & 0x80) == 0x80) {
//last image found, exit the loop
DEBUG_PRINTF("Last PCI Expansion ROM Image found.\n");
break;
}
}
while (bios_device.img_addr == 0);
// in case we did not find a valid x86 Expansion ROM Image
if (bios_device.img_addr == 0) {
printf("Error: no valid x86 Expansion ROM Image found!\n");
return -1;
}
return 0;
}
u8
biosemu_dev_init(struct device * device)
{
u8 rval = 0;
//init bios_device struct
DEBUG_PRINTF("%s\n", __func__);
memset(&bios_device, 0, sizeof(bios_device));
#if !CONFIG(PCI_OPTION_ROM_RUN_YABEL)
bios_device.ihandle = of_open(device_name);
if (bios_device.ihandle == 0) {
DEBUG_PRINTF("%s is no valid device!\n", device_name);
return -1;
}
bios_device.phandle = of_finddevice(device_name);
#else
bios_device.dev = device;
#endif
biosemu_dev_get_addr_info();
#if !CONFIG(PCI_OPTION_ROM_RUN_YABEL)
biosemu_dev_find_vmem_addr();
biosemu_dev_get_puid();
#endif
biosemu_dev_get_device_vendor_id();
return rval;
}
// translate address function using translate_address_array assembled
// by dev_get_addr_info... MUCH faster than calling translate_address_dev
// and accessing client interface for every translation...
// returns: 0 if addr not found in translate_address_array, 1 if found.
u8
biosemu_dev_translate_address(int type, unsigned long * addr)
{
int i = 0;
translate_address_t ta;
#if !CONFIG(PCI_OPTION_ROM_RUN_YABEL)
/* we don't need this hack for coreboot... we can access legacy areas */
//check if it is an access to legacy VGA Mem... if it is, map the address
//to the vmem BAR and then translate it...
// (translation info provided by Ben Herrenschmidt)
// NOTE: the translation seems to only work for NVIDIA cards... but it is needed
// to make some NVIDIA cards work at all...
if ((bios_device.vmem_size > 0)
&& ((*addr >= 0xA0000) && (*addr < 0xB8000))) {
*addr = (*addr - 0xA0000) * 4 + 2 + bios_device.vmem_addr;
}
if ((bios_device.vmem_size > 0)
&& ((*addr >= 0xB8000) && (*addr < 0xC0000))) {
u8 shift = *addr & 1;
*addr &= 0xfffffffe;
*addr = (*addr - 0xB8000) * 4 + shift + bios_device.vmem_addr;
}
#endif
for (i = 0; i <= taa_last_entry; i++) {
ta = translate_address_array[i];
if ((*addr >= ta.address) && (*addr <= (ta.address + ta.size)) && (ta.info & type)) {
*addr += ta.address_offset;
return 1;
}
}
return 0;
}
|